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Abstract

The set of points that escape to infinity under iteration of a cosine map, that is, of the
form Ca, b : z �→ aez + be−z for a, b ∈C∗, consists of a collection of injective curves, called
dynamic rays. If a critical value of Ca, b escapes to infinity, then some of its dynamic rays
overlap pairwise and split at critical points. We consider a large subclass of cosine maps with
escaping critical values, including the map z �→ cosh (z). We provide an explicit topological
model for their dynamics on their Julia sets. We do so by first providing a model for the
dynamics near infinity of any cosine map, and then modifying it to reflect the splitting of rays
for functions of the subclass we study. As an application, we give an explicit combinatorial
description of the overlap occurring between the dynamic rays of z �→ cosh (z), and conclude
that no two of its dynamic rays land together.

2020 Mathematics Subject Classification: 37F10 (Primary); 30D15 (Secondary)

1. Introduction

The theory of iteration of transcendental entire functions f : C→C dates back to Fatou’s
seminal work from 1926; [11]. The locus of stable behaviour of such a function – more
precisely, the set of z ∈C at which the family {f n}n∈N is equicontinuous with respect to the
spherical metric – is today called the Fatou set F(f ), while its complement J( f ) := C \ F( f )
is the Julia set. We are also interested in the escaping set

I( f ) := {z ∈C : f n(z) →∞ as n →∞},
as J( f ) = ∂I( f ) and, in the cases we will consider, J( f ) = I( f ); [9].

Fatou observed that the Julia sets of certain sine functions contain infinitely many curves
to infinity. In the 1980s, Devaney, with a number of co-authors, studied this phenomenon
further, showing the existence of such curves for some functions in the exponential family
Eκ : z �→ ez + κ , κ ∈C \ {0}. These curves, that escape uniformly to infinity, are now known
as (Devaney) hairs or dynamic rays, and they provide a foliation of the escaping set I(Eκ )
for all κ; [31]. See the formal definition of dynamic ray in Definition 4·3.

If the asymptotic value of Eκ , i.e., its parameter κ , converges to an attracting or parabolic
cycle, then all dynamic rays of Eκ land, that is, have a unique finite accumulation point;
[22]. This provides a total description of J(Eκ ) as a collection of unbounded escaping curves
together with their landing points; compare to [1, 3] for further topological characterisations.
However, there is no such complete description of J(Eκ ) when κ escapes to infinity.
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In contrast, Rempe showed in [23] that for escaping parameters, the accumulation sets of
uncountably many dynamic rays of Eκ are indecomposable continua containing the rays
themselves.

The existence of dynamic rays is now known for a much larger class of functions belong-
ing to the Eremenko–Lyubich class B, which consists of all transcendental entire functions
with bounded singular set. Recall that for an entire map f, its singular set S(f ) is the clo-
sure of the set of its asymptotic and critical values. More precisely, it is shown in [27] that
for certain f ∈B, including all those of finite order, some iterate of every z ∈ I( f ) can be
connected to infinity by a dynamic ray. As in the exponential case, the landing behaviour
of rays for such an f depends on the behaviour under iteration of their singular set, that is,
on their postsingular set P( f ) := ⋃∞

n=0 f n(S( f )). Note that for f a postsingularly bounded
entire function, P(f ) is nicely separated from infinity, where dynamic rays start. This has
played a crucial role when proving that all dynamic rays of certain f ∈B with bounded
postsingular set land, e.g., [4, 15, 24, 30].

In this paper we are interested in the case when critical values escape. Note that the
singular set of any map in the cosine family, that is, of the form

Ca, b : z �−→ aez + be−z for a, b ∈C \ {0},
consists of two critical values, with their preimages being critical points of local degree 2.
The explicit nature of this family will allow us to obtain a complete description of the Julia
set of certain cosine maps with escaping critical values. But first, we note that, as in the
exponential case, when both critical values of Ca, b belong to an attracting basin all dynamic
rays land [27], and the same holds when P(Ca, b) is strictly preperiodic [29].

If, instead, a critical value of Ca, b escapes to infinity, dynamic rays split at critical points,
and the structure of J(Ca, b) is much more complicated. To illustrate this, consider the map
C1/2,1/2 : z �→ cosh (z), whose critical values −1 and 1 escape to infinity in R+. Note that 0
is a critical point, and it is easy to check that ( −∞, 0] and [0, ∞) are pieces of dynamic
rays. The vertical segments [0, −iπ/2] and [0, iπ/2] are mapped univalently to [0, 1] ⊂R+,
and thus, the union of each segment with either ( −∞, 0] or [0, ∞) forms a different piece
of ray. This structure can be interpreted as four pieces of rays that partially overlap pairwise.
Their endpoints −iπ/2 and iπ/2 are preimages of 0, and so the structure described has a
preimage attached to each of them; see Figure 3. This leads again to two possible extensions
of each of them. Our results will imply that in this case, further extensions can be performed
in a systematic fashion that converges to four dynamic rays that land.

Analogous results will be achieved for those cosine maps whose singular orbits are
“sufficiently spread” in the following sense:

Definition 1·1. A cosine map f is strongly postcritically separated (sps) if P( f ) ∩ F( f )
is compact and there exists ε > 0 such that for all distinct z, w ∈ P( f ) ∩ J( f ), |z − w| ≥
ε max{|z|, |w|}.
Remark. A more general notion of strongly postcritically separated maps is introduced in
[20], see Definition 4·1, where it is shown that they expand a suitable orbifold metric in a
neighbourhood of their Julia sets. This is key to our results.

The following theorem shows how for cosine and exponential maps with escaping sin-
gular values, their different nature, being critical rather than asymptotic values, changes
drastically the topology of their respective Julia sets.
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THEOREM 1·2. Let f be a strongly postcritically separated cosine map. Then, every
dynamic ray of f lands, and every point in J(f) is either on a dynamic ray or it is the landing
point of at least one such ray.

We remark that Theorem 1·2 will follow from our results but it is not new, as it is also
a consequence of [21, theorem 1·2]. More specifically, in [21] the same result is obtained
for a more general class of functions in B with dynamic rays. In turn, that result is a conse-
quence of a stronger one: [21, theorem 1·4] provides an abstract topological model for the
action of any such f on its Julia set, a model that is based on the dynamics of an entire map
g on its parameter space, i.e., quasiconformally equivalent to f . More precisely, in order
to reflect the splitting of rays as described for z �→ cosh (z), two copies of J(g) are con-
sidered as a model space, namely J(g)± := J(g) × {−, +}, with some special topology that
preserves the order of rays at infinity. Then, the model function g̃ : J(g)± → J(g)±, acting as
g on the first coordinate and as the identity on the second, is shown to be semiconjugate to
f |J( f ).

As the main result of this paper, using the general framework that [21] provides, we con-
struct in Theorem 1·4 a simpler topological model for the action of any sps cosine map on
its Julia set. Before we give more details of our model, we highlight the main advantages
that it presents over the model from [21]:

(i) since the model function in [21] acts on its first coordinate as the restriction of an
entire function to its Julia set, its dynamics are still very complicated. Instead, the
dynamics of our model function will be much simpler, coding the exponential growth
of real parts of points under cosine maps, and the location of their imaginary parts
with respect to a Markov-type partition of the plane;

(ii) the explicit nature of the maps considered allows us to provide sharper results: in
section 5 we improve our model and provide a complete description of the topological
dynamics of z �→ cosh (z). In particular, we are able to conclude that no two of its
dynamic rays land together.

As a first step on the construction of our model for sps cosine maps, we provide a model
that relates to the dynamics near infinity of all cosine maps. We note that the idea of relat-
ing the dynamics of one map to those of a simpler one has been successfully exploited
in the polynomial case using Böttcher’s Theorem; see Douady’s Pinched Disk model [8].
However, due to the essential singularity at infinity, for transcendental maps Böttcher’s
Theorem no longer applies, and so our techniques are different. Given that cosine maps
act like the exponential map, up to a constant factor, in left and right half-planes sufficiently
far away from the imaginary axis, we start by constructing a topological model for escaping
cosine dynamics inspired by Rempe’s model for exponential maps [22]. Roughly speaking,
this model is formed by a topological space J(F ) consisting of a collection of disjoint curves,
and a continuous map F : J(F ) → J(F ), where F codes the exponential growth of the real
parts of points under cosine maps, as well as the orbits of their imaginary parts with respect
to a Markov-type partition of the plane, see Definition 3·3. In particular, its dynamics are
straightforward.

The following theorem is particularly strong when f is of disjoint type, that is, when its
Fatou set is an attracting basin and P( f ) ⊂ F( f ). For each R> 0, we denote

JR( f ) := {z ∈ J( f ) : |f n(z)| ≥ R for all n ≥ 1}. (1·1)
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THEOREM 1·3 (Model for cosine dynamics). Let f be a cosine map and let J(F ) and F be
as defined as above. Then there exists a constant R ≥ 0 and a continuous map � : J(F ) →
J( f ) such that �|�−1(JR( f )) is a homeomorphism,

� ◦F = f ◦� on �−1(JR( f ))

and �(I( F)) ⊂ I( f ). If in addition f is of disjoint type, then � : J(F ) → J( f ) is a homeo-
morphism and �(I(F )) = I( f ).

Compare to [22, theorems 4·2 and 9·1] for similar results on the exponential family. Note
that any escaping point of any cosine map f eventually enters JR( f ) for every R> 0, and so
Theorem 1·3 provides a model for its escaping dynamics.

However, we aspire to describe the dynamics of every cosine map in the whole of its
Julia set. In particular, in the presence of escaping critical values, any model must reflect
the splitting of dynamic rays at (preimages of) critical points, as described for the map
z �→ cosh (z) before. Note that our analysis on this map, where each ray tail “splits into
two” at critical points, suggests considering two copies of each ray, and mapping each copy
to one of the two possible extensions. With that aim, we define the model space for sps
maps as J(F )± := J(F ) × {−, +} with a topology that preserves the circular order of rays
at infinity; see Definition 4·6. The model map F̃ : J(F )± → J(F )± is defined as F on the
first coordinate and as the identity on the second. Then, our main result is as follows.

THEOREM 1·4 (Model for the dynamics of sps cosine maps). Let f be in the cosine family
and strongly postcritically separated. Then, there exists a continuous surjective function
ϕ̂ : J(F )± → J( f ) so that f ◦ ϕ̂ = ϕ̂ ◦ F̃ on J(F )±.

See Theorem 4·7 for a more detailed version of Theorem 1·4. In particular, Theorem 1·2
will follow readily.

Some examples of sps cosine maps that have already appeared in the literature of holomor-
phic dynamics are z �→ cosh (z) and z �→ cosh2 (z), see [7, 12, 26]. In Section 5 we improve
Theorem 1·4 for these maps by modifying our model as to obtain a conjugacy. In partic-
ular, we provide an explicit combinatorial description of the overlap occurring between
their dynamic rays and conclude that for both functions, no two of their dynamic rays land
together.

In order to achieve our results on the map z �→ cosh (z), we introduce the notion of
itineraries as sequences that encode the orbits of points on its Julia set with respect to a
dynamical partition, an idea already used, for example, in [13, 29]. In Appendix A, we
extend this concept to a larger subclass of functions in B with dynamic rays. Namely, to all
strongly postcritically separated maps that belong to the class CB, the latter including all
functions that are a finite composition of class B functions of finite order. This new tool will
allow us to provide in Theorem A12 criteria for their dynamic rays landing together.

Structure of the paper. In Section 2 we review some basic properties of cosine dynamics
and fix for each cosine map a choice of external addresses, a combinatorial tool used in the
study of functions in B. We define the model (J(F ), F ) in Section 3, study its properties and
prove Theorem 1·3. Section 4 includes our results on sps cosine maps. Namely, we define
the model (J(F )±, F̃ ) and prove Theorems 1·4 and 1·2. Next, in Section 5 we sharpen our
main result for the maps z �→ cosh (z) and z �→ cosh2 (z) and provide a detailed description
of their topological dynamics. Finally, we provide combinatorial criteria for dynamic rays
of sps functions in CB landing together in Appendix A.
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Basic notation. As used throughout this section, the Fatou, Julia and escaping set of an
entire function f are denoted by F(f ), J(f ) and I(f ) respectively. The set of critical values is
CV( f ), that of asymptotic values is AV( f ), and the set of critical points will be Crit( f ). The
set of singular values of f is S(f ), and P(f ) denotes the postsingular set. Moreover, PJ :=
P( f ) ∩ J( f ) and PF := P( f ) ∩ F( f ). A disc of radius ε centred at a point p will be Dε(p),
and C∗ := C \ {0}. We will indicate the closure of a domain U by U, that must be understood
to be taken in C. For a holomorphic function f and a set A, Orb−(A) and Orb+(A) are the
backward and forward orbit of A under f , respectively. That is, Orb−(A) := ⋃∞

n=0 f−n(A)
and Orb+(A) := ⋃∞

n=0 f n(A).

2. Cosine dynamics and external addresses

We start by revising basic properties of cosine maps. We refer to [28, 29] for extensive
work on their dynamics. Note also that cosine maps arise as lifts of holomorphic self-maps
of C∗; see [10, corollary 1·5]. Recall that for a holomorphic map f : S̃ → S between Riemann
surfaces, the local degree of f at a point z0 ∈ S̃, denoted by deg ( f , z0), is the unique integer
n ≥ 1 such that the local power series development of f is of the form

f (z) = f (z0) + an(z − z0)n + (higher terms),

where an �= 0. Thus, z0 ∈C is a critical point of f if and only if deg ( f , z0)> 1. We say that f
has bounded criticality on a set A if AV( f ) ∩ A =∅ and there exists a constant M <∞ such
that deg ( f , z)<M for all z ∈ A.

2·1 (Basic properties of cosine maps). Each cosine map f (z) := aez + be−z with a, b ∈
C∗ is 2π i-periodic and has exactly two critical values, namely ±2

√
ab. Furthermore, any

preimage of a critical value is a critical point of local degree 2, and hence both critical
values are totally ramified. More specifically,

Crit( f ) =
{

1

2
log

(a

b

)
+ π in : n ∈Z

}
,

where the branch of the logarithm is chosen such that |Im(1/2) log (a/b)| ≤ π/2. It is easy
to check that f has no asymptotic values, and thus, S( f ) =: {v1, v2}, with vi =±2

√
ab and

signs chosen so that v1 is the image of (1/2) log (a/b) + 2π iZ, while v2 is the image of
(1/2) log (a/b) + π i + 2π iZ. In particular, since S(f ) is bounded and f is of order of growth
one, the Julia set of any disjoint type cosine map is a Cantor bouquet. Roughly speaking, a
Cantor bouquet consists of an uncountable collection of curves to infinity satisfying a cer-
tain density condition; see [6, definition 2·1]. Moreover, by the Denjoy–Carleman–Ahlfors
theorem, for any choice of bounded domain D ⊃ S( f ), the number of connected components
of f−1(C \ D), called tracts, is at most two. Note that for any such domain D, f maps points
for which the absolute value of their real part is sufficiently large, to C \ D. Hence, a left and
a right half plane are contained in the union of tracts, which implies that f has at least two,
and hence exactly two, tracts for any choice of D.

Observation 2·2 (Parameter space of cosine maps). All cosine maps belong to the same
parameter space; that is, any two cosine maps are quasiconformally equivalent. To see
this, let f (z) := aez + be−z and g(z) := cez + de−z for a, b, c, d ∈C∗. Consider the linear
maps ψ(z) := z + log

√
bc/ad and ϕ(z) := √

(bc/ad)z, which are clearly quasiconformal.

https://doi.org/10.1017/S030500412200038X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200038X


502 LETICIA PARDO–SIMÓN

Then, for all z ∈C,

( f ◦ψ)(z) = aez

√
bc

ad
+ be−z

√
ad

bc
= cez

√
ab

cd
+ de−z

√
ab

cd
= (ϕ ◦ g)(z).

Consequently, in order to prove the second part of Theorem 1·3, by [24, theorem 3·1], it
suffices to construct a conjugacy between F : J(F ) → J(F ) and any specific disjoint type
cosine map. We could have followed this approach, but for the sake of generality, our proof
will relate to any disjoint-type cosine map.

Let us fix a cosine function f (z) := aez + be−z with a, b ∈C∗. We will make use of some
estimates from [28] that require of constants related to the following:

K( f ) := max

{(√∣∣∣∣2b

a

∣∣∣∣+
√∣∣∣∣2a

b

∣∣∣∣
)

(|a| + |b|), 8|ab|, 1,
1

2
ln

∣∣∣∣2b

a

∣∣∣∣ ,
1

2
ln

∣∣∣∣2a

b

∣∣∣∣ , ln
16

|ab|

}
.

More precisely, recall from Section 2·1 that for any cosine map f and for any choice of
Jordan domain D ⊃ S( f ), f−1(C \ D) has two connected components, that is, two tracts.
We will choose D large enough as to guarantee Euclidean expansion within tracts, that is,
that the modulus of the derivative of any point in the tracts is large enough. Let us choose
R>K( f ) big enough such that⋃

k∈Z
{z + 2πki : z ∈DR} ⊃ {z ∈C : |Re z| ≤K( f )}

and f (DR) ⊃DK( f ). In particular, the domain D := f (DR) contains S(f ), and so we can define
a pair of tracts Tf as the connected components of f−1(C \ D). Then, by definition,

Tf ⊆ {z ∈C : |Re(z)|>K( f )} and S( f ) ⊂DK( f ) ⊂C \ f (Tf ). (2·1)

A simple calculation shows that for any z ∈C such that |Re z|>K( f ),

|f ′(z)|> 2; (2·2)

see [28, lemma 3·6]. Hence, we say that Tf are expansion tracts.

2·3. (Fundamental domains and inverse branches). Let us fix a cosine map f (z) := aez +
be−z for some a, b ∈C∗, and let Tf be a pair of expansion tracts. Let S( f ) =: {v1, v2}, with
v1 and v2 labelled according to Section 2·1. In particular, by (2·1), S( f ) ⊂ D := C \ f (Tf )
and {z ∈C : |Re (z)|<max (|Rev1|, |Rev2|)} ⊂C \ Tf . If Im(v1)> Im(v2), we define δ as the
vertical straight line starting at v1 in upwards direction restricted to C \ D. If on the contrary
Im(v1)< Im(v2), δ is the downwards vertical line joining v2 to infinity restricted to C \ D. In
any case, δ ⊂C \ (Tf ∪ D), and so we can define fundamental domains for f as the connected
components of Tf \ f−1(δ); see [18, section 2] for the definition of fundamental domains in
a more general setting. Since f is in the cosine family, by definition, the image of points
in R whose modulus is large enough have uniformly large modulus, and so they must be
totally contained in a fundamental domain. By 2π i-periodicity of f , the same holds for all
their 2π i-translates. Hence, for each n ∈Z, we denote by F(n,R) the fundamental domain that
contains an unbounded subset of 2πni +R+, and by F(n, L) the fundamental domain that
contains an unbounded subset of 2πni +R−. Since f maps each fundamental domain to its
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image f (Tf ) \ δ as a conformal isomorphism, see [17, proposition 2·19], we can define for
each (n, ∗) ∈Z× {L, R} the inverse branch

f−1
(n,∗) : f (Tf ) \ δ→ F(n,∗), (2·3)

which in particular is a bijection.

Observation 2·4 (Horizontal straight lines contained in fundamental domains).
Following 2.3, by construction, there is a constant A>K( f ) so that for all n ∈Z,

{z : Re z<−A and Im z = 2πn} ⊂ F(n,L) and

{z : Re z> A and Im z = 2πn} ⊂ F(n,R).

We note that our choice of fundamental domains in Section 2·3 agrees with the partition
defined in [28, sections 1 and 2], where the maps “f−1

(n,∗)” are labelled as “Ls”. Then, the
estimates appearing in [28] regarding this partition and the maps from (2·3) apply to our
setting. In particular, we will use the following:

PROPOSITION 2·5 (Properties of the partition [28, lemmas 2·3 and 3·4]). In the setting
described in Section 2·3, the following hold:

(i) if z, w ∈ F(n,∗) for some (n, ∗) ∈Z× {L, R}, then |Im z − Im w|< 3π and moreover
|Im z − 2πn|< 3π;

(ii) if w ∈ f (Tf ) \ δ, then for each (n, ∗) ∈Z× {L, R} there exists r
 ∈C with |r
|< 1 and
such that

f−1
(n,∗)(w) :=

{
log (w) − log a + 2π in + r
 if ∗= R;
− log (w) + log b + 2π in + r
 if ∗= L.

Definition 2·6 (External addresses). Let f be a cosine map. An external address is an
infinite sequence s = F0F1F2 . . . of the fundamental domains specified in Section 2·3. If s
is such an external address, we denote

Js = {z ∈ J( f ) : f n(z) ∈ Fn for all n ≥ 0}.
We let Addr( f ) be the set of all s for which Js is not empty, that we endow with the usual
lexicographic cyclic order topology; see [18, 2·13] for details.

Observation 2·7. If g is of disjoint type, then J(g) =⋂
k≥0 g−k(Tg) and g−n(Tg) ⊂ Tg for

all n ≥ 0; see [25, proposition 3·2]. In particular,

J(g) =
⋃

s∈Addr(g)

Js.

Notation. For each element (n, ∗) ∈Z× {L, R}, we denote |(n, ∗)| := |n| and {(n, ∗)} := n.

3. A model for cosine dynamics

3.1 (Topological space (M, τM)). Consider the set

M := [0, ∞) × (Z× {L, R})N.
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Let “<
Z
” be the usual linear order on integers. We define a total order in the set Z× {L, R}

as follows:

(n, ∗)< (m, 
) ⇐⇒
⎧⎨⎩
∗= R = 
 and n<

Z
m, or

∗= L = 
 and m<
Z

n, or
∗= L and 
= R.

(3·1)

Then, < induces a lexicographic order “<�” in (Z× {L, R})N. In turn, we define a cyclic
order induced by <� in the usual way: for s, α, τ ∈ (Z× {L, R})N,

[s, α, τ ]� if and only if s<
�
α <

�
τ or α <

�
τ <

�
s or τ <

�
s<

�
α.

Moreover, given two different elements s, τ ∈ (Z× {L, R})N, we define the open interval
from s to τ , denoted by (s, τ ), as the set of all points x ∈ (Z× {L, R})N such that [s, x, τ ].
The collection of all such open intervals forms a base for the cyclic order topology. We then
provide the space M with the topology τM defined as the product topology of [0, ∞) with
the usual topology, and (Z× {L, R})N with the just described cyclic order topology.

Notation. If for some k ≥ 0, s = s0s1s2 · · · ∈ (Z× {L, R})N is such that sj = sk for all j> k,
then we write s = s0s1 · · · sk.

Observation 3·2 (Correspondence between topological spaces). Let g be any disjoint type
cosine map, and let Addr(g) be the set of external addresses, see Definition 2·6. In particular,
Addr(g) is endowed with a cyclic order topology. We note that there exists a one-to-one
correspondence between (Z× {L, R})N and Addr(g) that preserves their topologies, namely,
the one that converts sequences as follows

(m, 
)(n, ∗) · · ·� F(m,
)F(n,∗) · · · .

Since the curve δ chosen in Section 2·3 is a vertical straight line, the linear order in fun-
damental domains chosen to define the cyclic order topology in Addr(g) agrees with the
linear order (3·1) that determines the topology in (Z× {L, R})N, up to the specified cor-
respondence. Hence, from now on we omit the specification of the correspondence, and s
might denote either an element (m, 
)(n, ∗) . . . of (Z× {L, R})N, or its corresponding element
F(m,
)F(n,∗) · · · in Addr(g).

Definition 3·3 (A topological model for cosine dynamics). Let (M, τM) be defined as in
Section 3·1. Define F : (M, τM) → (M, τM) as

F (t, s) := ( F(t) − 2π |s1|, σ (s)),

where σ is the shift map on one-sided infinite sequences of (Z× {L, R})N, and F(t) := et − 1
is the standard map that codes exponential growth. Let T : M→ [0, ∞) be given by
T(t, s) := t. We set

J(F ) := {x ∈M : T(Fn(x)) ≥ 0 for all n ≥ 0}, and

I(F ) := {x ∈ J(F ) : T(Fn(x)) →∞ as n →∞}.
We say that s ∈ (Z× {L, R})N is exponentially bounded if (t, s) ∈ J(F ) for some t> 0, and
denote by SN the set of exponentially bounded elements. We moreover let
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ts :=
{

min{t ≥ 0 : (t, s) ∈ J(F )} if s is exponentially bounded,
∞ otherwise.

In other words, J(F ) is the set of all points that stay in the space M under Fn for all
n ≥ 0.

Remark. Compare to [15, appendix A], where the construction of a similar model for the
map z �→ π sinh (z) is sketched.

Observation 3·4 (Relation between cosine and exponential models). Suppose that the
set ZN is endowed with the lexicographical order topology, and define Mexp := [0, ∞) ×
ZN with the product topology. Moreover, define the map Fexp : Mexp →Mexp and the set
J(Fexp) replacing in Definition 3·3 the space M by Mexp. Then, (Fexp, J(Fexp)) is the
model for the dynamics of exponential maps described in [22, section 3] and [2, definition
3·1]. We note that there does not exist an order preserving bijection between ZN with the
usual lexicographic order and ((Z× {L, R})N,<� ), and hence the models are not the same.
This was expected, since exponential maps have a single tract contained on a right half
plane, while cosine maps have two tracts, as noted in Section 2·1. However, the spaces M
and Mexp × {L, R}N with the product topology are homeomorphic via the map h : Mexp ×
{L, R}N →M given by h(t, s,ω) := (t, (s0, w0)(s1, w1)(s2, w2) . . . ), where s = s0s1 · · · ∈ZN

and ω= w0w1w2 · · · ∈ {L, R}N. This can be seen by recalling that a base for the product
topology of Mexp × {L, R}N is given by cylinders, and the image of each such cylinder under
h can be expressed as a union of intervals of τM, and vice-versa, preimages of intervals are
unions of cylinders. In particular, J(F ) is homeomorphic to J(Fexp) × {L, R}N, where each
subspace has the topology respectively induced from M and Mexp × {L, R}N.

We shall use the relation specified above between the exponential and cosine models to
prove properties of the latter:

PROPOSITION 3·5 (Properties of the cosine model). The space J(F ) with the induced sub-
space topology admits the 1-point compactification, and the resulting space J(F ) ∪ {∞̃} is
a sequential space. Moreover, F |J(F ) is continuous.

Proof. By Observation 3·4, J(F ) is homeomorphic to J(Fexp) × {L, R}N. In turn, J(Fexp)
is homeomorphic to a straight brush, which is a subset of R2 with the usual Euclidean metric,
see [2, theorem 3·3], and {L, R}N is homeomorphic to the Cantor set. Hence, the product
space J(Fexp) × {L, R}N is also locally compact and Hausdorff, and so it admits the one-
point compactification; see [16, and section 19 and section 29]. Then, as the resulting space
is second, and so first, countable, it is a sequential space [5, definition 9 and proposition 7].

In order to prove continuity of F |J(F ), let us fix an arbitrary (t, s) ∈ J(F ) and let V be
an open neighbourhood of F (t, s). Without loss of generality, we may assume that V =
((t1, t2) × I) ∩ J(F ) for some open interval I ∈ (Z× {L, R})N and t1, t2 ∈R+ so that t1 ≤
T(F (t, s))< t2. Suppose that s = s0s1 · · · and denote Ĩ := {s0τ : τ ∈ I}. In particular, s ∈
Ĩ , and since by definition of F , t = log (T(F (t, s)) + 1 + 2π{s1}) and the function log is
increasing,

U := ( log (t1 + 1 + 2π{s1}), log (t2 + 1 + 2π{s1})) × Ĩ) ∩ J(F )

is an open neighbourhood of (t, s) such that F (U) ⊂ V .
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In order to prove Theorem 1·3, our main task will be to construct for each disjoint type
cosine map g, a continuous map � : J(F ) → J(g) that conjugates the dynamics of F to
those of g|J(g). Then, the result for any cosine map f will follow using Rempe’s conjugacy
between f and g “near infinity”; [24]. In the disjoint type case, the map � will send each
point (t, s) ∈ J(F ) to a point z ∈ J(g) such that z ∈ Js and |Re z| ≈ t, see Observation 3·2.
We will obtain the map � as the limit of a series of approximations {�n}n∈N; compare
[15, 21, 22, 24] for similar arguments. The first approximation should be a projection from
the space J(F ) to the dynamical plane of g.

Definition 3·6 (Projection function). For each A ≥ 0, we define a projection function
CA : J(F ) →C as

CA(t, s) :=
{

t + A + 2π{s0}i if s0 = (n, R) for some n ∈Z,
−t − A + 2π{s0}i otherwise,

where s = s0s1 · · · , and if s0 = (n, ∗), then {s0} = {(n, ∗)} = n.

Observation 3·7 (The projection of J(F ) lies in fundamental domains). Suppose that g is
a disjoint type cosine function for which fundamental domains have been defined following
Section 2·3. If A is the constant from Observation 2·4, then CA(J(F )) is totally contained in
the union of fundamental domains. More specifically, for each (t, s) ∈ J(F ), if s = s0s1 · · · ,
then CA(t, s) ⊂ Fs0 ; see also Observation 3·2.

Remark. The reason why instead of projecting under CA each point (t, s) ∈ J(F ) to a point
of real part ±t, but rather ±t ± A for some constant A, is to ensure that for a fixed function g,
the image of each (t, s) ∈ J(F ) under a projection map lies in a fundamental domain of g,
on which, by Proposition 2·5, g expands the Euclidean metric. Note that CA(J(F )) � J(g).
Nonetheless, since � will be obtained as the limit of a composition of functions consisting
of inverse branches of g whose images lie in Tg, by Observation 2·7, its codomain will be
J(g).

Recall that cosine maps behave like the exponential map for points with modulus large
enough and sufficiently far from the imaginary axis. In particular, all such points are con-
tained in fundamental domains. An essential characteristic of our model for cosine dynamics
is that, as occurs for the exponential model, for each (t, s) ∈ J(F ), |CA(F (s, t))| is roughly
the exponential of its real part. More precisely:

PROPOSITION 3·8 (Model acts similar to the exponential). If (t, s) ∈ J(F ) and A> 0,

F(t) + A√
2

≤ |CA(F (t, s))| ≤ F(t) + A. (3·2)

Proof. Suppose that s = s0s1 · · · and let b := 2π{s1}. Then,

|CA(F (t, s))| = | ± ( F(t) − b + A) + ib| =
√

( F(t) + A − b)2 + b2

=
√

( F(t) + A)2 − 2( F(t) + A)b + 2b2. (3·3)

The second inequality in (3·2) follows from the assumption T(F (t, s)) ≥ 0, that is, F(t) − b ≥
0, because by (3·3),
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Fig. 1. A schematic of the functions and curves involved in the definition of {�n}n∈N.

|CA(F (t, s))| ≤
√

( F(t) + A)2 ⇐⇒ −2( F(t) + A)b + 2b2 ≤ 0 ⇐⇒ b ≤ F(t) + A,

where we have used that A, b, F(t) ≥ 0. For the first inequality in (3·2), we have√
( F(t) + A)2 ≤√

2|CA(F (t, s))| ⇐⇒ ( F(t) + A)2 − 4( F(t) + A)b + 4b2 ≥ 0

⇐⇒ ( F(t) + A − 2b)2 ≥ 0.

We describe the underlying idea in the construction of the map � that conjugates F to
any disjoint type map g|J(g). For each n ≥ 0, a function �n : J(F ) →C will be defined the
following way: we iterate each point x = (t, s) ∈ J(F ), with s = s0s1 · · · , under the model
function F a number n of times. In particular, Fn(t, s) = (t′, σ n(s)) for some t′ > 0. Next,
we move to the dynamical plane of g using the function CA for some constant A big enough
such that (CA ◦Fn)(t, s) ∈ Fsn . Then, we use the composition of n inverse branches of g
specified in (2·3) to obtain a point in Fs0 , which will define �n(x); see Figure 1. Finally, we
use (Euclidean) expansion of g on its tracts to show that {�n}n≥0 is a uniformly convergent
sequence. We now formalise these ideas:

Definition 3·9 (Functions�n). Let g be a disjoint-type cosine map, and let A be a constant
provided by Observation 2·4. Then, for each n ≥ 0 we define the function�n : J(F ) →C as

�0(x) := CA(x) and �n+1(x) := g−1
s0

(�n(F (x)),

for x = (t, s) and s = s0s1 · · · .

The function �0 is clearly well-defined. In order to see that for all n ≥ 1 the function
�n is also well-defined, fix x = (t, s) ∈ J(F ) and suppose that s = s0s1 · · · . Then, expanding
definitions

�n(x) =
(

g−1
s0

◦ g−1
s1

◦ · · · ◦ g−1
sn−1

◦ CA ◦Fn
)

(x). (3·4)

https://doi.org/10.1017/S030500412200038X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200038X


508 LETICIA PARDO–SIMÓN

By Observations 3·7 and 2·7, the composition of the inverse branches {g−1
si

}i<n is well-
defined on CA(Fn(x)) ∈ Fsn . Moreover, by construction, for all n ≥ 0,

�n ◦F = g ◦�n+1. (3·5)

PROPOSITION 3·10 (Continuity of the functions �n). For each n ≥ 0, �n : J(F ) →C is
continuous.

Proof. Let us fix an arbitrary (t, s) ∈ J(F ) with s = s0s1 · · · , as well as some ε > 0. To
see that �0 ≡ CA is continuous, let I ⊂ (Z× {L, R})N be any open interval containing s and
such that if τ = τ0τ1 · · · ∈ I , then s0 = τ0. Then, U := ((t − ε, t + ε) × I)∩ J(F ) is an open
neighbourhood of (t, s) such that

CA(U) ⊂ ( ± t − ε, ±t + ε) ± A + 2π i{s0} ⊂Dε( ± t ± A + 2π i{s0}) =Dε(CA(t, s)),

where ± equals “+” or “ minus;” depending on whether s0 = (n, R) or s0 = (n, L) for some
n ∈Z. Hence, we have shown continuity of �0. For each n ≥ 1, let

Ln := g−1
s0

◦ g−1
s1

◦ · · · ◦ g−1
sn−1

◦�0 ◦Fn

and note that for any subset U ⊂ J(F ) such that �0(Fn(U)) ⊂ Fsn , by Proposition 3·5 and
the definition of the maps {g−1

si
}i<n, Ln|U is a continuous function, as it is a composition

of continuous functions. By (3·4), Ln(t, s) =�n(t, s). Hence, in order to prove continuity of
�n at (t, s), since by Observation 3·7 �0(Fn(t, s)) ⊂ Fsn , it suffices to find a neighbourhood
V � (t, s) such that �n|V ≡ Ln|V . Let Jn ⊂ (Z× {L, R})N be any open interval containing s
and such that if τ = τ0τ1 · · · ∈ Jn, then si = τi for all 0 ≤ i ≤ n, and choose t1, t2 ∈R+ so that
t1 ≤ t ≤ t2. Then, V := ((t1, t2) × Jn) ∩ J(F ) satisfies the properties required and continuity
of �n follows.

We are now ready to prove Theorem 1·3. We will do so by first showing that for any
given disjoint-type cosine map g, the functions {�n}n∈N converge to a continuous function
� : J(F ) → J(g) satisfying the properties listed on the second part of the statement. Then,
for the first part, given any cosine map f, we will use [19, theorem 4·6] to relate its dynam-
ics to those of a disjoint-type cosine map, and then apply the second part. We note that
[19, theorem 4·6] relies heavily on Rempe’s analogs of Bottcher’s map for transcendental
maps, and more specifically on [24, theorem 3·2].

Proof of Theorem 1·3. We start by showing the second part of the statement. Let g be
a disjoint type cosine map and let Tg be a pair of expansion tracts for g. Let {�n}n≥0 be
the sequence of functions from Definition 3·9, and suppose that g(z) = aez + be−z for some
a, b ∈C∗. If M := max{|a|, |b|}, then by Propositions 2·5 and 3·8, for each x = (t, s) ∈ J(F )
with s = s0s1s2 · · · ,

|Re(�1(x))| = |Re((g−1
s0

◦ CA ◦F )(x))| ≤ ln |CA(F (x))|
+ | ln (M)| + 1 ≤ t + A + | ln (M)| + 2.

Similarly, |Re(�1(x))| ≥ t − ln (
√

2) − | ln (M)| − 2. By the definition of �1 and
Observation 2·4, both�0(x) and�1(x) lie in the same fundamental domain Fs0 . Thus, either
both points have positive real part, of both have negative real part. By this and using that
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|Re(�0(x))| = t + A, we have

|Re(�0(x)) − Re(�1(x))| ≤ A + ln (
√

2) + | ln (M)| + 2. (3·6)

Moreover, by (3·6) and Proposition 2·5,

|�0(x) −�1(x)| ≤ A + ln (
√

2) + | ln (M)| + 2 + 3π =:μ, (3·7)

where we note that the constant μ does not depend on the point x. In particular, �0(x) and
�1(x) lie in the same tract, and hence the straight segment joining these two points is totally
contained in a connected component of {z : |Re z|>K(g)}, which is a convex set. Moreover,
by (3·4), if g−1

s,n := g−1
s0

◦ g−1
s1

◦ · · · ◦ g−1
sn−1

for some n ≥ 1, then

�n(x) = (g−1
s,n ◦�0 ◦Fn)(x) and �n+1(x) = (g−1

s,n ◦�1 ◦Fn)(x).

Note that if γ is the straight segment connecting �0(Fn(x)) and �1(Fn(x)), then since the
map g−1

s,n is a bijection to its image as it is a composition of bijections, g−1
s,n (γ ) is a curve

with endpoints �n(x) and �n+1(x). Thus, using (3·7) and (2·2),

|�n+1(x) −�n(x)| ≤ |�0(Fn(x)) −�1(Fn(x))|
2n

≤ μ

2n
. (3·8)

Hence, {�n}n≥0 is a uniformly Cauchy sequence of continuous functions, and so they
converge uniformly to a continuous limit function � : J(F ) →C, that by (3·5) satisfies

� ◦F = g ◦�. (3·9)

Note that for each x ∈ J(F ), �(x) is the limit of the backward orbit of a point in Tg, see
(3·4). Hence, by Observation 2·7, �(x) ∈ J(g) and thus, �(J(F )) ⊂ J(g). Moreover, since
CA ≡�0, for each x ∈ J(F ),

|�(x) − CA(x)| ≤
∞∑

n=0

|�n+1(x) −�n(x)| ≤
∞∑

j=0

μ

2n
= 2μ. (3·10)

This means for any sequence {xn}n∈N ⊂ J(F ) that�(xn) →∞ if and only if CA(xn) →∞ as
n →∞. By this, the definition of I(F ) and Proposition 3·8,

x ∈ I(F ) ⇔ lim
n→∞ T(Fn(x)) =∞⇔ lim

n→∞ |CA(Fn(x))| =∞
⇔ lim

n→∞�(Fn(x)) = lim
n→∞ gn(�(x)) =∞⇔�(x) ∈ I(g). (3·11)

Equivalently, �(I(F )) ⊆ I(g) and �(J(F ) \ I(F )) ⊆ J(g) \ I(g). Consequently, surjectivity
of � would imply �(I(F )) = I(g).

Claim. The function � : J(F ) → J(g) is surjective.

Proof of claim. Fix an arbitrary z ∈ J(g). Then, z ∈ Js for some s = s0s1s2 · · · ∈ Addr(g),
see Observation 2·7. Note that by definition, the function F is injective on its first coordinate.
That is, for each fixed s ∈ (Z× {L, R})N, Fs := F (·, s) : R+ →C given by t �→F (t, s) is
injective. Hence, we can consider the sequence of real positive numbers {tk}k≥0 uniquely
determined by the equations

F k(tk, s) = (|Re(gk(z))|, σ k(s)).
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In particular, T(F k(tk, s)) = |Re(gk(z))|> 0, and hence one can see using a recursive
argument that for all 0 ≤ j ≤ k,

T(F j(tk, s)) = log
(

T(F j+1(tk, s)) + 2π{sj+1} + 1
)
> 0, (3·12)

and so F j(tk, s) is indeed well-defined for all j ≤ k. By definition of the map CA, it holds
that Re(CA(F k(tk, s))) =±Re(gk(z)) ± A, where “±” equals “+” or “ minus;” depend-
ing on whether sk belongs to Z× {R} or Z× {L}. Moreover, by Observation 3·7, both
gk(z), CA(F k(tk, s)) ∈ Fsk , and hence by Proposition 2·5,

|CA(F k(tk, s)) − gk(z)|< 3π + A. (3·13)

Note that for all j ≤ k, since the second coordinate of F j(tk, s) equals σ j(s), we
have that�k−j(F j(tk, s)) = (g−1

sj
◦ · · · ◦ g−1

sk−1
◦ CA ◦F k)(tk, s) and gj(z) = (g−1

sj
◦ · · · ◦ g−1

sk−1
◦

gk)(z). Hence, using (2·2), (3·10) and (3·13), by the same contraction argument as when
showing (3·8), for any j ≤ k,

|CA(F j(tk, s)) − gj(z)|≤|CA(F j(tk, s))−�k−j(F j(tk, s))|+|�k−j(F j(tk, s))−gj(z)|
< 2μ+ 3π + A

2k−j
< 2(μ+ 3π + A) =: η.

We note that the constant η does not depend on k. In particular, by taking j = 0 we see
that tk is uniformly bounded from above by a constant independent of k, and thus tk �
∞ as k →∞. This means that there exists at least one finite limit point for the sequence
{tk}k≥0, say t ≥ 0, that by (3·12) satisfies (t, s) ∈ J(F ). Since by (3·9), for each j ≥ 0, we
have gj(�(t, s)) =�(F j(t, s)),

|gj(�(t, s)) − gj(z)|≤|�(F j(t, s))−CA(F j(t, s))|+|CA(F j(t, s)) − gj(z)|<2μ+ η,

and this upper bound does not depend on j. Since gj(�(t, s)) and gj(z) belong to the same
fundamental domain Fsj for each j ≥ 0, we can once more use the same contraction argument
to conclude that the points �(t, s) and z are equal.

To prove injectivity of�, note that if (t, s), (t′, s) ∈ J(F ) for some t �= t′, the orbits of (t, s)
and (t′, s) under F will eventually be far apart by definition of F . Then, by (3·9) and (3·10),
so will be the orbits under g of �(t, s) and �(t′, s), and injectivity follows.

Since the compactification J(F ) ∪ {∞̃} is by Proposition 3·5 a sequential space, and so is
Ĉ := C∪ {∞}, the notions of continuity and sequential continuity for functions between
these spaces are equivalent. Thus, using (3·11), we can extend � to a continuous map
�̃ : J(F ) ∪ {∞̃}→ J(g) ∪ {∞} by defining �̃(∞̃) := ∞. Then, �̃−1 is continuous as it is
the inverse of a continuous bijective map on a compact space, and consequently, by respec-
tively removing ∞̃ and ∞ from the domain and codomain of �̃−1, it follows that �−1 is
also continuous.

We have shown that for any cosine map g of disjoint type, � : J(F ) → J(g) is a
homeomorphism and �(I( F)) = I(g).

Suppose now that f is any cosine map. If follows from [19, theorem 4·6] that there is
a disjoint type cosine map g and a continuous function θ : J(g) → J( f ) with the following
properties:
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(i) the restriction θ : θ−1(JK( f )) → JK( f ) is a homeomorphism for some K > 0;

(ii) θ ◦ g = f ◦ θ in θ−1(JK( f ));

(iii) θ(I(g)) ⊂ I( f ).

More specifically, the map g in [19, theorem 4·6] is of the form λf for some λ ∈C \ {0},
and so g is a cosine map. Then, [19, theorem 4·6] states that J(g) contains a so-called strongly
absorbing Cantor bouquet X, [19, definition 1·5], such that θ |X is a homeomorphism to its
image, [19, theorem 4·6(d)], and so that θ(X) ⊃ JK( f ) for some K > 0, [19, line 18 in the
proof of theorem 4·6]. Thus, (1) follows. Item (2) is a consequence of this together with
[19, theorem 4·6(b)], and (3) is part of [19, theorem 4·6(g)]. Then, if �̃ : J(F ) → J(g) is
the homeomorphism provided by the second part of the statement, the composition � :=
θ ◦ �̃ : J(F ) → J( f ) satisfies the desired properties.

Observation 3·11. Recall from Observation 2·7 that if g is of disjoint type, then J(g) =⋃
s∈Addr(g) Js. It follows from the proof of Theorem 1·3 that in this case, for each s ∈ Addr(g),

� : {(t, s) : t ≥ ts}→ Js is a bijection, see also Observation 3·2. This implies that� acts as an
order-preserving map from SN to Addr(g). Note also that J(F ) is a straight brush, see the
proof of Proposition 3·5, and in particular a collection of disjoint unbounded curves. Hence,
our result provides another proof of the fact that J(g) is a Cantor bouquet.

4. A model for strongly postcritically separated cosine maps

We defined in the introduction what it means for a cosine map to be strongly postcritically
separated. This notion, introduced in [20], generalizes to some functions in class B:

Definition 4·1 (Strongly postcritically separated functions). A function f ∈B is strongly
postcritically separated (sps) if there are constants c, ε > 0 such that:

(i) PF := P( f ) ∩ F( f ) is compact;

(ii) f has bounded criticality on J(f );

(iii) for each z ∈ J( f ), #(Orb+(z) ∩ Crit( f )) ≤ c;

(iv) for all distinct z, w ∈ PJ := P( f ) ∩ J( f ), |z − w| ≥ ε max{|z|, |w|}.
For cosine maps, some conditions in the definition of strongly postcritically separated

maps are trivially satisfied, and thus they can be characterised the following way:

PROPOSITION 4·2 (Cosine maps that are strongly postcritically separated). Let f be in the
cosine family. Then the following are equivalent:

(i) f is strongly postcritically separated;

(ii) PF is compact and there exists ε > 0 such that for all distinct z, w ∈ PJ,

|z − w| ≥ ε max{|z|, |w|}. (4·1)

(iii) each critical value of f converges to an attracting cycle or a repelling periodic cycle,
or its orbit tends to infinity in such a way that (4·1) holds.

Proof. By definition, (i) ⇒ (ii). For any cosine map f, AV( f ) =∅ and any critical point
has local degree equal to 2, see Section 2·1. In particular, f has bounded criticality on its Julia
set. Moreover, since each cosine map has two critical values, for all z ∈ J( f ), #(Orb+(z) ∩
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Crit( f )) ≤ 2. Hence, if f is in the cosine family and (ii) holds for f , then all conditions in
the definition of strongly postcritically separated maps (Definition 4·1) are satisfied, and so
(ii) ⇒ (i). If (4·1) holds for f , then P( f ) ∩ J( f ) is discrete. In addition, since f ∈B, when
PJ is discrete, PF being compact is equivalent to all periodic cycles in J(f ) being repelling
and F(f ) being a collection of attracting basins (see the proof of [20, lemma 2·6]), and thus,
(ii) ⇔ (iii).

Remark. The definition that we gave in the introduction of sps cosine maps (Definition 1·1)
agrees with Proposition 4·2(ii).

In this section we prove our main results on sps cosine maps; namely, Theorems 1·2 and
Section 1·4. We start by providing a formal definition of dynamic rays:

Definition 4·3 (Dynamic rays for transcendental maps [27, definition 2·2]). Let f be a
transcendental entire function. A ray tail of f is an injective curve γ : [t0, ∞) → I( f ), with
t0 > 0, such that:

(i) for each n ≥ 1, t �→ f n(γ (t)) is injective with limt→∞ f n(γ (t)) =∞;

(ii) f n(γ (t)) →∞ uniformly in t as n →∞.

A dynamic ray of f is a maximal injective curve γ : (0, ∞) → I( f ) such that the restriction
γ|[t,∞) is a ray tail for all t> 0. We say that γ lands at z if limt→0+ γ (t) = z, and we call z
the endpoint of γ . We denote the set of endpoints of dynamic rays of f by E(f ).

Recall from the introduction that whenever a ray tail contains a critical value, its preim-
ages can be interpreted as several ray tails that split or break at critical points, and that
may be extended to overlap pairwise. In [18], combinatorics for maps exhibiting this phe-
nomenon are developed, where the extensions of ray tails at critical points, as described for
the map z �→ cosh (z), are formalised.

More precisely, let f be a cosine map, let Addr( f ) be the set of external addresses as
specified in Definition 2·6 and denote

Addr( f )± := Addr( f ) × {−, +}. (4·2)

We call each of its elements (s, ∗) ∈ Addr( f )± a signed (external) address.
It is shown in [18, section 3] that Addr( f )± can be endowed with a topology such that

each z ∈ I( f ) has at least two signed addresses that depend continuously on z. This leads to
a folliation of I(f ) as a collection of rays, that we call canonical, indexed by signed external
addresses. More precisely, we shall use the following results from [18].

DEFINITION AND THEOREM 4.4 (Canonical rays). Let f be a sps cosine map. Then, for
each (s, ∗) ∈ Addr( f )± there is a curve �(s, ∗), that is either a ray tail or a dynamic ray
possibly with its endpoint, such that

I( f ) ⊂
⋃

(s,∗)∈Addr( f )±
�(s, ∗). (4·3)

We say that �(s, ∗) is a canonical ray, and we call any ray tail contained in a canonical ray
a canonical tail. Landing of all canonical rays implies landing of all dynamic rays in J(f ).
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Each z ∈ I( f ) belongs to exactly

Addr(z)± := 2
∞∏

j=0

deg ( f , f j(z)) (4·4)

different canonical rays, for Addr(z)± ∈ {2, 4, 8}.
Proof. The definition and existence of canonical rays, as well as (4·3), are a consequence

of [18, definition 3·5 and theorem 3·8], while landing of canonical rays implying landing of
all dynamic rays is [18, observation 3·13]. Equation (4·4) follows from [18, definition 3·10
and observation 3·11], and Addr(z)± ∈ {2, 4, 8} is a consequence of cosine maps having only
2 critical values, with all critical points being of local degree 2.

Remark. It follows from the previous result that in order to study dynamic rays for the
functions we consider, it suffices to study canonical rays.

Next, we define our model for sps cosine maps. We start by setting the topology we shall
use in the ambient space M× {−, +} that contains J(F ) × {−, +}:

4·5 (Definition of topologies). Consider the set

M± := M× {−, +}= [0, ∞) × (Z× {L, R})N × {−, +}, (4·5)

and let <� denote the lexicographic order in (Z× {L, R})N defined in 3.1. Let us give the set
{−, +} the order {−} ≺ {+}, and define the linear order in (Z× {L, R})N × {−, +}

(s, ∗)<A (τ , 
) if and only if s<
�
τ or s =

�
τ and ∗ ≺ 
, (4·6)

where the symbols “∗, 
” denote generic elements of {−, +}. This linear order gives rise to
a cyclic order: for a, x, b ∈ (Z× {L, R})N × {−, +},

[a, x, b]A if and only if a<A x<A b or x<A b<A a or b<A a<A x.

This cyclic order allows us to provide the set (Z× {L, R})N × {−, +} with the corresponding
cyclic order topology τI .

We define the topological space (M±, τM±), with τM± being the product topology of
[0, ∞) with the usual topology, and (Z× {L, R})N × {−, +} with the topology τI .

Definition 4·6 (Model for sps cosine functions). Let J(F )± := J(F ) × {−, +} be the sub-
space of M± with the induced topology τ± from τM± . We call (J(F )±, τ±) the model
space for strongly postcritically separated cosine maps. Define I(F )± := I(F ) × {−, +}⊂
J(F )± as a subspace equipped with the induced topology. We define the model function as
F̃ : J(F )± → J(F )±, given by F̃ (t, s, ∗) := (F (t, s), ∗).

We are now ready to prove the main result of this paper, which is a more detailed version
of Theorem 1·4. Using the general framework developed in [21], its proof will be concise.
We remark that, alternatively, we could had provided a more direct but significantly more
lengthy and technical proof. More precisely, one could avoid using the results from [21]
and construct directly the semiconjugacy from F to f |J( f ) in a similar manner to the proof of
[27, theorem 6·5], using that sps maps expand an orbifold metric in a neighbourhood of their
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Julia sets; [20, theorem 1·1]. We have opted for the first approach for clarity of exposition
and to show an application of the framework that [21] provides.

Recall from Definition 3·3 that SN denotes the set of exponentially bounded elements
associated to J(F ). We define SN± := SN × {−, +}.

THEOREM 4·7. Let f be a strongly postcritically separated cosine map and let J(F )± and
F̃ be the model space and function from Definition 4·6. Then, F̃ is continuous, and there
exists a continuous surjective function

ϕ̂ : J(F )± −→ J( f ) so that f ◦ ϕ̂ = ϕ̂ ◦ F̃ ,

ϕ̂(I(F )±) = I( f ) and such that for every z ∈ I( f ), #ϕ̂−1(z) ∈ {2, 4, 8}. Moreover, for each
(s, ∗) ∈SN± the restriction map ϕ̂ : {(t, s, ∗) : t ≥ ts}→ �(s, ∗) is a bijection, and so �(s, ∗)
is a canonical ray together with its endpoint.

Remark. We have implicitly stated in Theorem 4·7 that the map ϕ̂ establishes a one-to-one
correspondence between SN± and Addr( f )±, since, with some abuse of notation, we have
stated that for each (s, ∗) ∈SN± , {(t, s, ∗) : t ≥ ts} is mapped bijectively to �(s, ∗) ⊂ J( f ) for
(s, ∗) ∈ Addr( f )±. In particular, we are claiming that ϕ̂ is an order-preserving continuous
map.

Proof of Theorem 4·7. Let g := λf be of disjoint type for some λ ∈C∗ and let� : J(F ) →
J(g) be the homeomorphism from Theorem 1·3. Define J(g)± := J(g) × {−, +}. In [21, 5·4,
p. 23], J(g)± is induced with a topology τJ in an analogous manner as we did in 4.5 for
J(F )±, with (Z× {L, R})N replaced by R \Q in [21, equation (5·1)]. In particular,

�̂ : J(F )± → J(g)±; (t, s, ∗) �→ (�(t, s), ∗) (4·7)

is a homeomorphism. We let I(g)± := I(g) × {−, +} and for each s ∈ Addr(g), denote
J(s,∗) := Js × {∗}. Let g̃ : J(g)± → J(g)± be given by g̃(z, ∗) := (g(z), ∗). Note that by
definition of the functions involved and Theorem 1·3, we have that

�̂ ◦ F̃ = g̃ ◦ �̂, (4·8)

and, in particular, F is continuous as it can be expressed as a composition of continuous
functions.

Then, by [21, theorem 6·5], there exists a continuous, surjective map ϕ : J(g)± → J( f )
such that

f ◦ ϕ = ϕ ◦ g̃, ϕ(I(g)±) = I( f ) (4·9)

and for each (s, ∗) ∈ Addr(g)±,

ϕ : J(s,∗) → �(s, ∗) is a bijection, (4·10)

where �(s, ∗) is the canonical ray at signed address (s, ∗) ∈ Addr( f )±. It then follows from
Definition and Theorem 4.4 that for each z ∈ I( f ),

#ϕ−1(z) = 2
∞∏

j=0

deg ( f , f j(z)) ∈ {2, 4, 8}. (4·11)
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Let ϕ̂ := ϕ ◦ �̂ : J(F )± → J( f ), which is continuous as it is a composition of continuous
functions. Then, by (4·9) and (4·8),

f ◦ ϕ̂ = f ◦ ϕ ◦ �̂= ϕ ◦ g̃ ◦ �̂= ϕ ◦ �̂ ◦ F̃ = ϕ̂ ◦ F̃ ,

as shown in the diagram:

Moreover, since, by Theorem 1·3, �(I(F )) = I(g), we have that �̂(I(F )±) = I(g)±, and
consequently ϕ̂(I(F )±) = I( f ).

Since �̂ is a homeomorphism, using (4·11) we have that #ϕ̂−1(z) = #ϕ−1(z) ∈ {2, 4, 8}.
By Observation 3·11, � : {(t, s) : t ≥ ts}→ Js is a bijection for each s ∈SN, with Js being
a landing dynamic ray. Hence, by (4·7) and (4·10), ϕ̂ : {(t, s, ∗) : t ≥ ts}→ �(s, ∗) is also
bijection and �(s, ∗) is a canonical ray together with its endpoint.

Proof of Theorem 1·2. Let f be a sps cosine map. Then, by Definition and Theorem 4.4,
proving that all canonical rays of f land suffices to conclude that all its dynamic rays land.
Since, by Theorem 4·7, for each (s, ∗) ∈ Addr( f )±, �(s, ∗) is a canonical ray together with
its landing point, the result follows. Moreover, by Theorem 4·7,

J( f ) = ϕ̂(J(F )±) = ϕ̂
⎛⎜⎝ ⋃

(s,∗)∈SN±

{(t, s, ∗) : t ≥ ts}
⎞⎟⎠=

⋃
(s,∗)∈Addr( f )±

�(s, ∗),

and so every point in J(f ) is either on a dynamic ray or it is the landing point of at least one
such ray.

5. Combinatorics and landing of rays for f (z) = cosh (z)

In the previous section we provided a semiconjugacy between the restriction of any
strongly postcritically separated cosine map f to its Julia set, and a simple dynamical system
formed by a map F̃ and a model space J(F )±, that reflects the splitting of dynamic rays at
critical points. In particular, Theorem 4·7 implies that J(f ) can be described as a collection
of canonical rays that land, and overlap pairwise.

Given the explicit nature of cosine maps, we claim that it is possible to improve this result
by providing a conjugacy rather than a semiconjugacy between a model dynamical system
and our maps. Note that if a cosine map f is sps, we let ϕ̂ : J(F )± → J( f ) be the map from
Theorem 4·7, and we define the equivalence relation in J(F )±

a ∼ b ⇐⇒ ϕ̂(a) = ϕ̂(b), (5·1)

then, since ϕ̂ is continuous, by the Universal Property of Quotient Maps (see for example
[16, theorem 2·22]), there exists a unique continuous function ϕ̃ : J(F )±/∼→ J( f ) such
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that the diagram

commutes, where π is the projection function that takes each element to its equivalence
class. In particular, since both ϕ̂ and π are surjective, ϕ̃ is by definition bijective. By the
commutative relation f ◦ ϕ̂ = ϕ̂ ◦ F̃ from Theorem 4·7, for any a, b ∈ J(F )±,

π(a) = π(b) ⇒ ϕ̂(F̃ (a)) = f (ϕ̂(a)) = f (ϕ̂(b)) = ϕ̂(F̃ (b)) ⇒ π(F̃ (a)) = π(F̃ (b)),

and so, the map h : J(F )±/∼→ J(F )±/∼ given by h(π(x)) := π(F̃ (x)) is a well-defined
homeomorphism. In particular, ϕ̃ conjugates h and f as shown in the following diagram:

In this section, we describe “∼” explicitly for the maps z �→ cosh (z) and z �→ cosh2 (z).
The following observation is important to us.

Observation 5·1. Recall from Theorem 4·7 that ϕ̂({(t, s, ∗) : t ≥ ts}) = �(s, ∗) for each
(s, ∗) ∈ Addr( f )±. Hence, in order to describe J(F )±/∼, we can equivalently determine
the overlap occuring between the canonical rays {�(s, ∗)}(s,∗)∈Addr( f )± with their endpoints.

We will divide our task into two: on one hand, we shall study whether canonical rays share
their endpoints, that is, whether some of them land together. On the other hand, one should
provide information on the overlaps occuring between canonical rays. For the second, we
will use the following result, which is [18, proposition 3·9]. We recall that σ : Addr( f ) →
Addr( f ) denotes the one-sided shift map on addresses.

PROPOSITION 5·2 (Overlapping of canonical rays). For each (s, ∗) ∈ Addr( f )±, either
�(s, −) = �(s, +) when Orb−(Crit( f )) ∩ �(s, ∗) =∅, or �(s, ∗) can be expressed as a
concatenation

�(s, ∗) = · · · ·{ci+1}·γ i+1
i ·{ci}· · · · ·γ 1

0 ·{c0}·γ∞
c0

, (5·2)

where {ci}i∈I = Orb−(Crit( f )) ∩ �(s, ∗), for each i ≥ 1, if it exists, the curve γ i+1
i is a

(bounded) piece of dynamic ray, and γ∞
c0

is a piece of dynamic ray joining c0 to infinity.
In particular, in the latter case, the following properties hold for �(s, ∗):

(i) γ∞
c0

∪ {c0} = �(s, −) ∩ �(s, +) and γ∞
c0

does not belong to any other canonical ray;

(ii) for each i ≥ 0, the point ci belongs to exactly 2
∏∞

j=0 deg ( f , f j(ci)) canonical rays;
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(iii) for each i ≥ 0, γ i+1
i = �(s, ∗) ∩ �(τ , 
), where 
 �= ∗ and σ j(τ ) = σ j(s) for some j ≥ 1.

Moreover, γ i+1
i does not belong to any other canonical ray.

We start our analysis on the map f (z) = cosh (z). Following Observation 5·1, we shall
provide a combinatorial description of the equivalence classes of J(F )±/∼ in terms of the
signed addresses of their images under ϕ̃.

For a function f ∈B, the partition of a neighbourhood of infinity into fundamental
domains is commonly regarded as a static partition in the sense that the curve δ and domain
D ⊃ S( f ) in its definition do not have dynamical meaning for f . In particular, dynamic rays
of f might cross the boundaries of fundamental domains infinitely often. Instead, for our spe-
cific example, we can define a dynamical partition, so that the boundaries of the components
are ray tails:

5·3 (Dynamical partition for f (z) = cosh (z)). For the function f (z) := cosh (z), J( f ) =
C and S( f ) = CV( f ) = {−1, 1}. Moreover, the curves γ1 := R \ ( −∞, 1) and γ−1 := R \
(−1, ∞) are ray tails joining 1 and −1 to ∞ whose forward orbits lie in R+. Let

X := γ1 ∪ γ−1. (5·3)

Since C \ X is simply-connected and S( f ) ⊂ X, by the Monodromy Theorem, each con-
nected component of f−1(C \ X) is a simply-connected domain, and the restriction of f to
it is a conformal isomorphism to its image. More specifically, noting that all preimages of
the critical values of f are critical points of local degree 2, each connected component of
f−1(C \ X) is a horizontal strip of the form

UK := {z ∈C such that Kπ < Im z< (K + 1)π)}
for some K ∈Z. We denote U := {UK}K∈Z; see Figure 3.

5·4 (Fixing signed addresses for f (z) = cosh (z)). Let us fix any bounded domain D ⊃
[ − 1, 1] ⊃ S( f ). Then, f−1(C \ D) consists of two unbounded domains that do not contain
the imaginary axis, since f (iR) = [ − 1, 1]. Thus, we can choose δ := iR+ \ D and define
fundamental domains for f as connected components of f−1(C \ (D ∪ δ)). In particular,
f−1(δ) equals the collection of horizontal half-lines

{z ∈C : Re z< 0 and Im z = ( − 1/2 + 2n)π},
{z ∈C : Re z> 0 and Im z = (1/2 + 2n)π}

for all n ∈Z. Thus, each fundamental domain is contained in one of the half-strips

S(n, L) := {z : Re z< 0, Im z ∈ ((n − 1/2)π , (n + 3/2)π)},
S(n,R) := {z : Re z> 0, Im z ∈ ((n − 3/2)π , (n + 1/2)π)}. (5·4)

For each (n, ∗) ∈Z× {−, +}, we denote by n∗ the unique fundamental domain contained in
S(n,∗). Using these fundamental domains, we define the set of external addresses Addr( f ),
and fix the corresponding set of signed external addresses Addr( f )±; see Definition and
Theorem 4.4. In particular, for the curves γ1 and γ−1 introduced in Section 5·3, it holds
that f (γ−1) ⊂ γ1, f (γ1) ⊂ γ1, γ1 ⊂ 0R and γ−1 ⊂ 0L. Moreover, each of these curves equals
two canonical tails with opposite sign, as they do not contain preimages of critical points,
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1R

0

πi

2πi

−2πi

−πi

0R

−1L

0L

Fig. 2. Partition of the plane into fundamental domains and itinerary components of
f (z) = cosh (z). Each strip of height π between two coloured horizontal lines is an itinerary
domain. Strips that contain some fundamental domains are indicated by keys. Black horizon-
tal lines are preimages of the imaginary axis, and the rest of curves are the preimages of all
horizontal lines.

see Proposition 5·2. Hence, γ1 ⊂ �(0R, ∗) and γ−1 ⊂ �(0L0R, ∗) for both ∗ ∈ {−, +}; see
Figure 2.

The dynamical partition from Section 5·3 will help us determine that no two dynamic rays
of f land together. This is because since the boundaries of the elements in U are ray tails, as
we shall see, no other ray tails can cross them. More precisely, in the next proposition, we
assign to each curve {�(s, ∗)}(s,∗)∈Addr( f )± a unique element of U :

PROPOSITION 5·5 (Each canonical ray is in the closure of a unique U ∈U ). For each (s, ∗) ∈
Addr( f )±, there exists a unique component U ∈U such that �(s, ∗) ⊂ U. We denote

U(s, ∗) := U.

Proof. Since, as described in Section 5·4, the set X defined in (5·3) consists of four
canonical tails that overlap pairwise, and, in addition, f is totally ramified, exactly four
canonical tails meet at each critical point of f−1(X), and their union is a connected com-
ponent of this set. More precisely, following the analysis in Section 5·4, f−1(γ1) is the
collection of all the horizontal lines {2πKiR}K∈Z, that in particular contain the critical
points 2πKi for all K ∈Z. Analogously, f−1(γ−1) is the collection of the horizontal lines
{2(K + 1)π iR}K∈Z with critical points at 2(K + 1)π i for each K ∈Z. Hence, it follows that
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for each K ∈Z and ∗ ∈ {−, +},
2πKR− ⊂ �(KL0R, ∗), (2K + 1)πR− ⊂ �(KL0L0R, ∗), (5·5)

2πKR+ ⊂ �(KR0R, ∗), (2K + 1)πR+ ⊂ �((K + 1)R0L0R, ∗).

We claim that each of the canonical rays displayed in (5·5) belongs to the closure of exactly
one component of U : to see this, let us consider the curves �(KR0R, ∗) for some K ∈Z and
both ∗ ∈ {−, +}. Then, since �(KR0R, −) is a nested sequence of left-extended canonical
tails, see [18, definition 3·5 and theorem 3·8], and by Proposition 5·2 it can only intersect the
boundaries of the elements of U in the subcurve 2Kπ iR+, we conclude that �(KR0R, −) ⊂
UK−1. Similarly, �(KR0R, +) ⊂ UK , and arguing analogously for the rest of curves in (5·5),
the claim follows. Since no other canonical rays apart from those in (5·5) intersect C \U ,
each of them must be contained in a unique component U, as stated.

Definition 5·6 (Itineraries for f (z) = cosh (z)). For each (s, ∗) ∈ Addr( f )±, we define the
itinerary of (s, ∗) as the infinite sequence

itin(s, ∗) := U(s, ∗)U(σ (s), ∗)U(σ 2(s), ∗) · · · .

Observation 5·7 (Itineraries of points). Since for each (s, ∗) ∈ Addr( f )±, f (�(s, ∗)) ⊂
�(σ (s), ∗), if z ∈ �(s, ∗) and itin(s, ∗) = U0U1 · · · , then f i(z) ⊂ Ui for all i ≥ 0.

PROPOSITION 5·8 (Dynamic rays of z �→ cosh (z) do not land together). There are no two
dynamic rays of z �→ cosh (z) landing together.

Proof. It suffices to show that there are no two canonical rays landing together, since then,
by Definition and Theorem 4.4, no two rays would land together. With that aim, let �(s, ∗)
and �(τ , 
) be two different canonical rays, that is, (s, ∗) �= (τ , 
), and let p(s,∗) and p(τ ,
)

be their respective endpoints. If �(s, ∗) and �(τ , 
) land together, i.e., p(s,∗) = p(τ ,
), then by
Proposition 5·5 and Observation 5·7, itin(s, ∗) = itin(τ , ∗) = U0U1 · · · . Moreover, for each
i ≥ 0, f i(p(s,∗)) = f i(p(τ ,
)) must belong to the interior of Ui, since by 5.4, the boundaries
of the elements of U are formed by canonical tails that are contained in dynamic rays. For
the same reason, iR+ and f−1(iR+) do not contain any endpoints of dynamic rays, as they
are formed by pieces of ray tails; see Section 5·9 for more details. Then, for each i ≥ 0,
f i(p(s,∗)) = f i(p(τ ,
)) belongs to a half-strip of the form

HSi
(k,L) :=

{
z : Re z ≤ 0, Im z ∈

(
(i + 4k)π

4
,

(i + 1 + 4k)π

4

)}
,

HSi
(k,R) :=

{
z : Re z ≥ 0, Im z ∈

(
(i + 4k)π

4
,

(i + 1 + 4k)π

4

)}
(5·6)

for some k ∈Z and 0 ≤ i ≤ 3. However, each of the half-strips in (5·6) intersects a single
fundamental domain, see (5·4) and Figure 2, which contradicts (s, ∗) �= (τ , 
).

Finally, we provide a combinatorial description of the overlaps that occur between canon-
ical rays in terms of their signed addresses, which by Observation 5·1 and Proposition 5·8
suffices to describe the equivalence classes in J(F )/∼.

5·9 (Overlapping of canonical tails for z �→ cosh (z)). Recall that by Proposition 5·2, for all
(s, ∗) ∈ Addr( f )± such that �(s, ∗) ∩ Orb−(Crit( f )) =∅, �(s, −) = �(s, +). Hence, all other
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overlap occurs between the preimages of the canonical tails that contain Crit( f ). Recall from
Section 5·3 and 5·4 that Crit( f ) = {π iK : K ∈Z}, and each critical point belongs exactly to
four canonical rays. Namely, we saw in (5·5) that

�(KL0R, −) = �(KL0R, +) in 2Kπ iR− for all K ∈Z.

�(KR0R, −) = �(KR0R, +) in 2Kπ iR+ for all K ∈Z.

�(KL0L0R, −) = �(KL0L0R, +) in (2K + 1)π iR− for all K ∈Z.

�((K + 1)R0L0R, −) = �((K + 1)R0L0R, +) in (2K + 1)π iR+ for all K ∈Z.

Further identifications between the canonical rays above occur at the connected compo-
nents of f−1([0, 1]) and f−1([ − 1, 0]). More precisely, if for each ±∈ {−, +} we denote

VK( ± ) := {z ∈C : Re z = 0 and Im z ∈ [Kπ i, (K ± 1/2)π i]} ,

then we have the following identifications:

�(KL0R, ∓) = �(KR0R, ±) in V2K( ± ) for all K ∈Z.

�(KL0L0R, ∓) = �((K + 1)R0L0R, ±) in V2K+1( ± ) for all K ∈Z,

where ∓=+ when ±=−, and ∓=− when ±=+; see Figure 3. By Proposition 5·2, any
further overlap between canonical rays occur at preimages of the overlap already stated.
More specifically, since we have already described all overlap occurring at the boundaries
of the elements in U , all remaining ones must occur between canonical rays whose itinerary
agrees on the first N-th elements and that are mapped under f N to the coordinate axes for
some N ∈N. Given the geometry of the fundamental domains, in particular contained in half-
strips of height π , see (5·4) and Figure 2, providing the identifications at the preimages of the
positive imaginary axis allows us to express identifications solely using external addresses.
This is because any further identifications must occur at the intersection of a fundamental
domain with a component of U , and hence, the corresponding first entries on the signed
addresses of rays that overlap are the same. More specifically, for each ±∈ {−, +}, let us
denote

IK
PR

( ± ) := f−1(VK( ± )) ∩ (P + π i/2)R+ and

IK
PL

( ± ) := f−1(VK( ± )) ∩ (P + 3π i/2)R−.

Then, for all K ∈Z+ and P ∈Z,

�((P + 1)RKL0R, ∓) = �(PRKR0R, ±) in I2K
PR

( ± )

�((P + 1)RKL0L0R, ∓) = �(PR(K + 1)R0L0R, ±) in I2K+1
PR

( ± )

�(PLKL0R, ∓) = �((P + 1)LKR0R, ±) in IK
PL

( ± )

�(PLKL0L0R, ∓) = �((P + 1)L(K + 1)R0L0R, ±) in I2K+1
PL

( ± ),

where ∓=+ when ±=−, and ∓=− when ±=+; see Figure 3. Moreover, for all other
canonical rays, if δ is some bounded curve in J(f ), then

�(s, ∗) = �(τ , 
) in δ ⇐⇒
{∃ n> 0 : sj = τj for all j ≤ n and

�(σ n(s), ∗) = �(σ n(τ ), 
) in f n(δ).
(5·7)
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−iπ
2

0

iπ
2

Fig. 3. Some canonical tails in the Julia set of the map z �→ cosh (z) that belong to canonical
rays. Colour code: the red tail is in �(0R, +), the purple in �(0L0R, −), the orange in �(0L0R, +)
and the dark blue one in �(0R, −). Then, the light blue tail is in �(1R0L0R, −), the yellow one in
�(0L0L0R, +), the green is in �(0R0L0R, +) and the pink is in �(−1L0L0R, −).

We have now provided a combinatorial description of all overlappings occurring between
canonical rays of z �→ cosh (z), as well as determined that no two of its dynamic rays land
together. Hence, we have concluded our analysis.

EXAMPLE 5·10 (Overlapping for the map z �→ cosh2 (z)). Seeking an example where a
critical value is mapped to another critical value, we consider the function

f (z) := cosh2 (z) := cosh (z) · cosh (z) = e2z + e−2z

4
+ 1

2
.

Even if, strictly speaking, this function is not in the cosine family, it is in the same param-
eter space, since f is conjugate to (e/2)ew + (e−1/2)e−w via z �→ 2z − 1. The dynamics of f
have already been explored, namely in [26], where it is shown that I(f) (and in fact its fast
escaping set) is connected. The function f is π i-periodic, and S( f ) = CV( f ) = {0, 1}, with
f (0) = 1 ∈ I( f ) and Orb+(1) ⊂R+. The critical points of f are f−1(1) = {Kπ i : K ∈Z} and
f−1(0) = {(K + 1/2)π i:K ∈Z}. As for the map z �→ cosh (z), we can join the critical values
to infinity using the ray tails γ1 := R \ ( −∞, 1) and γ0 := R \ (0, ∞). We define a dynam-
ical partition for f as the union of the connected components of C \ f−1(γ0 ∪ γ1), which
are horizontal half-strips of π/2-height that we call itinerary components; see Figure 4. By
choosing a bounded domain D containing [0,1] and δ := iR+ \ D, we can define fundamen-
tal domains for f as the connected components of f−1(C \ (D ∪ δ)). In particular, we label as
0R the component that contains an unbounded subset of R+, and as 0L the component that
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1R

0

2πi

−2πi

−πi

0R

−1L

0L

πi

−πi

2πi

0

−2πi

Fig. 4. Partition of the plane into fundamental domains and itinerary components for
z �→ cosh2 (z). Each strip of height π between two coloured lines is an itinerary domain. Some
fundamental domains are indicated by keys. Also displayed are the first (coloured lines and imag-
inary axis), second (other curves that meet at {Kπ i : K ∈Z}) and third (rest of curves) iterated
preimages of the real line.

contains an unbounded subcurve of R−. Additionally, we label as KR and KL their respec-
tive Kπ i-translates; see Figure 4. With this notation, the following identifications between
canonical rays occur:

�(KR0R, −) = �(KR0R, +) in Kπ iR+ for all K ∈Z.

�(KL0R, −) = �(KL0R, +) in Kπ iR− for all K ∈Z.

The main difference between the overlap on the canonical rays of z �→ cosh (z) and the
overlap on those of f , is that since the critical points in f−1(0) are mapped to a critical point,
each of them belongs to eight canonical tails rather than to four, and moreover, both singular
values belong to the canonical rays �(KR0R, ∗) for both ∗ ∈ {−, +}. Compare Figures 3
and 5. Then, we further have the identifications

�(KL0R, ∓) = �(KR0R, ±) in [Kπ i, (1 ± 1/2)Kπ i] =: VK( ± ) for all K ∈Z,

where ∓=+ when ±=−, and ∓=− when ±=+. If for each ±∈ {−, +} and K ∈Z we
let

IK
PR

( ± ) := f−1(VK( ± )) ∩ PR ∩ (P + 1)R and IK
PL

( ± ) := f−1(VK( ± )) ∩ PL ∩ (P + 1)L,

then for all K ∈Z+ and P ∈Z,

�((P + 1)RKL0R, ∓) = �(PRKR0R, ±) in IK
PR

( ± )

�((P + 1)LKR0R, ±) = �(PLKL0R, ∓) in IK
PL

( ± ).
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Fig. 5. Picture showing four canonical tails of z �→ cosh2 (z) that contain the critical point 0.
These belong to the canonical rays �(0L0R, −) (in blue), �(0R, +) (in red), �(0L0R, +) (in green)
and �(0R, −) (in yellow).

Any further identifications between canonical rays occur within the intersection of a funda-
mental domain and an itinerary domain, and hence can be expressed using (5·7). Moreover,
arguing as for z �→ cosh (z), no two dynamic rays of z �→ cosh2 (z) land together, see the
proof of Proposition 5·8.

Appendix A. Itineraries and rays landing together

This section concerns certain sps maps in B that have dynamic rays on their Julia sets.
Namely, in [19], the following class is introduced:

Definition A1. We say that f ∈B belongs to the class CB if J(λf ) is a Cantor bouquet
for some |λ| sufficiently small. It follows from [19, theorem 1·4] that some iterate of each
escaping point of any function f ∈ CB can be joined to infinity by a dynamic ray, and that
the concept of canonical rays can be extended to maps in this class. Moreover, the class
CB includes all finite compositions of class B functions of finite order, and in particular, all
cosine maps; see [19, proposition 6].

In this section, we extend the concept of itineraries introduced in Section 5 for the
functions z �→ cosh (z) and z �→ cosh2 (z) to all strongly postcritically separated functions
in class CB, and use it to provide some combinatorial criteria for their canonical rays
landing together in Theorem A12. This idea, that comes from polynomial dynamics, has
already been used in the study of the exponential and cosine families; see for example
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[22, 29]. Moreover, a more general and systematic definition of itineraries for geometri-
cally finite functions can be found in [13, chapter 5]. We say that f ∈B is geometrically
finite if S( f ) ∩ F( f ) is compact and PJ is finite. In particular, only attracting and parabolic
basins can occur as Fatou components for maps in this class; [14, proposition 2·5]. Since for
strongly postcritically separated functions in class B the only possible Fatou components
are attracting basins, [20, lemma 2·6], some of the definitions in [13, chapter 5] will adapt
to our setting.

For the rest of the section, let us fix f ∈ CB and strongly postcritically separated. We note
that the definition of signed addresses that we provided for sps cosine maps in (4·2), as
well as that of canonical rays, extends to all sps maps in CB, see [18, section 3]. Let us
also fix g := λf of disjoint type for some λ ∈C∗, and let J(g)± := J(g) × {−, +}. For each
s ∈ Addr(g) and ∗ ∈ {−, +}, denote J(s,∗) := Js × {∗}. Let us define the function g̃ : J(g)± →
J(g)± by g̃(z, ∗) := (g(z), ∗). Then, [21, theorem 6·5] states that there exists a continuous
surjective map

ϕ : J(g)± → J( f ) (A1)

such that

f ◦ ϕ = ϕ ◦ g̃. (A2)

Moreover, for each (s, ∗) ∈ Addr(g)±, ϕ : J(s,∗) → �(s, ∗) is a bijection and �(s, ∗) is a canon-
ical ray together with its endpoint. In particular, ϕ establishes a one-to-one correspondence
between Addr(g)± and Addr( f )±; see [21, observation 6·6].

Our first goal is to define a forward-invariant closed set K � P( f ) such that J( f ) ⊂C \ K
and so that each connected component of C \ K is simply-connected. We will then define
itineraries for f using such components. More specifically, we will define K as a union of
two sets KJ and KF, the first consisting of the union of all canonical rays whose endpoints
are in PJ , and the second comprising all points in PF. Recall from Definition 4·3 that E(f )
denotes the set of endpoints of dynamic rays of f .

PROPOSITION A2 (Set of rays sharing their endpoint is closed). For each z ∈ E( f ), denote
by R(z) the set of canonical rays that land at z. Then, R(z) := R(z) ∪ {z} is closed.

Proof. Let ϕ be the function from (A1). Since ϕ is continuous, ϕ−1(z) is a closed set of
J(g)±, being each connected component of ϕ−1(z) the endpoint (es, ∗) of a set J(s,∗) ⊂ J(g)±.
Let J(g)± ∪ {∞̃} be the one-point compactification of J(g)±; see [21, lemma 5·8]. Then, the
set P := {J(s,∗) : (es, ∗) ∈ ϕ−1(z)} ∪ {∞̃} is compact. We can extend ϕ to a continuous map
ϕ′ : J(g)± ∪ {∞̃}→ J( f ) ∪ {∞} by defining ϕ′(∞̃) =∞, see the proof of [21, theorem 6·5].
By continuity of ϕ′, we have that ϕ′ (P) is compact. By definition of ϕ′, it must be the case
that ϕ′(P \ {∞̃}) = ϕ(P \ {∞̃}), and by removing {∞} from the codomain of ϕ′, we can
conclude that ϕ(P \ {∞̃}) =R(z) is (relatively) closed in J(f ) with respect to the original
topologies.

A3 (Definition of the set KJ). Denote

KJ :=
⋃

z∈PJ∩E( f )

R(z), (A3)

and observe that by Proposition A2 and since PJ is discrete, KJ is closed.
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In addition, we wish to include in K the compact set PF. Note that C \ PF is open but not
necessarily simply-connected. The idea is to remove a full set KF such that F( f ) ⊃ KF ⊃ PF,
together with a collection of curves that connect each connected component of KF to infinity.
A piece of any such curve will be a dynamic ray, and the other piece will be a preperiodic
simple curve inside an attracting basin of F(f ). For each attracting periodic point z0 ∈ F( f ),
A∗(z0) denotes the immediate attracting basin of z0.

Definition A4 (Attracting periodic rays [13, definition 5·2]). Let f be a transcendental
entire function and let z0 be an attracting periodic point of f of period n. A simple curve
α : (0, ∞) →A∗(z0) is called an attracting periodic ray of f at z0 (of period n) if

(i) f n(α(t)) = α(2t),

(ii) limt→∞ α(t) = z0,

(iii) limt→0 α(t) = w, where w ∈ ∂A∗(z0) is a periodic point of f of period d|n.

Observation A5 (Images of attracting rays are attracting rays). If α is an attracting peri-
odic ray of f at z0, then f (α) is an attracting periodic ray of f at f (z0). Furthermore, if f is
strongly postcritically separated, by [20, lemma 2·6], w = limt→0 α(t) must be a repelling
periodic point of f . The next proposition tells us that we can find at least one attracting peri-
odic ray for every attracting periodic point that also contains a prescribed point belonging to
its immediate basin of attraction. This result is a version of [13, proposition 5·3] stated for
our class of maps. Since the proof is exactly the same as for geometrically finite maps, we
omit it.

PROPOSITION A6 (Attracting rays with prescribed points). Let f ∈B be strongly postcrit-
ically separated and let z0 be an attracting periodic point of f. Then, for any point ξ that
belongs to the unbounded component of A∗(z0) \ P( f ), there exists an attracting periodic
ray of f at z0 in A∗(z0) \ P( f ) that contains ξ .

Our aim goal is to define KF by enclosing PF with a finite number of connected sets. Each
of them will consist of a bounded domain in F(f ), together with (a preimage of) an attracting
periodic ray, that either has an endpoint at infinity or at a repelling periodic point p. In the
latter case, we will include R(p) in KF. We now formalise these ideas following the approach
in [13, definition and proposition 5·4]:

A7 (Definition of the set KF). Since PF is compact, there exists a finite collection {Ai}n
i=1

of connected components of F(f ) such that
⋃n

i=1 Ai ⊃ PF. We can assume that {Ai}n
i=1 is

minimal in the sense that PF ∩ Ai �= ∅ for all 1 ≤ i ≤ n. We moreover can assume without loss
of generality that f has only one attracting cycle, since otherwise the same argument applies
to each cycle. Let {z1, . . . , zm} be this attracting cycle and let {Ai}m

i=1 be the corresponding
immediate basins, labelled so that Ai � zi for all 1 ≤ i ≤ m, and so that f (Aj) ⊂ Aj−1 for all
2 ≤ j ≤ n. Let us pick any point z∗ ∈ An so that f j(z∗) does not belong to P(f ) for every
0 ≤ j ≤ n − m. We can find a collection of n bounded Jordan domains {Ji}n

i=1 such that Ji ⊂
Ai, J := ⋃n

i=1 Ji ⊃ (PF ∪ Orb+(z∗)) and f (J) � J � F( f ), see [13, proposition 3·1]. Let ξ :=
f n−m(z∗) ∈ Jm \ PF. By Proposition A6, there exists an attracting periodic ray αm at zm ∈
Jm that contains ξ . For each 1 ≤ i<m, we denote the iterated forward image of αm by
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αi := f m−i(αm), which by Observation A5 is an attracting periodic ray at zi. Note that it
might occur that limt→0 αi(t) = limt→0 αk(t) for some i �= k.

Let α̃m be the piece of αm that connects ξ to ∂Am, let wm := limt→0 αm(t) be the periodic
endpoint of αm, and define the curve αm+1 as the connected component of f−1(̃αm) belong-
ing to Am+1 that contains the point f n−m−1(z∗). By Proposition A6, since αm ∩ P( f ) =∅,
this curve is unique and well-defined, and moreover, limt→0 αm+1(t) is either ∞ when wm is
an asymptotic value, or it is a point wm+1 such that f (wm+1) = wm. Similarly and proceeding
recursively, we define for each m + 2 ≤ j ≤ n the curve αj as the connected component of
f−1(α∗j−1) belonging to Aj that contains f n−j(z∗), and that in particular has analogous prop-
erties to those of the curve αm+1. That is, either limt→0 αj(t) is infinity, or it is a point wj

such that f (wj) = wj−1. Note that for m + 1 ≤ j ≤ n, the union Jj ∪ αj is a connected set, since
f n−j(z∗) ∈ αj ∩ Jj.

For every 1 ≤ i ≤ n we define K̃i := Ji ∪ αi, which by construction is closed, connected,
f (K̃i) ⊂ K̃i−1 for all i ≥ 2 and f (K̃1) ⊂ K̃m. Note that the sets {K̃i}i are not necessarily simply-
connected, as the curve αi might intersect ∂Ji more than twice. Thus, we define K̃ as the
fill-in of

⋃
i K̃i; that is, K̃ equals

⋃
i K̃i together with all bounded components of C \⋃i K̃i.

Then, K̃ is a closed, connected and simply-connected set that by the Open Mapping Theorem
satisfies f (K̃) ⊂ K̃. Moreover, K̃ consists of finitely many connected components, and (C \
K̃) ∩ PF =∅.

By construction and Observation A5, each connected component of K̃ that intersects the
attracting cycle {z1, . . . , zm} contains exactly one periodic point in its boundary. Namely,
the (non-separating) endpoint of an attracting periodic ray, and in particular belongs to J(f ).
Let us label the distinct points that arise as a finite limit limt→∞ αi(t) for some 1 ≤ i ≤ n
as {w1, . . . , wl} =: W, noting that it might occur that l< n. Every wi ∈ W is a (pre)periodic
point in J( f ). Let V be the minimal set that contains W and satisfies f (V) ⊂ V , i.e., V is the
set of forward images of the points in W. We define

KF :=
⋃
w∈V

R(w) ∪ K̃,

and note that by Proposition A2 and since K̃ is closed, KF is also closed. Observe also that
each of the connected components of C \ KF is a simply-connected domain. Finally, we
define

K := KJ ∪ KF, (A4)

which is closed as it is the union of two closed sets. Note that the sets KJ and KF might
share some (piece of) periodic ray in R(w) for some w ∈ V . By construction, the set K is
forward-invariant, that is,

f (K) ⊆ K. (A5)

Moreover, C \ K ∩ P( f ) =∅ and each connected component of C \ K is simply-connected,
since otherwise K would enclose a domain that escapes uniformly to infinity, contradicting
that int(I( f )) =∅ as f ∈B, [9]. Thus, since f is an open map, all connected components of
f−1(C \ K) are simply-connected, which we label as U0, U1, . . .. We denote by U the set of
all those components. With slight abuse of notation, U will sometimes also denote its union.
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In the next proposition we assign to each of the landing canonical rays �(s, ∗) a unique
component of U ; compare to Proposition 5·5.

PROPOSITION A8 (Each canonical ray is in the closure of a unique U ∈U ). For each (s, ∗) ∈
Addr( f )±, either �(s, ∗) is totally contained in K, or there exists a unique component U ∈U
such that �(s, ∗) ⊂ U. In the latter case we denote

U(s, ∗) := U.

Proof. Let γ be an unbounded subcurve of �(s, ∗). Then, by construction, if γ belongs
to a connected component of K, then �(s, ∗) belongs to K. Otherwise, γ ⊂ U for some
U ∈U and �(s, ∗) ⊂ U. This can be seen either using the definition of canonical rays as
nested sequences of left or right extensions, see [18, theorem 3·8]. Alternatively, it is easy to
check the analogous propert for the model space J(g)±, and it can be transferred using the
continuous map ϕ from (A1), that preserves the orders of Addr(g)± and Addr( f )±, see [21,
observation 6·6].

Definition A9 (Itineraries for canonical rays). For each (s, ∗) ∈ Addr( f )± we define the
itinerary of (s, ∗) as the sequence

itin(s, ∗) := U(s, ∗)U(σ (s), ∗)U(σ 2(s), ∗) · · · ,

whenever it is defined. We say that an itinerary is bounded if only finitely many different
elements of U occur in it.

Observation A10 (Itineraries of points). Since by Proposition A8, for each (s, ∗) ∈
Addr( f )±, f (�(s, ∗)) ⊂ �(σ (s), ∗), if z ∈ �(s, ∗) and itin(s, ∗) = U0U1 · · · , then f i(z) ⊂ Ui

for all i ≥ 0.

PROPOSITION A11. If the itinerary of any (α, ∗) ∈ Addr( f )± is bounded, then the endpoint
z of �(α, ∗) has bounded orbit, i.e., supj≥0 |f j(z)|<∞.

Proof. First we claim that each itinerary component U ∈U only intersects finitely many
fundamental domains in an unbounded component. The reason being that S( f ) ∩ I( f ) is
finite as f ∈ CB is sps, and so ∂U only contains finitely many connected components that
separate the plane, namely, those containing an escaping critical point. Each of these compo-
nents contains two ray tails that are totally contained in two different fundamental domains.
Using this and that U cannot contain accesses to infinity between tracts, it is easy to see that
the claim holds. Hence, we have that if itin(α, ∗) is bounded, α must also be bounded, that
is, only finitely many different fundamental domains occur in α.

Recall that the map ϕ from (A1) establishes a one-to-one correspondence between
Addr(g)± and Addr( f )±; namely ϕ(J(α,∗)) = �(α, ∗). Since g is of disjoint type, if α is
bounded, then the endpoint eα of Jα has bounded orbit under the map g, see [25, proposition
3·10]. In addition, see the proof of [21, theorem 6·5], there exists a constant M, indepen-
dent of α, such that |ϕ(eα , ∗) − eα| ≤ M. This together with (A2) implies that the endpoint
ϕ(eα , ∗) of �(α, ∗) also has bounded orbit.

The following is the main result of this section.
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THEOREM A12 (Criterion for rays landing together). Let f ∈ CB be strongly postcriti-
cally separated. Then two canonical rays with bounded itinerary land together if and only if
they have the same itinerary.

Proof. If two canonical rays land together, then by Proposition A8 and Observation A10,
they must have the same itinerary. For the other implication, let �(s, ∗) and �(τ , 
) be
two different canonical rays, that is, (s, ∗) �= (τ , 
), and let p0 := p(s,∗) and q0 := q(τ ,
) be
their respective endpoints. Moreover, for each n ≥ 0, denote pn := f n(p0) and qn := f n(q0).
By assumption, itin(s, ∗) = itin(τ , ∗) = U0U1U2 · · · is bounded, that is, there exists a finite
collection V := {Vi}i∈I of domains in U such that Un ∈ V for all n ≥ 0. In particular, by
Observation A10, qn, pn ∈ Un for all n ≥ 0. We want to show that p0 = q0.

By Proposition A11, both p0 and q0 have bounded orbits, and hence, for each Vi ∈ V , we
can find a bounded simply-connected domain Wi ∈ Vi such that

(Orb+(p0) ∪ Orb+(q0)) ∩ Vi ⊂ Wi.

Moreover, since all domains in U have a locally connected boundary, Wi can be chosen so
that ∂Wi is locally connected.

Since f ∈B and sps, [20, theorem 1·1] states that there exist hyperbolic orbifolds Õ=
(̃S, ν̃) and O= (S, ν) such that S̃ ⊂ S ⊆C, f : Õ→O is an orbifold covering map, and there
exists a constant �> 1 such that ‖Df (z)‖O := (|f ′(z)|ρO( f (z)))/ρO(z) ≥� for all z ∈U ,
where ρO denotes the density of its orbifold metric. We moreover denote by �O and dO the
corresponding orbifold length and distance; see [20, section 3] for definitions. In particular,
we have defined U such that U ⊂ S̃ ∩ S, compare A7 with the proof of [20, definition and
proposition 5·1]. Since the sets in {Wi}i∈I do not contain postsingular points, [20, theorem
7·5] implies that for each i ∈ I, there exists a constant μi such that if δn ⊂ Wi is a curve
joining pn and qn for some n ∈N, then there exists a curve γn ⊂ Wi that also has endpoints
pn and qn, that is homotopic to δn with respect to P(f ) and so that �O(γn)<μi. This means
that there exists an inverse branch F of f n such that γ n

0 := F(γn) joins p0 and q0; see [20,
section 7] for more details. In particular, if we let μ := maxi∈I μi, then for each n ∈N,
dO(p0, q0) ≤ �O(γ n

0 ) ≤ �O(γn)/�n ≤μ/�n, which tends to 0 as n →∞, and thus p0 = q0,
as we wanted to show.
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