CONVOLUTIONS OF DISTRIBUTIONS WITH EXPONENTIAL AND SUBEXPONENTIAL TAILS: CORRIGENDUM

DAREN B. H. CLINE

(Received 13 February 1989)

The proof of Lemma 2.3(ii) as originally given is incomplete since we cannot recursively apply (2.1) with a fixed t_0 . This is corrected below. In addition, we are able to extend the result so the conclusion is that $H \in \mathscr{L}_{\alpha}$. The statement of Lemma 2.3(ii) is thus as follows:

Assume $\lambda_n \geq 0$ and $\sum_{n=0}^{\infty} \lambda_n(\overline{F}(0))^n < \infty$. If $F \in \mathscr{L}_{\alpha}$ and $H = \sum_{n=0}^{\infty} \lambda_n F^{*n}$, then $H \in \mathscr{L}_{\alpha}$.

PROOF. We may assume without loss that $\lambda_1 > 0$; the proof otherwise differs slightly. Following Embrecht and Goldie's (1980) proof of (2.1), we obtain by recursion, for $t \ge nt_0$,

$$\overline{F}^{*n}(t-u) \leq (1+\varepsilon)e^{\alpha u}\overline{F}^{*n}(t).$$

Hence, for $t \ge nt_0$,

$$\begin{aligned} \overline{H}(t-u) &\leq (1+\varepsilon)e^{\alpha u}\sum_{j=0}^{n}\lambda_{j}\overline{F}^{*j}(t) + \sum_{j=n+1}^{\infty}\lambda_{j}\overline{F}(0)^{j-1}\overline{F}(t) \\ &\leq (1+\varepsilon)\left(1 + \frac{\delta(n)}{\lambda_{1}\overline{F}(0)}\right)e^{\alpha u}\overline{H}(t), \end{aligned}$$

where

$$\delta(n) = \sum_{j=n+1}^{\infty} \lambda_j \overline{F}(0)^j.$$

Therefore,

$$\limsup_{t\to\infty}\frac{\overline{H}(t-u)}{\overline{H}(t)}\leq (1+\varepsilon)\left(1+\frac{\delta(n)}{\lambda_1\overline{F}(0)}\right)e^{\alpha u}.$$

Since both ε and *n* are arbitrary,

$$\limsup_{t\to\infty}\frac{\overline{H}(t-u)}{\overline{H}(t)}\leq e^{\alpha u}.$$

© 1990 Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

152

Corrigendum

If $\alpha = 0$, then it follows that $H \in \mathscr{L}_0$ since \overline{H} is nonincreasing. Assuming $\alpha > 0$, choose ε to satisfy $(1 - 2\varepsilon)e^{\alpha u} > 1$. Following the proof of Lemma 2.3(ii), we may find an increasing sequence t_n such that for $t \ge t_n$,

$$\overline{F}^{*n}(t-u) \geq (1-2\varepsilon)e^{\alpha u}\overline{F}^{*n}(t).$$

Then for $t \geq t_n$,

$$\overline{H}(t-u) \ge (1-2\varepsilon)e^{\alpha u} \sum_{j=0}^{n} \lambda_j \overline{F}^{*j}(t) + \sum_{j=n+1}^{\infty} \lambda_j \overline{F}^{*j}(t)$$
$$\ge \left((1-2\varepsilon)e^{\alpha u} - ((1-2\varepsilon)e^{\alpha u} - 1)\frac{\delta(n)}{\lambda_1 \overline{F}(0)}\right) \overline{H}(t).$$

Thus

$$\liminf_{t\to\infty}\frac{\overline{H}(t-u)}{\overline{H}(t)}\geq\left((1-2\varepsilon)e^{\alpha u}-((1-2\varepsilon)e^{\alpha u}-1)\frac{\delta(n)}{\lambda_1\overline{F}(0)}\right).$$

Again, since both ε and n are arbitrary,

$$\liminf_{t\to\infty}\frac{\overline{H}(t-u)}{\overline{H}(t)}\geq e^{\alpha u},$$

and this proves $H \in \mathscr{L}_{\alpha}$.

Acknowledgement

The author thanks Professor E. Omey for pointing out the incompleteness of the original proof.

References

Daren B. H. Cline (1987), 'Convolutions of distributions with exponential and subexponential tails,' J. Austral. Math. Soc. (Ser. A) 43, 347-365.

P. Embrechts and C. M. Goldie (1980), 'On closure and fatorization properties of subexponential and related distributions,' J. Austral. Math. Soc. (Ser. A) 43, 243–256.

Department of Statistics Texas A & M University College Station, Texas 77843-3143 U.S.A.