PRESENTATIONS OF THE FREE METABELIAN GROUP OF RANK 2

MARTIN J. EVANS

ABSTRACT. Let F_3 denote the free group of rank 3 and M_2 denote the free metabelian group of rank 2. We say that $x \in F_3$ is a primitive element of F_3 if it can be included in some basis of F_3 . We establish the existence of presentations $N \hookrightarrow F_3 \xrightarrow{\theta} M_2$ such that N does not contain any primitive elements of F_3 .

1. Introduction. Let F_n and M_n denote the free group of rank n and the free metabelian group of rank n respectively.

An element x of F_n is said to be *primitive* if it can be included in some basis of F_n and similarly an element $y \in M_n$ is said to be *primitive* if it can be included in a basis of M_n . Observe that if P denotes the normal closure in M_n of the primitive element $p \in M_n$ then $M_n/P \cong M_{n-1}$. Let π denote the natural map $\pi: F_n \longrightarrow F_n/F''_n = M_n$ where we identify M_n with F_n/F''_n in the usual way. We say that a primitive element p of M_n is *induced* if there exists a primitive element x of F_n such that $x\pi = p$. A well-known theorem of S. Bachmuth and H. Mochizuki [2] implies that, for $n \neq 3$, every primitive element of M_n is induced. In contrast, V. A. Roman'kov [7] has shown that there are primitive elements of M_3 which are not induced. However, his work establishes only the existence of such elements and, to the best of the author's knowledge, no specific primitive element of M_3 has been shown to be non-induced.

Following [3] we say that the presentation $N \hookrightarrow F_n \xrightarrow{\theta} G$ of a group G is essentially (n-1)-generator if there exist epimorphisms ψ and η that make the diagram

$$F_{n-1}$$

$$\psi \nearrow \qquad \searrow \eta$$

$$N \hookrightarrow F_n \xrightarrow{\theta} G$$

commutative.

Equivalently (see [3]), $N \hookrightarrow F_n \xrightarrow{\theta} G$ is essentially (n-1)-generator if and only if N contains a primitive element of F_n .

Let $N \hookrightarrow F_n \xrightarrow{\theta} M_{n-1}$ be a presentation of M_{n-1} . Since $F''_n \leq N$, there is an induced epimorphism $\gamma: M_n \longrightarrow M_{n-1}$ such that $\theta = \pi \gamma$. It follows immediately from a recent result of C. K. Gupta, N. D. Gupta and G. A. Noskov ([4] Theorem 3.1) that ker γ is the normal closure of some primitive element g of M_n . Now if $n \neq 3$, g is an induced primitive element of M_n and consequently ker θ contains a primitive element of F_n . Therefore

Received by the editors February 26, 1993; revised May 12, 1994.

AMS subject classification: 20F05.

[©] Canadian Mathematical Society 1994.

every presentation of the form $N \hookrightarrow F_n \longrightarrow M_{n-1}$, where $n \neq 3$, is essentially (n-1)-generator.

In this note we shall use the aforementioned result of Roman'kov on non-induced primitive elements of M_3 to prove the following theorem.

THEOREM A. The free metabelian group of rank 2 has presentations on three generators that are not essentially 2-generator. More explicitly, let $p \in M_3$ be a primitive element of M_3 that is not induced and let P denote the normal closure of p in M_3 . Let $\rho: M_3 \longrightarrow M_2$ be an epimorphism that has kernel P and define $\theta: F_3 \longrightarrow M_2$ by $\theta = \pi \rho$ where $\pi: F_3 \longrightarrow M_3$ is the natural map. Then ker $\theta \hookrightarrow F_3 \xrightarrow{\theta} M_2$ is not essentially 2-generator, i.e. ker θ does not contain a primitive element of F_3 .

Our proof of Theorem A depends on the following result which is of independent interest.

THEOREM B. Let q be a primitive element of M_n and suppose that q is contained in the normal closure in M_n of some element $y \in M_n$. Then q is conjugate to y or y^{-1} .

2. Proofs.

THE PROOF OF THEOREM B. It is clear that the conclusion of Theorem B is correct for n = 1. Accordingly, let us fix $n \ge 2$, once and for all.

We shall use the Magnus embedding of M_n throughout. Thus, we view M_n as the group generated under formal matrix multiplication by

$$y_1 = \begin{pmatrix} a_1 & 0 \\ t_1 & 1 \end{pmatrix}, y_2 = \begin{pmatrix} a_2 & 0 \\ t_2 & 1 \end{pmatrix}, \dots, y_n = \begin{pmatrix} a_n & 0 \\ t_n & 1 \end{pmatrix}$$

where $A_n = \langle a_1, a_2, ..., a_n \rangle$ is a free abelian group of rank *n* and $t_1, t_2, ..., t_n$ form a basis for a free (right) $\mathbb{Z}A_n$ -module *W* of rank *n*. A result of S. Bachmuth [1] asserts that M_n consists of all matrices of the form

(1)
$$\begin{pmatrix} h & 0\\ \sum_{i=1}^{n} t_i r_i & 1 \end{pmatrix}.$$

where $h \in A_n, r_1, \ldots, r_n \in \mathbb{Z}A_n$ and

(2)
$$\sum_{i=1}^{n} (a_i - 1)r_i = h - 1 \quad \text{(Bachmuth's Criterion)}.$$

The reader who is unfamiliar with the Magnus embedding is directed to the useful expository article by H. Mochizuki [6]. For typographical reasons it is convenient to define

$$L(a,m) = \begin{pmatrix} a & 0 \\ m & 1 \end{pmatrix} \quad \text{for all } \begin{pmatrix} a & 0 \\ m & 1 \end{pmatrix} \in M_n.$$

In this notation we have that L(a, m) L(a', m') = L(aa', ma'+m') for all $L(a, m), L(a', m') \in M_n$.

We write ϕ for the ring homomorphism $\phi: \mathbb{Z}A_n \longrightarrow \mathbb{Z}A_{n-1}$ given by $a_1\phi = a_1, a_2\phi = a_2, \ldots, a_{n-1}\phi = a_{n-1}, a_n\phi = 1$ and note that ker $\phi = (a_n - 1)\mathbb{Z}A_n$. Also, we write ϵ for the augmentation map $\epsilon: \mathbb{Z}A_n \longrightarrow \mathbb{Z}$ with $a_i\epsilon = 1$ for $i = 1, 2, \ldots, n$.

Since Aut M_n is transitive on the set of primitive elements of M_n it suffices to assume that y_n is contained in the normal closure of some element $y \in M_n$ and prove that y_n is conjugate to y or y^{-1} . So suppose that $y_n = L(a_n, t_n)$ is in the normal closure of $y = L(a, w) \in M_n$. By abelianizing, it is easy to see that $a = a_n^{\pm 1}$ and so, on replacing y with y^{-1} if necessary, we may assume that y_n is in the normal closure of $y = L(a_n, w) \in M_n$ and prove Theorem B by showing that y_n is conjugate to y. The proof is broken-down into several steps. We write $w = t_n + m$ where $m = \sum_{i=1}^n t_i \alpha_i$ so that $y = L(a_n, t_n + m)$ and, by Bachmuth's criterion, $\sum_{i=1}^n (a_i - 1)\alpha_i = 0$.

STEP 1. For i = 1, ..., n - 1 we have that $\alpha_i = (a_n - 1)\alpha'_i$ for some $\alpha'_i \in \mathbb{Z}A_n$.

Note that $y_n^{-1}y = L(1, m)$ so that L(1, m) is contained in the normal closure $y^{M_n} = \langle y, [y, M_n] \rangle$. It follows easily that L(1, m) is contained in $[y, M_n]$. Direct calculation shows that, for each $L(h, m_h) \in M_n$, we have that

$$[y, L(h, m_h)] = \left[\begin{pmatrix} a_n & 0\\ t_n + m & 1 \end{pmatrix}, \begin{pmatrix} h & 0\\ m_h & 1 \end{pmatrix} \right] = \begin{pmatrix} 1 & 0\\ (t_n + m)(h - 1) + m_h(1 - a_n) & 1 \end{pmatrix}$$

so that L(1, m) lies in the subgroup $[y, M_n]$ generated by elements of this form. Noting that the product of two lower unitriangular matrices is given by L(1, v)L(1, u) = L(1, v + u) we see that

(3)
$$m = (t_n + m) \left(\sum_{h \in A_n} (h - 1) z_h \right) + \gamma (1 - a_n)$$

where z_h is an integer depending on h, z_h is zero for almost all h and γ is some element of W, the precise form of which need not concern us here.

Recall that $m = \sum_{i=1}^{n} t_i \alpha_i$ and that *W* is a free $\mathbb{Z}A_n$ -module with basis $\{t_1, t_2, \ldots, t_n\}$. Let $\gamma = \sum_{i=1}^{n} t_i \gamma_i$. From (3) we have that

$$\left(\sum_{i=1}^{n} t_{i} \alpha_{i}\right) \left(1 - \sum_{h \in A_{n}} (h-1) z_{h}\right) = t_{n} \left(\sum_{h \in A_{n}} (h-1) z_{h}\right) + \sum_{i=1}^{n} t_{i} \gamma_{i} (1-a_{n})$$

and equating coefficients of t_i on both sides of this equation yields

$$\alpha_i \left(1 - \sum_{h \in A_n} (h-1) z_h \right) = \gamma_i (1-a_n) \text{ for } i = 1, 2, \dots, n-1.$$

Thus, $\alpha_i (1 - \sum_{h \in A_n} (h - 1)z_h)$ is contained in the prime ideal *I* of $\mathbb{Z}A_n$ generated by $a_n - 1$. Now $1 - \sum_{h \in A_n} (h - 1)z_h$ has augmentation 1 and so it cannot be contained in *I*. It follows that, for each *i*, *i* = 1, ..., *n* - 1, we have that $\alpha_i \in I$ and so $\alpha_i = (a_n - 1)\alpha'_i$ for some $\alpha'_i \in \mathbb{Z}A_n$. Step 1 is complete.

STEP 2.
$$\alpha_n + 1 = b + \alpha'_n(a_n - 1)$$
 for some $\alpha'_n \in \mathbb{Z}A_n$ and some $b \in \pm A_{n-1}$.

Here A_{n-1} denotes the free abelian group generated by $a_1, a_2, \ldots, a_{n-1}$. It is clear that $M_n = \langle y^{M_n}, y_1, y_2, \ldots, y_{n-1} \rangle$. Moreover,

$$L(h, m_h)^{-1} y L(h, m_h) = \begin{pmatrix} h & 0 \\ m_h & 1 \end{pmatrix}^{-1} y \begin{pmatrix} h & 0 \\ m_h & 1 \end{pmatrix} = \begin{pmatrix} a_h & 0 \\ m_h(1 - a_h) + (t_h + m)h & 1 \end{pmatrix}$$

for all $L(h, m_h) \in M_n$ so that W is generated as a $\mathbb{Z}A_n$ -module by $t_1, t_2, \ldots, t_{n-1}$ together with elements of the form $m_h(1 - a_n) + (t_n + m)h$.

Now the t_n component of $m_h(1 - a_n) + (t_n + m)h$ has the form $t_n(\beta_h(1 - a_n) - (1 + \alpha_n)h)$ for some $\beta_h \in \mathbb{Z}A_n$ and consequently $t_n\mathbb{Z}A_n$ is generated by elements of the form $t_n(\beta_h(1 - a_n) + (1 + \alpha_n)h)$. In particular we have that $t_n = t_n(\beta(1 - a_n) + \sum_{h \in A_n}(1 + \alpha_n)hc_h)$ for some $\beta \in \mathbb{Z}A_r$ and some $c_h \in \mathbb{Z}A_n$ such that $c_h = 0$ for almost all $h \in A_n$. Therefore, with these β and c_h , we have that

$$\beta(1-a_n) + \sum_{h \in A_n} (1+\alpha_n)hc_h = 1.$$

Applying the ring homomorphism $\phi: \mathbb{Z}A_n \longrightarrow \mathbb{Z}A_{n-1}$ to this equation we obtain that $(\sum_{h \in A_n} (1 + \alpha_n)hc_h)\phi = 1$ and so $(1 + \alpha_n)\phi(\sum_{h \in A_n} hc_h)\phi = 1$. Therefore $(1 + \alpha_n)\phi$ is a unit of $\mathbb{Z}A_{n-1}$. It is well-known [5] that the units in $\mathbb{Z}A_{n-1}$ are of the form $\pm g$ for $g \in A_{n-1}$. It follows that $1 + \alpha_n \equiv b$ modulo ker ϕ for some $b \in \pm A_{n-1}$. Now ker $\phi = (a_n - 1)\mathbb{Z}A_n$ so $1 + \alpha_n = b + \alpha'_n(a_n - 1)$ for some $\alpha'_n \in \mathbb{Z}A_n$ and $b \in \pm A_{n-1}$ as required.

STEP 3. Conjugacy of $y_n = L(a_n, t_n)$ and $y = L(a_n, t_n + m)$.

Recall that $m = \sum_{i=1}^{n} t_i \alpha_i$ where $\alpha_i = \alpha'_i(a_n - 1)$ for i = 1, ..., n - 1 and $1 + \alpha_n = b + \alpha'_n(a_n - 1)$. Since Bachmuth's criterion shows that $\sum_{i=1}^{n} (a_i - 1)\alpha_i = 0$, we have that $\sum_{i=1}^{n-1} (a_i - 1)\alpha_i + (a_n - 1)(1 + \alpha_n) = (a_n - 1)$. Therefore $\sum_{i=1}^{n-1} (a_i - 1)\alpha'_i(a_n - 1) + (a_n - 1)(b + \alpha'_n(a_n - 1)) = a_n - 1$ and, since $\mathbb{Z}A_n$ is a domain, we deduce that

(4)
$$\sum_{i=1}^{n-1} (a_i - 1)\alpha'_i + b + \alpha'_n (a_n - 1) = 1.$$

Applying the augmentation map $\epsilon : \mathbb{Z}A_n \longrightarrow \mathbb{Z}$ to this equation we find that $b\epsilon = 1$ and, since $b \in \pm A_{n-1}$ we obtain that $b \in A_{n-1}$. On rewriting (4), we get that $\sum_{i=1}^{n} (a_i - 1)\alpha'_i = 1 - b$ so that $\sum_{i=1}^{n} (a_i - 1)b^{-1}\alpha'_i = b^{-1} - 1$, and it now follows from Bachmuth's criterion that

$$B = \begin{pmatrix} b^{-1} & 0\\ \sum_{i=1}^n t_i b^{-1} \alpha'_i & 1 \end{pmatrix} \in M_n.$$

A routine calculation using the facts that $\alpha_i = (a_n - 1)\alpha'_i$ for i = 1, ..., n - 1 and $\alpha_n + 1 = b + (a_n - 1)\alpha'_n$ shows that $B^{-1}yB = \begin{pmatrix} a_n & 0 \\ t_n & 1 \end{pmatrix} = y_n$. Therefore y is conjugate to y_n in M_n and the proof is complete.

PROOF OF THEOREM A. Since Roman'kov [7] has proved the existence of noninduced primitive elements of M_3 , it suffices to prove the more explicit part of the theorem. Suppose that $x \in \ker \theta$ is a primitive element of F_3 . Then $x\pi$ is an induced primitive element of M_3 . Moreover $x\pi$ is contained in P, the normal closure of p. Theorem B implies that $x\pi$ is conjugate to p or p^{-1} . Therefore p is conjugate to an induced primitive element of M_3 and it follows immediately that p is itself an induced primitive element of M_3 . This contradiction completes the proof.

REFERENCES

- 1. S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118(1965), 93-104.
- **2.** S. Bachmuth and H. Y. Mochizuki, $Aut(F) \rightarrow Aut(F/F'')$ is surjective for free group F of rank ≥ 4 , Trans. Amer. Math. Soc. **292**(1985), 81–101.
- 3. Martin J. Evans, Presentations of groups involving more generators than are necessary, Proc. London Math. Soc. (3) 67(1993), 106–126.
- 4. C. K. Gupta, N. D. Gupta and G. A. Noskov, Some applications of Artamonov-Quillen-Suslin theorems to metabelian inner rank and primitivity, Canad. J. Math. 46(1994), 298–307.
- 5. G. Higman, The units of group rings, Proc. London Math. Soc. (2) 46(1940), 231-248.
- 6. H. Y. Mochizuki, *Automorphisms of solvable groups, Part II*, Proc. Groups, St. Andrews, London Math. Soc. Lecture Notes Series 121, 1985.
- 7. V. A. Roman'kov, Primitive elements of free groups of rank 3, Mat. Sb. (7) 182(1991), 1074–1085.

Department of Mathematics University of Alabama Tuscaloosa, Alabama 35487 U.S.A.