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On the Asymptotic Growth of
Bloch–Kato–Shafarevich–Tate Groups of
Modular Forms Over Cyclotomic
Extensions

Antonio Lei, David Loeøer, and Sarah Livia Zerbes

Abstract. We study the asymptotic behaviour of the Bloch–Kato–Shafarevich–Tate group of amod-
ular form f over the cyclotomic Zp-extension of Q under the assumption that f is non-ordinary
at p. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer
groups deûned using p-adic Hodge _eory. _ese bounds have the same form as the formulae of
Kobayashi, Kurihara, and Sprung for supersingular elliptic curves.

1 Introduction

Let p be an odd prime, let f be a normalised new cuspidal modular eigenform of
weight k ≥ 2, and let p an odd prime that does not divide the level of f . For notational
simplicity, we assume in this introduction that all the Fourier coeõcients of f lie in
Z. We let Vf be the cohomological p-adic Galois representation attached to f (so
the determinant of Vf is χ1−k times a ûnite-order character). _en Vf has Hodge–
Tate weights {0, 1 − k}, where our convention1 is that the Hodge–Tate weight of the
cyclotomic character is 1. Let Tf be the canonical GQ-stable Zp-lattice in Vf deûned
by Kato [Kat04, 8.3].

Let K∞ be the cyclotomic Zp-extension of Q and write Kn for the unique sub-
extension of degree pn . Our aim is to study the asymptotic behaviour of the Bloch–
Kato–Shafarevich–Tate groups X(Kn , Tf ( j)) (with j ∈ [1, k − 1]), whose deûnition
we recall below.

When k = 2, the form f corresponds to an isogeny class of elliptic curves, and we
can choose a curve E in this isogeny class such that Tf (1) = Tp(E), where the latter is
the p-adicTatemodule ofE. In this case it can be shown that the groupX(Kn , Tf (1))
is the quotient of the classical p-primary Shafarevich–Tate group Xp(Kn ,E) by its
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maximal divisible subgroup; hence if the latter group is ûnite (which is a well-known
conjecture), the two groups are equal.

The Ordinary Case

_e behaviour of the Selmer and Shafarevich–Tate groups over the cyclotomic exten-
sion depends sharply onwhether E has ordinary or supersingular reduction at p. If E
is ordinary, then the p-Selmer group

Selp(K∞ ,E) = limÐ→
n

Selp(Kn ,E)

of A over K∞ is cotorsion over the Iwasawa algebra Zp[[Gal(K∞/Q)]], by a theorem
ofKato [Kat04,_eorem 17.4]. ByMazur’s control theorem [Maz72], this implies that
if the groups Xp(Kn ,E) are ûnite for all n, then wemust have

lenZpXp(Kn ,E) = µpn + λn + O(1)
for some Iwasawa invariants µ and λ associated with Selp(E/K∞).

The Supersingular Case

_e case of supersingular elliptic curveswith ap(E) = 0 has been studied byKurihara
[Kur02] andKobayashi [Kob03]. Suppose thatXp(Kn ,E) is ûnite for all n andwrite
sn(E) = lenZpXp(Kn ,E). _ey showed that for n suõciently large,

sn(E) − sn−1(E) = qn + λ± + µ±(pn − pn−1) − r∞(E),
where qn is an explicit sum of powers of p, r∞(E) is the rank of E over K∞, λ±, and
µ± are the Iwasawa invariants of some cotorsion signed Selmer groups, and the sign
± depends on the parity of n.
For supersingular elliptic curveswith ap(E) /= 0 (which can only occurwhen p = 2

or 3), Sprung [Spr13] proved a similar formula:

sn(E) − sn−1(E) = q⋆n + λ⋆ + µ⋆(pn − pn−1) − r∞(E),
for n ≫ 0, where q⋆n is again an explicit sum of powers of p, ⋆ ∈ {#, ♭}, λ⋆ and µ⋆
are Iwasawa invariants of some cotorsion Selmer groups deûned in [Spr12] and the
choice of ⋆ depends on the “modesty algorithm”. An analytic version of this formula
has been generalised to arbitrary weight 2 modular forms in [Spr15].

Higher Weights

_e main result of this article is that a similar formula for modular forms of higher
weightwould give us an upper bound on the growth of the Bloch–Kato–Shafarevich–
Tate groups. Suppose that ordp(ap( f )) > k−1

2p and 3 ≤ k ≤ p, where ap( f ) is the p-th
Fourier coeõcient of themodular form f . We will see below that the Selmer coranks

rn( f ) = corankZpSel(Kn , Tf ( j))
stabilise for n ≫ 0, andwe deûne r∞( f ) to be the limiting value (see Proposition 5.4).
We deûne

sn( f ) = lenZpXp(Kn , Tf ( j))
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(which isûnite by deûnition). We prove the inequality (see_eorem 5.5 for the precise
statement)

sn( f ) − sn−1( f ) ≤ q⋆n + λ⋆ + µ⋆(pn − pn−1) + κ − r∞( f ),

for n ≫ 0,where q⋆n is once again a sumof powers of p that depends on k and the par-
ity of n, λ⋆ and µ⋆ are the Iwasawa invariants of the Selmer groups deûned in [LLZ10]
for some choice of basis of theWach module of Tf , κ is some integer that depends on
the image of some Coleman maps that we shall review in §3 of this article and the
choice of ⋆ is given by an explicit algorithm (similar to the “modesty algorithm” of
Sprung).

_e fact that we have an inequality is a result of the growth of the logarithmic
matrix contributed from the twists of Tf (i) for i /= j. In the appendix to this paper,
we relate the defect of this inequality to the Tamagamwa numbers of Tf ( j) using the
method developed by Perrin–Riou in [PR03].

2 Background from p-adic Hodge Theory

We recall the necessary notation and deûnitions from p-adic analysis and p-adic
Hodge theory. For more details, see [LLZ11, §1.3]. We ûx (for the duration of this
article) a ûnite extension E/Qp with ring of integers O, which will be the coeõcient
ûeld for all the representations we will consider.

2.1 Iwasawa Algebras and Distribution Algebras

Let Γ = Gal(Q(µp∞)/Q). _is group is isomorphic to a direct product∆×Γ1,where ∆
is a ûnite group of order p−1 and Γ1 = Gal(Q(µp∞)/Q(µp)). We choose a topological
generator γ of Γ1, which determines an isomorphism Γ1 ≅ Zp . We also ûx a ûnite
extension E ofQp with ring of integers O that will be our ûeld of coeõcients (i.e., we
will consider representations of Galois groups on E-vector spaces).

We write Λ = O[[Γ]], the Iwasawa algebra of Γ. _e subalgebra O[[Γ1]] can be
identiûed with the formal power series ring O[[X]], via the isomorphism sending γ1
to 1 + X; this extends to an isomorphism

(2.1) Λ = O[∆][[X]].

For a character η of ∆ and a Λ-module M, Mη denotes its η-isotypic component,
which is regarded as an O[[X]]-module. For n ≥ 1, we write Γn for the subgroup
Gal(Q(µp∞)/Q(µpn)) and Λn = O[Γ/Γn]. Note that

Λn = O[∆][[X]]/(ωn−1(X)),

where ωn−1(X) denotes the polynomial (1 + X)pn−1 − 1.
We can consider Λ as a subring of the ring H of locally analytic E-valued distri-

butions on Γ. _e isomorphism (2.1) extends to an identiûcation between H and the
subring of power series F ∈ E[∆][[X]], which converge on the open unit disc ∣X∣ < 1.
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2.2 Power Series Rings

Let A+
Qp

= O[[π]], where π is a formal variable. We equip this ring with a O-linear
Frobenius endomorphism φ, deûned by π ↦ (1 + π)p − 1, and with an O-linear action
of Γ deûned by π ↦ (1 + π)χ(σ) − 1 for σ ∈ Γ, where χ denotes the p-adic cyclotomic
character.

_e Frobenius φ has a le� inverse ψ, satisfying

(φ ○ ψ)( f )(π) = 1
p ∑
ζ∶ζ p=1

f ( ζ(1 + π) − 1) .

_emapψ isnot amorphismof rings, but it isO-linear, and commuteswith the action
of Γ.

We write B+Qp
= A+

Qp
[1/p] ⊂ E[[π]], and

B+rig,Qp
= {F(π) ∈ E[[π]] ∶ F converges on the open unit disc} ,

so there are natural inclusions

A+
Qp
↪ B+Qp

↪ B+rig,Qp
.

_e actions of φ, ψ, and Γ extend to these larger rings (via the same formulae as be-
fore). We shall write q = φ(π)/π ∈ A+

Qp
and t = log(1 + π) ∈ B+rig,Qp

.

2.3 The Mellin Transform

_e action of Γ on 1 + π ∈ (A+
Qp

)ψ=0 extends to an isomorphism of Λ-modules

M∶Λ ≅Ð→(A+
Qp

)ψ=0

1z→1 + π,

called the Mellin transform. _is can be further extended to an isomorphism of H-
modules

H
≅Ð→(B+rig,Qp

)ψ=0 ,
which we denote by the same symbol.

_eorem 2.1 For every n ≥ 1, the Mellin transform induces an isomorphism of
Λ-modules

Λn ≅ (A+
Qp

)ψ=0/φn(π)(A+
Qp

)ψ=0 .

Proof If µ ∈ ωn−1(X)Λ, thenM(µ) ∈ φn(π)(B+rig,Qp
)ψ=0, by [LLZ10,_eorem 5.4].

However, φn(π) is a monic polynomial in π, so if an element of A+
Qp

is divisible by
φn(π) in B+rig,Qp

, it is divisible by the same element in A+
Qp

. Hence, theMellin trans-
form induces a map Λn → (A+

Qp
)ψ=0/φn(π)(A+

Qp
)ψ=0, and this map is surjective,

because theMellin transform itself is surjective. Since both sides are free O-modules
of the same rank, namely (p− 1)pn , it follows that themapmust in fact be an isomor-
phism.
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We write ∂ for the diòerential operator (1 + π) d
dπ on B+rig,Qp

and Tw for the ring
automorphism ofH deûned by σ ↦ χ(σ)σ for σ ∈ Γ. _en one has the compatibility
relation M ○ Tw = ∂ ○M.

Let u = χ(γ) be the image of our topological generator γ under the cyclotomic
character, so that Tw maps X to u(1 + X) − 1. If m ≥ 0 is an integer, we deûne
ωn ,m(X) = ωn(u−m(1 + X) − 1) and ω̃n ,m = ∏m

i=0 ωn , i . By exactly the same argu-
ment as _eorem 2.1, this gives the following isomorphism of Λ-modules:

(2.2) Λn ,m ∶= Λ/ω̃n−1,mΛ ≅ (A+
Qp

)ψ=0/φn(πm+1)(A+
Qp

)ψ=0 .

We will need below the following technical result, regarding the interaction be-
tween Mellin transforms and the Iwasawa invariants of power series. We recall the
Weierstrass preparation theorem, which states that any F ∈ O[[X]] can be factorized
uniquely as

F(X) = ϖµ(F) ⋅ (Xλ(F) + ϖG(X)) ⋅ u(X),
where ϖ is a uniformizer ofO, λ(F) and µ(F) are non-negative integers, G ∈ O[X] is
a polynomial of degree < λ(F), and u ∈ O[[X]]×. _e quantities λ(F) and µ(F) are
called the Iwasawa invariants of F.

It is clear that, for x ∈ OCp with ordp(x) > 0, we have the lower bound

(2.3) ordp F(x) ≥ min( µ+1
e ,

µ
e + λ ordp(x)) ,

where e = 1/ordp(ϖ) is the absolute ramiûcation degree of F. Moreover, if ordp(x)
is suõciently small (depending on F), this lower bound is an equality (it suõces to
take ordp(x) < 1/(eλ)).

Proposition 2.2 Let f ∈ A+
Qp
, and let g be the unique element of Λ(Γ1) such that

M(g) = (1 + π)φ( f ). _en the λ- and µ-invariants of f (as an element of O[[π]])
coincide with those of g (as an element of O[[X]]).

Proof _is is a consequence of [LZ13, Proposition 7.2], which shows that for any
f ∈ B+rig,Qp

and g ∈ H such that M(g) = (1 + π)φ( f ), and any real s with 0 < s < 1,
we have vs( f ) = vs(g), where

vs( f ) ∶= inf{ordp f (x) ∶ ordp(x) ≥ s} .

When f ∈ O[[X]] and s is suõciently small, vs( f ) is determined by the Iwasawa in-
variants of f ; from the inequality (2.3) and the discussion following, we have vs( f ) =
1
e µ( f ) + λ( f )s for any s < 1

eλ( f ) . So the cited proposition implies the equalities
λ( f ) = λ(g) and µ( f ) = µ(g).

2.4 Crystalline Representations and Wach Modules

Fontaine has deûned a certain topological Qp-algebra Bcris, equipped with an action
of GQp , a ûltration Fil

●, and a Frobenius endomorphism φ.
For any p-adic representation V of GQp , we deûne the crystalline Dieudonnémod-

ule of V byDcris(V) = (V ⊗Qp Bcris)GQp . _e spaceDcris(V) inherits a ûltration and
a Frobenius endomorphism from those of Bcris. It is known that dimQp Dcris(V) ≤
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dimQp V , andwe say V is crystalline if equality holds. If in fact V is an E-linear repre-
sentation, then Dcris(V) is naturally an E-vector space (and its ûltration and Frobe-
nius are E-linear).

Deûnition 2.3 Let a ≤ b be integers. A Wach module over B+Qp
with weights in

[a, b] is a ûnite free B+Qp
-module N , equipped with an action of Γ and a Frobenius

φ∶N[1/π]→ N[1/φ(π)],
compatible with those of B+Qp

, satisfying the following conditions:
● Γ acts trivially on N/πN ;
● φ(πbN) ⊆ πbN ;
● if φ∗(πbN) is the B+Qp

-submodule of πbN generated by φ(πbN), then the quotient
πbN/φ∗(πbN) is killed by qb−a .

In [Ber04, Deûnition III.4.1] it is shown how to attach to every crystalline E-linear
representation V of GQp aWach module N(V) over B+Qp

, in such a way that there is
a canonical isomorphism

N(V)⊗B+Qp
B+rig,Qp

[1/t] ≅ Dcris(V)⊗E B+rig,Qp
[1/t].

Moreover, the deûnition ofWach modules also makes sense integrally, i.e., over A+
Qp
,

and we can associate with each O-lattice T in V that is stable under GQp an integral
Wach module N(T) ⊂ N(V) (Lemme II.1.3 of op.cit.).

Deûnition 2.4 We say V satisûes the Fontaine–Laòaille condition if it is crystalline
and has Hodge–Tate weights in [a, a + (p − 1)] for some a ∈ Z.

If V satisûes the Fontaine–Laòaille condition, and V is irreducible of dimension
≥ 2, then one has a particularly convenient parametrisation of GQp -stable lattices in
V . We say a O-lattice M ⊂ Dcris(V) is a strongly divisible lattice if the equality

φ(M ∩ Fili Dcris(V)) ⊂ piM

holds for all i ∈ Z. _en there is a bijection T ↦ Dcris(T) between GQp -stable lattices
in V , and strongly divisible lattices in Dcris(V), given by deûning Dcris(T) to be the
image of N(T) in N(V)/πN(V) ≅ Dcris(V); cf. [Ber04, Propositions V.2.1 & V.2.3].

We shall need the following technical result.

_eorem 2.5 Let T be a GQp -stable O-lattice in a crystalline E-linear representa-
tion V . _en (φ∗N(T))ψ=0 is a free Λ-module of rank d = dimE V . Moreover, if
{n1 , . . . , nd} is an A+

Qp
-basis of N(T) that satisûes the condition

(γ − 1)n i ∈ π2N(T)
for all i, then {(1 + π)φ(n i) ∶ i = 1, . . . , d} is a Λ-module basis of (φ∗N(T))ψ=0.

Proof _is is shown in the course of the proof of [LLZ10,_eorem 3.5]. _e condi-
tion on the basis modulo π2 is the conclusion of Lemma 3.9 in op. cit.

https://doi.org/10.4153/CJM-2016-034-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-034-x


832 A. Lei, D. Loeøer, and S.L. Zerbes

2.5 Iwasawa Cohomology and the Fontaine Isomorphism

IfV is an E-linear p-adic representation ofGQp , and T ⊂ V is aGQp -stableOE-lattice,
then we deûne Iwasawa cohomology groups by

H i
Iw(Qp(µp∞), T) = lim←Ð

n
H1(Qp(µpn), T)

(where the inverse limit is with respect to the corestriction maps). _ese groups
are ûnitely-generated Λ-modules, zero unless i ∈ {1, 2}. If H0(Qp(µp∞), T/pT) =
0, which is the case in our applications below, then H2

Iw is zero, and H1
Iw is a free

Λ-module of rank equal to the O-rank of T .
_e following theorem is the starting-point for our study of Iwasawa cohomology.

_eorem 2.6 (Fontaine–Berger) If V is crystalline with all Hodge–Tate weights ≥ 0,
and V has no non-zero quotient on which GQp acts trivially, then there is a canonical
Λ-module isomorphism

h1
T ∶N(T)ψ=1 Ð→ H1

Iw(Qp(µp∞), T) .

See [CC99, §II.1], where it is shown that (for any T) there is an isomorphism
D(T)ψ=1 → H1

Iw(Qp(µp∞), T), where D(T) is the (φ, Γ)-module of T ; and [Ber03,
§A], where it is shown that N(T)ψ=1 = D(T)ψ=1 under the above hypotheses.

3 Wach Modules and Coleman Maps

3.1 Review on the Definition of Coleman Maps

Let f = ∑ anqn be a normalised new cuspidal modular eigenform of weight k ≥ 3
(note that the case k = 2 can be dealt with using the method of Sprung in [Spr13]),
nebentypus ε and level N with (p,N) = 1. We take E to be the completion of the
smallest number ûeld containing all the coeõcients of f at some ûxed prime above
p. We assume that f is non-ordinary at p and that k ≤ p. We write Tf for the O-
linear representation of GQ associated with f as deûned by Kato [Kat04, 8.3]. It is
crystalline, with Hodge–Tate weights 0 and 1 − k. We ûx an integer j ∈ [1, k − 1] and
write T = Tf ( j) and T = Tf (k − 1). Note that T = T( j − k + 1).

_e representation T/ϖT (where ϖ is a uniformiser of O) is irreducible as a rep-
resentation of GQp , so, in particular, we have

H0(Qp(µp∞), T/ϖT) = 0.

Both Tf and T are GQp -stable OE-lattices in crystalline representations of GQp , so
we can consider their Wach modules and Dieudonné modules. By [Ber04, Proposi-
tion III.2.1], there are inclusions of B+rig,Qp

-modules

B+rig,Qp
⊗A+Qp

N(T) ⊂B+rig,Qp
⊗O Dcris(T),

B+rig,Qp
⊗O Dcris(Tf ) ⊂B+rig,Qp

⊗A+Qp
N(Tf ),

where the elementary divisors of the inclusions are given by 1 and (t/π)k−1 in both
cases.
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Lemma 3.1 _ere exists an O-basis v1 , v2 of Dcris(T) such that v1 ∈ Fil0Dcris(T)
and v2 = φ(v1), where φ is the Frobenius action on Dcris(T).

Proof _e Fontaine–Laòaille condition of [FL82] implies that for all integers i
(a) Fili Dcris(T) is a direct summand of Dcris(T);
(b) φ(Fili Dcris(T)) ⊂ piDcris(T);
(c) Dcris(T) = ∑i p−iφ(Fili Dcris(T)).
_e Hodge–Tate weights of T are 0 and k − 1, so Fil0Dcris(T) is of rank 1, say
Fil0Dcris(T) = O ⋅ v1 and (b) says that v2 ∶= φ(v1) ∈ Dcris(T). Furthermore, (a)
tells us that there exists some v′ ∈ Dcris(T) such that

Dcris(T) = O ⋅ v1 ⊕O ⋅ v′ .
By (c), we have

Dcris(T) = O ⋅ φ(v1) + pk−1φ(Dcris(T)).
Combing the last two equations gives

(3.1) Dcris(T) = O ⋅ φ(v1)⊕O ⋅ pk−1φ(v′).
Let D be the O-lattice generated by Â− v1 and v2. Note that (3.1) implies that

(3.2) v′ ∈ D +O ⋅ pk−1φ(v′).
As v2 = φ(v1) and

φ2 −
ap

pk−1 φ +
ε(p)
pk−1 = 0

on Dcris(T), we have pk−1φ(v2) = apv2 − ε(p)v1. In particular, this implies that
pk−1φ(D) ⊂ D. Hence, wemay iterate the inclusion (3.2) to deduce that

v′ ∈ D +O ⋅ (pk−1φ)n(v′)
for all n ≥ 0. However, as f is non-ordinary at p, pk−1φ is an O-operator on Dcris(T)
with strictly positive slope. _is implies that (pk−1φ)n → 0 as n → ∞, which forces
that v′ ∈ D. Hence, D = Dcris(T), as required.

We ûx an O-basis v1 , v2 of Dcris(T), as given by Lemma 3.1. Since Dcris(T) =
N(T)/πN(T), this basis can be li�ed to a basis n1 , n2 of N(T) as an A+

Qp
-module.

_ere is a change of basis matrix M ∈ M2×2(B+rig,Qp
) such that

(3.3) (n1 n2) = (v1 v2)M
and M ≡ I2 mod π, where I2 is the 2 × 2 identity matrix. We write

v i = vi ⋅ tk− j−1e−k+ j+1 , n i = ni ⋅ πk− j−1e−k+ j+1 ,

v f , i = vi ⋅ tk−1e1−k , n f , i = ni ⋅ πk−1e1−k

for the corresponding bases of Dcris(T), N(T), Dcris(Tf ), and N(Tf ) respectively.
Here er denotes a basis of the TatemotiveO(χr) for r ∈ Z. By [Ber04, proof of Propo-
sition V.2.3] and [Lei15, Proposition 4.2], we can choose our bases so that

(3.4) M ≡ I2 mod πk−1
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and that thematrices of φ with respect to v1, f , v2, f and n1, f , n2, f are given by

( 0 −ε(p)
pk−1 ap

) and ( 0 −ε(p)
(δq)k−1 ap

) ,

respectively, where δ = p/(q − πp−1) ∈ (A+
Qp

)×. _en the matrices of φ with respect
to v1 , v2 and n1 , n2 are given by

A =
⎛
⎜
⎝

0 − ε(p)pk−1

1 ap
pk−1

⎞
⎟
⎠

and P =
⎛
⎜
⎝

0 − ε(p)qk−1

δk−1 ap
qk−1

⎞
⎟
⎠
.

Deûnition 3.2 We deûne the logarithmic matrix Mlog (with respect to the chosen
bases) to beM−1((1 + π)Aφ(M)).

_eorem 3.3 Let n1 , n2 be the basis of N(T) chosen above. _en (1 + π)φ(n1) and
(1 + π)φ(n2) form a Λ-basis of (φ∗N(T))ψ=0.

Proof Let γ ∈ Γ be a topological generator. _en (3.3) tells us that

(γ ⋅ n1 γ ⋅ n2) = (v1 v2) γ(M).

_is gives the equation

(γ ⋅ n1 γ ⋅ n2) = (n1 n2)M−1 ⋅ γ(M).

Hence, for both i = 1, 2, we have (1 − γ)ni ∈ πk−1N(T) thanks to (3.4). As we assume
that k ≥ 3, we have, in particular,

(1 − γ)ni ∈ π2N(T),

which is the condition required in _eorem 2.52. _erefore, our result follows.

Recall from [LLZ10, Remark 3.4] that for all z ∈ N(T)ψ=1, we have (1 − φ)z ∈
(φ∗N(T))ψ=0. _e latter is free of rank 2 over Λ,with basis (1+π)φ(n1), (1+π)φ(n2)
as given by _eorem 3.3. _is allows us to deûne the Coleman maps (again, with
respect to our chosen bases) as follows.

Deûnition 3.4 For i ∈ {1, 2},we deûne theΛ-homomorphismsColi ∶N(T)ψ=1 → Λ
given by the relation

(1 − φ)z =
2

∑
i=1
Coli(z) ⋅ (1 + π)φ(ni) = (v1 v2) ⋅Mlog ⋅ (

Col1(z)
Col2(z)

) .

Let h1
T ∶N(T)ψ=1 → H1

Iw(Qp(µp∞),T) be the Λ-isomorphism given by _eo-
rem 2.6. By an abuse of notation, we shall write Col1 , Col2 for the compositions
Col1 ○(h1

T)−1 and Col2 ○(h1
T)−1 as well.

2_is is the only place where we use the assumption that k ≥ 3.
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3.2 A Finite Projection of the Coleman Maps

Deûnition 3.5 For each n ≥ 1, we deûne Hn = φn−1(P−1) ⋅ ⋅ ⋅φ(P−1) and Hn =
M−1((1 + π)Hn).

Remark 3.6 Note that Hn ∈ A+
Qp
, andHn ∈ Λ; and H1 = H1 = 1.

Lemma 3.7 We have the congruence

Mlog ≡ An ⋅Hn mod ω̃n−1,k−2(X)H.

Proof From (3.3), we have the relation MP = Aφ(M), which we can rewrite as
M = Aφ(M)P−1. On iteration, we have

M = An−1φn−1(M)φn−2(P−1) ⋅ ⋅ ⋅φ(P−1)P−1 .

By (3.4), we have φn−1(M) = 1 mod φn−1(πk−1), so this implies that

M ≡ An−1φn−2(P−1) ⋅ ⋅ ⋅φ(P−1)P−1 mod φn−1(πk−1).
_is implies that

φ(M) ≡ An−1 ⋅Hn mod φn(πk−1).
Hence, we have the result by (2.2).

Lemma 3.8 For all n ≥ 1 and z ∈ N(T)ψ=1, (1 ⊗ φ−n) ○ (1 − φ)z is congruent to an
element in Λn ,k−2 ⊗Dcris(T) modulo ω̃n−1,k−2(X)H ⊗Dcris(T).

Proof By Lemma 3.7 and the equation in Deûnition 3.4, we have the congruence

(1 − φ)z ≡ (v1 v2) ⋅ An ⋅Hn ⋅ (
Col1(z)
Col2(z)

) mod ω̃n−1,k−2(X)H ⊗Dcris(T).

If we apply (1⊗ φ−n) to both sides, we obtain

(1⊗ φ−n) ○ (1 − φ)z ≡ (v1 v2) ⋅Hn ⋅ (
Col1(z)
Col2(z)

) mod ω̃n−1,k−2(X)H⊗Dcris(T).

As Hn , Col1(z) and Col2(z) are all deûned over Λ, we see that (1 ⊗ φ−n) ○ (1 − φ)z
is indeed congruent to an element in Λn ,p−2 ⊗Dcris(T).

_is allows us to give the following deûnition.

Deûnition 3.9 For n ≥ 1, deûne

Coln ∶H1
Iw(Qp(µp∞),T)Ð→ Λn ,k−2 ⊗Dcris(T)

z z→ (1⊗ φ−n) ○ (1 − φ) ○ (h1
T)−1(z) mod ω̃n−1,k−2(X).

We recall that h1
T is an isomorphism by _eorem 2.6. _erefore, Lemma 3.8 tells

us that themap Coln is well deûned.
For an integer m, we deûne the twisting map

Twm ∶= Tw−m ⊗ t−mem ∶H ⊗Dcris(T)Ð→H ⊗Dcris(T(m)).
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Consider the twisting map Twk− j−1∶ σ ↦ χk− j−1(σ)σ on Λ. Since k − j − 1 ≤ k − 1,
Twk− j−1(ω̃n−1,k−2(X)) is divisible byωn−1(X). Hence,Twk− j−1 induces anaturalmap
Λn ,k−2 → Λn . _erefore, we can deûne

ColT ,n ∶H1
Iw(Qp(µp∞), T)Ð→ Λn ⊗Dcris(T)

z z→ Tw−k+ j+1 ○Coln(z ⋅ ek− j−1) mod ωn−1(X),
on identifying H1

Iw(Qp(µp∞), T) ⋅ ek− j−1 with H1
Iw(Qp(µp∞),T).

Lemma 3.10 _e map ColT ,n deûnes a Λn-homomorphism from H1(Qp(µpn), T)
to Λn ⊗Dcris(T).

Proof We note that ColT ,n is a Λ-homomorphism, since both Coln and

x ↦ Twk− j−1 ○ (x ⋅ ek− j−1)
are Λ-linear. _e fact that ColT ,n factors through H1(Qp(µpn), T) follows from
the equation H1

Iw(Qp(µp∞), T)Γn = H1(Qp(µpn), T) (because of the vanishing of
H2

Iw(Qp(µp∞), T)).

We have the explicit formula

(3.5) ColT ,n(z) ≡ (v1 v2) ⋅ Twk−1− j(Hn ⋅ (
Col1(z ⋅ ek−1− j)
Col2(z ⋅ ek−1− j)

))

mod ωn−1(X)Λ ⊗Dcris(T),
by Lemma 3.7 and the expansion of 1 − φ as given in Deûnition 3.4.

We nowmodify the deûnition of ColT ,n to deûne amap that lands in Λn . For any
u ∈ Z×p , we deûne ColT ,n ,u ∶H1

Iw(Qp(µp∞), T)→ Λn to be the composition of ColT ,n
and the linear functional on Λn ⊗ Dcris(T) → Λn given by a ⋅ v1 + b ⋅ v2 ↦ a + ub.
More explicitly, (3.5) tells us that ColT ,n ,u is given by

(3.6) ColT ,n ,u(z) ≡ (1 u) ⋅ Twk−1− j(Hn ⋅ (
Col1(z ⋅ ek−1− j)
Col2(z ⋅ ek−1− j)

)) mod ωn−1(X)Λ.

Note that Lemma 3.10 tells us that ColT ,n ,u is Λn-linear.

3.3 Analysis of Bloch–Kato Subgroups Via Coleman Maps

If F is a ûnite extension of Qp , we write H1
f (F , T) ⊂ H1(F , T) for the usual Bloch–

Kato subgroup from [BK90] andH1
/ f (F , T)denotes thequotientH1(F , T)/H1

f (F , T).
_e goal of this section is to study H1

/ f (Qp(µpn), T) via themap ColT ,n ,u .
Let T∗ be the O-linear dual of T. For each n ≥ 1, we deûne the pairing

⟨ ⋅ , ⋅ ⟩n ∶H1(Qp(µpn),T) ×H1(Qp(µpn),T∗(1)) Ð→ Λn

(x , y)z→ ∑
σ∈Γ/Γn

[x , yσ]nσ ,

where [ ⋅ , ⋅ ]n is the standard cup-product pairing

H1(Qp(µpn),T) ×H1(Qp(µpn),T∗(1)) Ð→ O.
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On taking inverse limits, this induces a pairing

⟨ ⋅ , ⋅ ⟩∶H1
Iw(Qp(µp∞),T) ×H1

Iw(Qp(µp∞),T∗(1)) Ð→ Λ.

It is semi-linear over Λ with respect to the involution on Λ (which we denote by ι̃) in
the following sense:

⟨σx , y⟩ = σ⟨x , y⟩, ⟨x , σ y⟩ = σ ι̃⟨x , y⟩
We can extend the pairing ⟨ ⋅ , ⋅ ⟩ by semi-linearity to

(H ⊗O H1
Iw(Qp(µp∞),T)) × (H ⊗O H1

Iw(Qp(µp∞),T∗(1))) Ð→H,

which is again denoted by ⟨ ⋅ , ⋅ ⟩ by an abuse of notation.
Recall that in [PR94], Perrin-Riou deûned the big exponential map

ΩT∗(1),1∶ (B+rig,Qp
)ψ=0 ⊗Dcris(T∗(1))→H ⊗H1

Iw(Qp(µp∞),T∗(1)) .

By [LLZ11, proof of Proposition 4.8], for all z ∈ H1
Iw(Qp(µp∞),T),

(M−1 ⊗ 1)(1 − φ)z =
2

∑
i=1

⟨ z,ΩT∗(1),1((1 + π)⊗ v′i)⟩vi ,

where v′1 , v
′
2 is the dual basis ofDcris(T∗(1)) to v1 , v2 with respect to the natural pair-

ing
[ ⋅ , ⋅ ]∶Dcris(T) ×Dcris(T∗(1))Ð→ O.

_erefore,

Coln(z) =
2

∑
i=1

⟨ z,ΩT∗(1),1((1 + π)⊗ v′i)⟩φ−n(vi) mod ω̃n−1,k−2

=
2

∑
i=1

⟨ z,ΩT∗(1),1((1 + π)⊗ (pφ)n(v′i))⟩vi mod ω̃n−1,k−2

as the dual of φ−1 with respect to [ ⋅ , ⋅ ] is pφ. _is description allows us to make the
following choice of u to describe the kernel of ColT ,n ,u .

Proposition 3.11 _ere exists u ∈ Z×p such that ker(ColT ,n ,u) = H1
f (Qp(µpn), T).

Proof Write
v′ = (v′1 + uv′2) ⋅ t−k+ j+1ek− j−1 ∈ Dcris(T∗(1))

and let z ∈ H1(Qp(µpn), T). If θ is a Dirichlet character of conductor pm > 1,we have
the interpolation formula of Perrin–Riou [PR94, §3.2.3] (see also [Lei11, §3.2])

(3.7)
θ(ColT ,n ,u(z))

(−1)k− j−1(k − j − 1)! = ∑
σ∈Γ/Γm

θ−1(σ)
τ(θ)

[exp∗T ,m(zσ), pnφn−m(v′)] ,

where exp∗T ,m ∶H1(Qp(µpm), T) → Qp(µpm) ⊗ Fil0Dcris(T) is the Bloch–Kato dual
exponential map and τ(θ) is the Gauss sum of θ. _ere is a similar formula when
θ is the trivial character on replacing φ−m by (1 − (φ−1)/p)(1 − φ)−1. We note that
here exp∗T ,m(z) is the shorthand for exp∗T ,m ○ corn/m(z), where corn/m denotes the
corestriction map H1(Qp(µpn), T) → H1(Q(µpm), T). Recall that exp∗T ,n factors
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through H1
/ f (Qp(µpn), T). _erefore, we see that H1

f (Qp(µpn), T) is contained in
ker(ColT ,n ,u).

We choose u so that φn−m(v′), 1 ≤ m ≤ n and φn(1 − (φ−1)/p)(1 − φ)−1(v′)
are not contained inside Fil0Dcris(V). We note that such u exists, since all maps are
surjective onDcris(V) and Fil0Dcris(V) is of dimension one. Let v′′ be anyO-basis of
Dcris(T)/Fil0Dcris(T). In particular, for each m ≥ 1, there exists a non-zero constant
cm ∈ O such that φn−m(v′) ≡ cmv′′ and φn(1 − φ−1

p )(1 − φ)−1(v′) ≡ c0v′′ modulo
Fil0Dcris(T).

Suppose that ColT ,n ,u(z) = 0. From (3.7), we deduce that

∑
σ∈Γ/Γn

θ−1(σ)[exp∗T ,n(zσ), v′′] = 0

for all characters θ on Γ/Γn . By the independence of the characters, this implies that
[exp∗T ,n(zσ), v′′] = 0 for all σ . In particular, z is contained in the kernel of exp∗T ,n ,
which is H1

f (Qp(µpn), T).

Corollary 3.12 For any u ∈ Z×p that satisûes the condition of Proposition 3.11,ColT ,n ,u
induces an injection of Λn-modules, H1

/ f (Qp(µpn), T)↪ Λn , whose cokernel is ûnite.

Proof _e injectivity follows from Proposition 3.11. By [BK90, _eorem 4.1],
H1
f (Qp(µpn),V) is isomorphic to Dcris(V)/Fil0Dcris(V) ⊗Zp Qp(µpn). Hence, by

dualityH1
/ f (Qp(µpn),V) is isomorphic to Fil0Dcris(V)⊗Zp Qp(µpn). _erefore, the

ûniteness of the cokernel follows from the fact that the two sides have the same Zp-
rank.

We remark that our map ColT ,n ,u does depend on the choice of u, but it does not
aòect our calculations later; see the proof of Proposition 4.11.

4 Results on p-adic Valuations

4.1 Review of Kobayashi Rank

Given anO-module N , we will write len(N) for theO-length of N . We ûx a family of
primitive pn-th root of unity ζpn and write єn = ζpn − 1.

Deûnition 4.1 Let N = (Nn) be an inverse system of ûnitely generated O-modules
with transition maps πn ∶Nn → Nn−1. If πn has ûnite kernel and cokernel, the Koba-
yashi rank ∇Nn is deûned as

∇Nn ∶= len(ker πn) − len(coker πn) + rankONn−1 .

If L is an O[[X]]-module, we deûne ∇nL to be ∇(L/ωn(X)L), with the connecting
map given by the natural projection L/ωn(X)L → L/ωn−1(X)L, if its kernel and cok-
ernel are ûnite.

Lemma 4.2 Let F ∈ O[[X]] be a non-zero element. Let N be the inverse limit deûned
by Nn = O[[X]]/(F ,ωn), where the the connecting maps are the natural projections.
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(i) Suppose that F(єn) /= 0; then ∇Nn is deûned and is equal to ordєn F(єn).
(ii) When n is suõciently large, ∇Nn is deûned. Furthermore,

∇Nn = e × ordєn F(єn) = eλ(F) + (pn − pn−1)µ(F),

where e is the ramiûcation index of E/Qp and λ(F), µ(F) are the Iwasawa in-
variants as deûned in §2.3.

(iii) If L is a ûnitely generated torsion O[[X]]-module, then ∇nL is deûned for n ≫ 0
and its value is given by

λ(L) + (pn − pn−1)µ(L),

where λ(L) and µ(L) are the λ- and µ-invariants of a generator of the character-
istic ideal of L.

Proof _is follows from the same proof as [Kob03, Lemma 10.5].

We write pr for the size of the residue ûeld of E. _e following lemma allows us to
relate the growth in the size of a tower of ûnite O-modules and Kobayashi ranks.

Lemma 4.3 Suppose that N = (Nn) is an inverse limit of ûnite O-modules such that
∣Nn ∣ = psn for some integer sn ∈ rZ for all n ≥ 1. _en r∇Nn = sn − sn−1.

Proof Since Nn−1 is ûnite, we have

∇Nn = len(ker πn) − len(coker πn)
= ( len(Nn) − len(Im πn)) − ( len(Nn−1) − len(Im πn))
= len(Nn) − len(Nn−1).

In general, if L is a ûnite O-module, then ∣L∣ = prlen(L). Hence the result.

Finally, we prove a lemma on p-adic valuations that will be needed later.

Lemma 4.4 Let F ∈ O[[X]] be non-zero. _en for all suõciently large integers n we
have

ordp F(єn) = ordp M(F)(єn+1).

Moreover, for n ≫ 0 we also have

ordp F(єn) = ordp Tw(F)(єn).

Proof We can writeM(F) = (1 + π)φ(G) for some G ∈ A+
Qp

. By Proposition 2.2, F
andG have the same Iwasawa invariants, so ordp F(єn) = ordp G(єn) for n ≫ 0. _is
implies the ûrst part of the lemma, since (1+π)φ(G)(єn+1) = ζpn+1G(єn). _e second
part of the lemma follows from the fact that Tw preserves µ- and λ-invariants.
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4.2 Calculations on Evaluation Matrices

From now on, we will write v = ordp(ap), where ap is the p-th Fourier coeõcient
of f . Following [Spr13, §4.1], given any 2 × 2 matrix ϕ = ( a b

c d ) deûned over Qp , we
write

ordp(ϕ) = (ordp(a) ordp(b)
ordp(c) ordp(d)

) .

Lemma 4.5 Let 1 ≤ i ≤ n − 2; then

ordp(φ i(P−1)(єn)) = (
v 0

k−1
pn−i−1 ∞) .

Proof Recall that

P =
⎛
⎜
⎝

0 − ε(p)qk−1

δk−1 ap
qk−1

⎞
⎟
⎠
,

so its inverse is given by

P−1 =
⎛
⎜
⎝

ap
δk−1 ε(p)

1
δk−1

− qk−1

ε(p) 0

⎞
⎟
⎠
.

_erefore, our result follows from the fact that δ ∈ Z×p , ε(p) ∈ O× and φ i(q) is equal
to the pi+1-cyclotomic polynomial, so φ i(q)(єn) = (ζpn−i−1 − 1)/(ζpn−i − 1) whose
p-adic valuation is 1/pn−i−1.

Proposition 4.6 Assume that 2v > k−1
p . For all n ≥ 1,

ordp(Hn(єn)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
v +∑

n−1
2

i=1
k−1
p2i−1 ∑

n−1
2

i=1
k−1
p2i

∞ ∞
⎞
⎠

if n is odd,

⎛
⎝
∑

n
2
i=1

k−1
p2i−1 v +∑

n
2 −1
i=1

k−1
p2i

∞ ∞
⎞
⎠

if n is even.

Proof By Lemma 4.5, we have

ordp(Hn(єn)) = ( v 0
∞ ∞)(

v 0
k−1
p ∞) ⋅ ⋅ ⋅(

v 0
k−1
pn−1 ∞) .

In particular,

(4.1) ordp(Hn+1(єn+1)) = ordp(Hn(єn)) (
v 0

k−1
pn ∞) .

_erefore,

ordp(H1(є1)) = ( v 0
∞ ∞) and ordp(H2(є2)) = (

k−1
p v
∞ ∞) ,

since 2v > k−1
p by our assumption.
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Suppose that

ordp(H2ℓ−1(є2ℓ−1)) = (v +∑
ℓ−1
i=1

k−1
p2i ∑ℓ−1

i=1
k−1
p2i−1

∞ ∞ ) ,

ordp(H2ℓ(є2ℓ)) = (∑
ℓ
i=1

k−1
p2i−1 v +∑ℓ−1

i=1
k−1
p2i

∞ ∞ )

for some integer ℓ ≥ 1. By (4.1), we have ûrst of all

ordp(H2ℓ+1(є2ℓ+1)) = (v +∑
ℓ
i=1

k−1
p2i ∑ℓ

i=1
k−1
p2i−1

∞ ∞ ) ,

because∑ℓ
i=1

k−1
p2i < ∑ℓ

i=1
k−1
p2i−1 . On applying (4.1) again, we have

ordp(H2ℓ+2(є2ℓ+2)) = (∑
ℓ+1
i=1

k−1
p2i−1 v +∑ℓ

i=1
k−1
p2i

∞ ∞ )

thanks to our assumption that 2v > k−1
p , which implies that

2v +
ℓ
∑
i=1

k − 1
p2i >

ℓ+1

∑
i=1

k − 1
p2i−1 .

_erefore, our result follows by induction.

For i = 1, 2, we ûx two elements F1 , F2 ∈ O[[X]] with µ i and λ i being its µ- and
λ-invariants.

Corollary 4.7 Under the condition that 2v > k−1
p , for n ≫ 0 we have the formulae

ordєn((Hn+1)1,1 ⋅ F1(єn)) =
⎧⎪⎪⎨⎪⎪⎩

λ1 + (pn − pn−1)( µ1
e + v +∑

n−1
2

i=1
k−1
p2i−1 ) n odd,

λ1 + (pn − pn−1)( µ1
e +∑

n
2
i=1

k−1
p2i−1 ) n even,

ordєn((Hn+1)1,2 ⋅ F2(єn)) =
⎧⎪⎪⎨⎪⎪⎩

λ2 + (pn − pn−1)( µ2
e +∑

n−1
2

i=1
k−1
p2i ) n odd,

λ2 + (pn − pn−1)( µ2
e + v +∑

n
2 −1
i=1

k−1
p2i ) n even.

Proof By Lemma 4.4, ordp Hn+1(єn) = ordp Hn(єn). Hence, our result follows by
combining Proposition 4.6 with Lemma 4.2(ii).

Corollary 4.8 Suppose that 2v > k−1
p . For n ≫ 0 and n odd, we have

ordєn((Hn+1)1,1 ⋅ F1(єn)) < ordєn((Hn+1)1,2 ⋅ F2(єn)) if µ1

e
+ v + k − 1

p + 1
≤ µ2

e
,

ordєn((Hn+1)1,1 ⋅ F1(єn)) > ordєn((Hn+1)1,2 ⋅ F2)(єn)) if µ1

e
+ v + k − 1

p + 1
> µ2

e
.
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For n ≫ 0 and n even, we have

ordєn((Hn+1)1,1 ⋅ F1(єn)) < ordєn((Hn+1)1,2 ⋅ F2(єn)) if µ1

e
< µ2

e
+ v + k − 1

p + 1
,

ordєn((Hn+1)1,1 ⋅ F1(єn)) > ordєn((Hn+1)1,2 ⋅ F2(єn)) if µ1

e
≥ µ2

e
+ v + k − 1

p + 1
.

Proof Note that
n−1
2

∑
i=1

k − 1
p2i−1 −

n−1
2

∑
i=1

k − 1
p2i > 0 and

n
2

∑
i=1

k − 1
p2i−1 −

n
2 −1

∑
i=1

k − 1
p2i > 0

and that both sequences are strictly increasing and tend to k−1
p+1 as n →∞. Hence, we

have the result.

4.3 Some Global Iwasawa Modules

For n ≥ 0 let us write Kn = Q(µpn).

Deûnition 4.9 (cf. [Kat04, §12.2]) For m ≥ 0, we deûne

Hm(T) ∶= lim←Ð
n

Hm
ét (Spec OKn [1/p], j∗T) ,

where the inverse limit is respect to the corestriction maps, and j is the inclusion map
Spec Kn ↪ Spec OKn [1/p].

By [Kat04, 12.4(3)], themodulesHm(T) are ûnitely-generated overΛ, and are zero
unless m ∈ {1, 2}; and H1(T) is free of rank 1 over Λ. We ûx an element z ∈ H1(T)
so that H1(T) = Λ ⋅ z. Tensoring with the basis vector ek−1− j of O(k − 1 − j) gives a
bijection

H1(T) ≅ H1(T),
and (in a slight abuse of notation) we will write Coli(z) for the image of z ⋅ ek−1− j
under Coli composed with the localization map H1(T)→ H1

Iw(Qp(µp∞),T).

Deûnition 4.10 For i = 1, 2 and η a Dirichlet character modulo p. Let µηi be the
µ-invariant of Coli(z)η . For each n ≥ 1, we deûne an integer τ(n, η) ∈ {1, 2} by

⎧⎪⎪⎨⎪⎪⎩

1 if µη
1
e + v + k−1

p+1 ≤
µη

2
e and n odd or µη

1
e < µη

2
e + v + k−1

p+1 and n even,
2 otherwise.

Furthermore, we write q∗n = ordєn((Hn+1)1,τ(n ,η)(єn)).

Note in particular that q∗n is a sum of some powers of p, together with possibly v,
as given by Proposition 4.6. Furthermore, Corollary 4.8 tells us that

(4.2) ordєn(
2

∑
i=1

(Hn+1)1, i ⋅Coli(z)η(єn)) = q∗n + ordєn Colτ(n ,η)(z)η(єn).
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4.4 Analysis of Some Local Iwasawa Modules

For n ≥ 1, we deûne

Xloc(Q(µpn)) = coker(H1(T)Γn → H1
/ f (Qp(µpn), T)) ,

which gives an inverse limitwith the connectingmaps given by the corestrictionmaps.
Wewould like to study∇Xloc(Q(µpn+1))η for a ûxed Dirichlet character ηmodulo p.

Proposition 4.11 Suppose that Col1(z)η and Col2(z)η are non-zero. For n ≫ 0,
∇Xloc(Q(µpn+1))η is deûned, and its value is bounded above by

∇nX
η
loc ≤ eq

∗
n +∇n(O[[X]]/Colτ(n ,η)(z)η) .

Proof Recall from Corollary 3.12, we have the injection

ColT ,n+1,u ∶H1
/ f (Qp(µpn+1), T)↪ Λn+1 .

On taking Γn-coinvariants, the samemap (not ColT ,n ,u) induces an injection

ColT ,n+1,u ∶H1
/ f (Qp(µpn), T)↪ Λn ,

which admits the same description as (3.6). We write cokern+1 and cokern for the
cokernels of these two maps, respectively. _en we have the commutative diagram

0 ÐÐÐÐ→ H1
/ f (Qp(µpn+1), T)

ColT ,n+1,uÐÐÐÐÐ→ Λn+1 ÐÐÐÐ→ cokern+1 ÐÐÐÐ→ 0
×××Ö

×××Ö
π
×××Ö

0 ÐÐÐÐ→ H1
/ f (Qp(µpn), T)

ColT ,n+1,uÐÐÐÐÐ→ Λn ÐÐÐÐ→ cokern ÐÐÐÐ→ 0,

where the vertical maps are all natural projections. _is gives

0 ÐÐ→ Xloc(Qp(µpn+1)) ÐÐ→ Λn+1/(ColT ,n+1,u(z)) ÐÐ→ cokern+1 ÐÐ→ 0
×××Ö

×××Ö
×××Ö

π

0 ÐÐ→ Xloc(Qp(µpn)) ÐÐ→ Λn/(ColT ,n+1,u(z)) ÐÐ→ cokern ÐÐ→ 0.

Recall from Corollary 3.12 that cokern+1 is ûnite (in particular, cokern too). Hence,
on taking η-isotypic components,∇ cokerηn+1 (with respect to π) is deûned. In fact, it
is given by len(ker πη), which is ≥ 0.
Furthermore, recall that we assume Coli(z)η /= 0 for i = 1, 2. Proposition 4.6

tells us that the second row of Hn+1(єn) is 0. So, the formulae (3.6) and (4.2) im-
ply that ColT ,n+1,u(z)(єn) /= 0 when n ≫ 0. Hence, ∇(Λn+1/(ColT ,n+1,u(z)))η =
∇n(O[[X]]/ColT ,n+1,u(z)η) is deûned. Its value is given by

eq∗n +∇n(O[[X]]/Colτ(n ,η)(z)η) ,
thanks to Lemma 4.2.

_erefore, the fact that the Kobayashi rank ∇ respects short exact sequences
([Kob03, Lemma 10.4]) tells us that ∇Xloc(Qp(µpn+1))η is deûned and its value is
equal to

∇n(O[[X]]/ColT ,n+1,u(z)η) − len(ker πη).
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Hence, we have the result.

_is can be considered as a weakened version of the modesty proposition [Spr13,
Proposition 3.10]. In the k = 2 case, equality holds because the projection π turns out
to be an injection (see [Kob03, Lemma 10.7] and [Spr13, Lemma 4.12]).

5 Selmer Groups and Shafarevich–Tate Groups

5.1 Signed Selmer Groups

Let T∨ be the Pontryagin dual of T . As in [LLZ10], the Coleman maps allow us to
deûne the Selmer groups

Seli(T∨/Q(µp∞)) = ker(Sel(T∨/Q(µp∞))→
H1(Qp(µp∞), T∨)

ker(Coli)⊥
)

for i = 1, 2. Here Sel(T∨/Q(µp∞)) is the Bloch–Kato Selmer group from [BK90]. We
shall write X(Q(µpn)) = Sel(T∨/Q(µpn))∨ for n ≥ 1.

LetXi be the Pontryagin dual of Seli(T∨/Q(µp∞)). We subsequently assume that
for any Dirichlet character η that factors through Gal(Q(µp)/Q), both X

η
1 and X

η
2

are O[[X]]-torsion. Note that this is the case if either k ≥ 3 or ap = 0 by [LLZ10,
_eorem 6.5]. In particular, ∇nX

η
i are deûned for n ≫ 0 by Lemma 4.2(iii).

We have the Poitou–Tate exact sequence (see for example [LLZ10, (61)])

(5.1) H1(T)Ð→ ImColi Ð→ Xi Ð→ X0 Ð→ 0,

where X0 is H2(T) and can be realized as the Pontryagin dual of the zero Selmer
group Sel0(T∨/Q(µp∞)), which is deûned to be

ker(H1(Q(µp∞), T∨)Ð→∏
v

H1(Q(µp∞)v , T∨)) ,

where v runs through all places of Q(µp∞). Note that X0 is a torsion Λ-module by
[Kat04,_eorem 12.4] and hence∇nX

η
0 is deûned for n ≫ 0 by Lemma 4.2(iii). Note

that (5.1) gives the short exact sequence

0Ð→ ImColi
(Coli(z))

Ð→ Xi Ð→ X0 Ð→ 0.

Hence, our assumption that Xηi be torsion implies that Coli(z)η /= 0. In particular,
Proposition 4.11 applies.

Recall from [LLZ11, §5] that ImColηi is pseudo-isomorphic to

∏
m

(X − χ(γ)m + 1)O[[X]],

where m runs through some subset of {0, 1, . . . , k − 2} depending on i and η. Let us
write κ i(η) for the cardinality of this subset and write κ(n, η) = κτ(n ,η)(η). We have
the following generalization of [Spr13, Proposition 3.11].

Proposition 5.1 For i = 1, 2, η any Dirichlet character modulo p and n ≫ 0,

∇nX
η
i = ∇n(Λ/Coli(z))

η +∇nX
η
0 − eκ i(η).
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Proof _e following sequence

0→ ( Im(Coli)
Coli(z)

)
η
→ ( Λ

Coli(z)
)
η
→ O[[X]]
∏m(X − χ(γ)m + 1)O[[X]] → G → 0

is exact, where G is some ûnite subgroup. In particular, ∇nG = 0 for n ≫ 0. We can
work out theKobayashi rank of the second last term using Lemma 4.2(ii). Recall from
[Kob03, Lemma 10.4] that Kobayashi ranks respect exact sequences; therefore,

∇n(
Im(Coli)
Coli(z)

)
η
+ eκ i(η) = ∇n(

Λ
Coli(z)

)
η
.

Furthermore, from (5.1), we have the following exact sequence

0Ð→ Im(Coli)
Coli(z)

Ð→ Xi Ð→ X0 Ð→ 0,

which implies that

∇n(
Im(Coli)
Coli(z)

)
η
+∇nX

η
0 = ∇nX

η
i .

Combining the two equations gives our result.

Remark 5.2 Let µη0 be the µ-invariant of Xη0 . For i = 1, 2, let µ̃ηi be the µ-invariant
ofXηi . _en Proposition 5.1 implies that µ̃ηi = µηi −µη0 . In particular, µη1 −µη2 = µ̃η1 − µ̃η2 .
_erefore, we can replace µη1 and µη2 by µ̃η1 and µ̃η2 , respectively in Deûnition 4.10. In
other words, we can deûne τ(n, η) using the µ-invariants of the dual Selmer groups
Xi , instead of Coli(z).

Corollary 5.3 For n ≫ 0, ∇X(Q(µpn+1))η is deûned. Furthermore, its value is
bounded above by

eq∗n +∇nX
η
τ(n ,η) + eκ(n, η).

Proof Let

Y(Q(µpn)) = coker(H1(Gn ,S , T)Ð→ H1
/ f (Qp(µpn), T))

and X0(Q(µpn)) = Sel0(T∨/Q(µpn))∨. As a consequence of the Poitou–Tate exact
sequence, we have the short exact sequence

0Ð→ Y(Q(µpn))Ð→ X(Q(µpn))Ð→ X0(Q(µpn))Ð→ 0

(cf. [Kob03, (10.35)]). But Proposition 10.6 in op. cit. says that
● ∇Y(Q(µpn+1))η is deûned for n ≫ 0 and is equal to ∇Xloc(Q(µpn+1))η ;
● ∇X0(Q(µpn+1))η = ∇nX

η
0 .

_erefore,
∇X(Q(µpn+1))η = ∇Xloc(Q(µpn+1))η +∇nX

η
0 ,

and our result follows from Propositions 4.11 and 5.1.
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5.2 Bloch–Kato–Shafarevich–Tate Groups

Let L be a number ûeld. We recall that the Bloch–Kato–Shafarevich–Tate group of T∨

over L is deûned to be

(5.2) X(L, T∨) = Sel(T∨/L)
Sel(T∨/L)div

,

where (⋆)div denotes the maximal divisible subgroup of ⋆. (See e.g., [BK90, Re-
mark 5.15.2]). If f corresponds to an elliptic curve E and the p-primary part of the
classical Shafarevich–Tate group E is ûnite, then the two deûnitions of (p-primary)
Shafarevich–Tate groups agree.

Proposition 5.4 _ere exist integers nη0 , r
η
∞ ≥ 0 such that

corankOSel(T∨/Q(µpn+1))η = rη∞
for all n ≥ nη0 .

Proof By Corollary 5.3, ∇X(Q(µpn+1))η is deûned for n ≫ 0. In particular, the
kernel and cokernel of the connecting map

Sel(T∨/Q(µpn+1))∨ Ð→ Sel(T∨/Q(µpn))∨

are ûnite for n ≫ 0. In particular, Sel(T∨/Q(µpn+1)) and Sel(T∨/Q(µpn))must have
the same Zp-corank.

_is implies that Sel(T∨/Q(µpn+1))ηdiv ≅ (E/O)⊕rη∞ (as Zp-modules) for n ≫
0. Combined this with (5.2), we obtain the following short exact sequence of Zp-
modules

0Ð→ (E/O)⊕rη∞ Ð→ Sel(T∨/Q(µpn+1))η Ð→X(Q(µpn+1), T∨) η Ð→ 0.

_erefore, on taking Pontryagin duals, we deduce that

∇X(Q(µpn+1))η = rη∞ +∇X(Q(µpn+1), T∨)η .
From Corollary 5.3, we deduce that

∇X(Q(µpn+1), T∨) η ≤ eq∗n +∇nX
η
τ(n ,η) + eκ(n, η) − rη∞ .

_erefore, we obtain the following theorem on applying Lemma 4.3.

_eorem 5.5 Let #X(Q(µpn), T∨)η = psηn . For n ≫ 0,

sηn+1 − sηn ≤ r (eq∗n +∇nX
η
τ(n ,η) + eκ(n, η) − rη∞) ,

where r is the integer so that the residue ûeld of E has cardinality pr .

Using Lemma 4.2, we can rewrite this formula as

sηn+1 − sηn ≤ d(q∗n + λτ(n ,η) + (pn − pn−1)
µτ(n ,η)

e
+ κ(n, η) − rη∞

e
) ,

where d = [E ∶Qp].
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A Growth of Tamagawa Numbers Over Cyclotomic Extensions

We let T = Tf ( j) and T = Tf (k− 1) be the representations studied in themain part of
the article. In particular, we assume all the previous hypotheses on T and T are sat-
isûed throughout. Furthermore, we assume that the eigenvalues of φ on Dcris(T) are
not integral powers of p. For notational simplicity, wewill assume that the coeõcient
ûeld E is Qp throughout.

Recall the Perrin–Riou p-adic regulator

LT ∶H1
Iw(Qp(µp∞),T) Ð→H ⊗Dcris(T)

deûned byM−1 ○(1−φ)○(h1
T)−1,which is themap used to deûne the Colemanmaps

in Deûnition 3.4. We have the following interpolation formula.

Proposition A.1 Let n ≥ 1. For any z ∈ H1
Iw(Qp(µp∞),T), i ≥ 0 and a Dirichlet

character δ of conductor pn , we have

LT(z)(χ iδ) =
⎧⎪⎪⎨⎪⎪⎩

i!(1 − φ)(1 − p−1φ−1)−1(exp∗(z0,−i)) ⋅ t−i e i if n = 0,
i !pn

τ(δ)φ
n(exp∗(ẽδ ⋅ zn ,−i)) ⋅ t−i e i otherwise,

where τ(δ) is the Gauss sum of δ, zn ,−i is the projection of z in H1(Qp(µpn),T(−i))
and ẽδ is the element∑σ∈Gal(Qp(µpn )/Qp)

δ−1(σ)σ .

Proof _is is a slight reformulation of [LZ14,_eorem B.5], sincewe have the equa-
tion

φ(t−i e i) = p−i ⋅ t−i e i .

Corollary A.2 Let z ∈ H1
Iw(Qp ,T). _en LT(z)(χ iδ) = 0 if and only if ẽδ ⋅ zn ,−i ∈

ẽδ ⋅H1
f (Qp(µpn),T(−i)).

Proof _is is because our assumption on the eigenvalues of φ implies that
(1 − φ)(1 − p−1φ−1)−1 and φn are both invertible.

We write K = Q(µpn) and ∆K = Gal(K/Q). For each character δ on ∆K , we write
pnδ for its conductor. Let Kp be the completion of K at the unique place above p
(which may be identiûed with Qp(µpn)). We ûx a basis v for Fil0Dcris(T) and its
dual v′ in Dcris(T∗(1))/Fil0Dcris(T∗(1)). We have the deûnition of the Tamagawa
number as deûned by Bloch–Kato [BK90]:

Tam(T/K) = [H1
f (Kp , T) ∶OKp ⋅ v]Lp(T , 1),

where Lp(T , 1) is the Euler factor of the complex L-function Lp(T , 1) at p and we
identify OKvv with its image under the Bloch–Kato exponential map. We may de-
compose the Tamagawa number into isotypic components, namely

Tam(T/K) =∏
η

Tam(T/K)η ,

where theproduct runs through all theDirichlet charactersmodulo p andTam(T/K)η
is given by

[H1
f (Kp , T)η ∶(OKp ⋅ v)η]Lp(T(η), 1),
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which wemay identify with Tam(T(η)/K∆).

Lemma A.3 Let dK be the discriminant of K. _en we have the formula

Tam(T/K) = ∣dK ∣−1
p [OKp ⋅ v ∶H1

/ f (Kp , T)]Lp(T , 1),

where we identify H1
/ f (Kp , T) with its image under the Bloch–Kato dual exponential

map.

Proof _is follows from the commutative diagram

(Kp ⊗ Fil0Dcris(T))× (Kp ⊗ Dcris(T∗(1)
Fil0 Dcris(T∗(1))

) ÐÐÐÐ→ Kp

Õ×××
exp∗

×××Ö
exp

×××Ö
TrKp/Qp

(Qp ⊗H1
/ f (Kp , T)) ×(Qp ⊗H1

f (Kp , T∗(1))) ÐÐÐÐ→ Qp .

Take z to be a Λ-generator ofH1(T) as in themain part of the article. _is gives a
Λ-basis z ⋅ ek− j−1 ofH1(T). We shall write LT(z) for Tw−k+ j+1 ○LT(z ⋅ ek− j−1) and

ṽK = ⊗
δ∈∆̂K

(φnδ(1 − δ(p)φ)(1 − p−1 δ̄(p)φ−1)−1v) .

_eorem A.4 Suppose that LT(z)(δ) /= 0 for all δ ∈ ∆̂K . _en,

⊗
δ∈∆̂K

LT(z)(δ) ∼p
Tam(T/K)
Lp(T , 1)

∏
δ
[eδH1

/ f (Kp , T) ∶ eδzK]ṽK .

Here, we write a ∼p b if a and b have the same p-adic valuation.

Proof Let zK be the projection of z inH1(Kp , T). For each character of ∆K ,wewrite
eδ = ∑σ∈∆K

δ−1(σ)σ and let Kδ for the subûeld of K deûned by the kernel of δ. Our
assumption means that eδ ⋅ zK ∉ eδ ⋅H1

f (Qp(µpn), T) for all δ by Corollary A.2. Note
that∑ eδ = [K ∶Q]. On applying Proposition A.1, we deduce that

⊗
δ∈∆̂K

LT(z)(δ) ∼p∏
δ
[ eδ
[K ∶Q]O[∆K]v ∶ eδO[∆K]

pnδ

τ(δ) exp
∗(zK)] ṽK

∼p∏
δ

pnδ [ eδO[∆K]
τ(δ)
[K ∶Q] ∶ eδO[∆K]]

× [ eδO[∆K]v ∶ eδO[∆K] exp∗(zK)] ṽK .

Note that the factor (k − j − 1)! does not appear because of the Fontaine–Laòaille
condition. Now, [Gil79, Proposition 1] tells us that

[ eδO[∆K]
τ(δ)
[K ∶Q] ∶ eδO[∆K]] = [K ∶Kδ][ eδO[∆K]

τ(δ)
[Kδ ∶Q] ∶ eδO[∆K]] = 1.

_erefore, we deduce from the conductor-discriminant formula that

⊗
δ∈∆̂K

LT(z)(δ) ∼p ∣dK ∣−1
p ∏

δ
[ eδO[∆K]v ∶ eδO[∆K] exp∗(zK)] ṽK .

Combining this with Lemma A.3 gives us the result.
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Remark A.5 _ere is in fact a similar formulawithout assuming the non-vanishing
of Iarith(T)(δ). It would involve Perrin-Riou’s p-adic height. See [PR03, p.180].

Corollary A.6 Let η be a Dirichlet character modulo p. Under the conditions of
_eorem A.4, we have

∇nX
η
loc + b

η
n+1 − b

η
n = q∗n +∇n(Zp[[X]]/Colτ(n ,η)(z)η) + pn−1(p − 1)n(k − j − 1)

for n ≫ 0, where τ(n, η) is as deûned in Deûnition 4.10 and bηi denotes the p-adic
valuation of Tam(T/Q(µp i )η) for i = n, n + 1.

Proof Let ∆n+1 be the set of Dirichlet characters of conductor pn+1 whose ∆-com-
ponent is η. Its cardinality is given by pn−1(p − 1). By _eorem A.4, we have

⊗
δ∈∆n+1

LT(z)(δ) ∼p
Tam(T/Q(µpn+1))η

Tam(T/Q(µpn))η ∏
δ∈∆n+1

[ eδH1
/ f (Kp , T) ∶ eδzK]φn+1(v)⊗∣∆n+1 ∣ .

_is gives
(A.1)

⊗
δ∈∆n+1

φ−n−1 ○LT(z)(δ) ∼p
Tam(T/Q(µpn+1))η

Tam(T/Q(µpn))η ∏
δ∈∆n+1

[ eδH1
/ f (Kp , T) ∶ eδzK]v⊗∣∆n+1 ∣ .

Note that φ−n−1 ○Tw−k+ j+1 = p(n+1)(k− j−1)Tw−k+ j+1 ○ φ−n−1. _e terms appearing on
the le�-hand side are therefore simply p(n+1)(k− j−1)ColT ,n+1(z)(δ). _erefore, the
p-adic valuation of the le�-hand side of (A.1) is given by

pn−1(p − 1)(n + 1)(k − j − 1) + q∗n + ordєn Colτ(n ,η)(z)η(єn)

thanks to (4.2). Hence, we have the result.

_e proof of our Proposition 4.11 implies that the defect of our inequality in _e-
orem 5.5 is in fact given by the length of ker πη , where π is some projection map. We
see here that wemay in fact relate this defect to the Tamagawa numbers, namely,

lenZp ker π
η = bηn+1 − b

η
n − pn−1(p − 1)n(k − j − 1).

Let tηn be the integer sηn +bηn , which is the p-adic valuation of #X(Q(µpn), T∨)η ×
Tam(T/Q(µpn))η . _e Bloch–Kato conjecture predicts that this quantity should be
related to the leading coeõcient of the complex L function of T at 1. _eorem 5.5 tells
us that we have the equality

tηn+1 − tηn = q∗n +∇nX
η
τ(n ,η) + κ(n, η) − rη∞ + pn−1(p − 1)n(k − j − 1)

for n ≫ 0.
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