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Vojta’s inequality and rational and integral points of

bounded degree on curves

Aaron Levin

Abstract

Let C ⊂ C1 × C2 be a curve of type (d1, d2) in the product of the two curves C1 and C2.
Let ν be a positive integer. We prove that if a certain inequality involving d1, d2, ν, and
the genera of the curves C1, C2, and C is satisfied, then the set of points {P ∈ C(k̄) |
[k(P ) : k] � ν} is finite for any number field k. We prove a similar result for integral points
of bounded degree on C. These results are obtained as consequences of an inequality of
Vojta which generalizes the Roth–Wirsing theorem to curves.

1. Introduction

In [Voj92], Vojta proved the following theorem.

Theorem 1 (Vojta). Let C be a nonsingular curve defined over a number field k. Let X be a
regular model for C over the ring of integers of k. Let K be the canonical divisor of C, A an ample
divisor on C, and D an effective divisor on C without multiple components. Let S be a finite set of
places of k. Let ν be a positive integer and let ε > 0. Then

mS(D,P ) + hK(P ) � da(P ) + εhA(P ) +O(1) (1)

for all points P ∈ C(k̄) \ SuppD with [k(P ) : k] � ν.

Here hD is a logarithmic height associated to the divisor D, mS(D,P ) is a proximity function,
and da(P ) is the arithmetic discriminant of [Voj91], whose definition we recall below. We refer
the reader to [Lan83], [Voj87], and [Voj92] for definitions and properties of heights and proximity
functions.

The inequality (1) is a vast generalization of the theorems of Roth and Wirsing. In particular, it
implies Faltings’ theorem (Mordell’s conjecture). As a consequence of (1), Song and Tucker [ST01]
derived the following corollary.

Corollary 1 (Song, Tucker, Vojta). Let C and C ′ be nonsingular curves of genus g and g′,
respectively, defined over a number field k. Let φ : C → C ′ be a dominant k-morphism. If

g − 1 > (ν + g′ − 1) deg φ (2)

for some positive integer ν, then the set

{P ∈ C(k̄) | [k(P ) : k] � ν and k(φ(P )) = k(P )} (3)

is finite.

Vojta [Voj92] noted the case C ′ = P1 of the corollary. Note that the condition k(φ(P )) =
k(P ) in Corollary 1 precludes one from deducing a finiteness result for algebraic points on C
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with [k(P ) : k] � ν. Of course, this condition in the corollary is necessary (consider, for exam-
ple, ν = 2, C a hyperelliptic curve of genus g > 3, and φ : C → P1 with degφ = 2). If we are given
more than one dominant morphism of C to a curve where (2) holds, it is natural to try to prove
a finiteness result without the k(φ(P )) = k(P ) condition in (3). Clearly we need the maps to be
independent in some sense. More precisely, we assume that we are given a morphism φ of C into
a product of two curves such that φ is birational onto its image. In addition to rational points, we
study integral points on C.

Let S be a finite set of places of k and let Ok,S denote the ring of S-integers of k. Let D be an
effective divisor on C. If D �= 0, we call a set T ⊂ C(k̄) \ SuppD a set of (D,S)-integral points on
C if there exists an affine embedding C \ SuppD ⊂ Am such that every point P ∈ T has S-integral
coordinates, i.e. each coordinate of P in Am lies in the integral closure of Ok,S in k̄. If D = 0, then
we call any subset of C(k̄) a set of (D,S)-integral points. Our main theorem can now be stated as
follows.

Theorem 2. Let C, C1, and C2 be nonsingular curves of genus g, g1, and g2, respectively, all defined
over a number field k. Let S be a finite set of places of k. Let φ : C → C1 × C2 be a morphism
defined over k that is birational onto its image. Let π1 and π2 be the projections of C1 × C2 onto
the first and second factors, respectively. Suppose that π1 ◦ φ and π2 ◦ φ are dominant morphisms
and let d1 = deg π1 ◦ φ and d2 = deg π2 ◦ φ. Let D =

∑r
i=1 Pi be an effective divisor on C, defined

over k, with P1, . . . , Pr distinct points of C(k̄). If

2g − 2 + r > max{2(ν + g1 − 1)d1, 2(ν + g2 − 1)d2, (ν + 2g1 − 2)d1 + (ν + 2g2 − 2)d2} (4)

for some positive integer ν, then any set of (D,S)-integral points

T ⊂ {P ∈ C(k̄) | [k(P ) : k] � ν} (5)

is finite. In particular, if (4) is satisfied with r = 0, then the set

{P ∈ C(k̄) | [k(P ) : k] � ν}
is finite.

The invariants g, g1, g2, d1, and d2 of Theorem 2 are not unrelated. A classical inequality of
Castelnuovo [ACGH85, p. 366] states an upper bound on the genus g of C in terms of the other
invariants:

g � (d1 − 1)(d2 − 1) + d1g1 + d2g2. (6)

This places some restrictions on the applicability of Theorem 2. Nonetheless, the inequality (4) is
satisfied in a variety of interesting situations, some of which are discussed in the next section.

The main new tool in the proof of Theorem 2 is an inequality, given in Theorem 7, relating
the arithmetic discriminant on a model of C (over Ok) to the arithmetic discriminants on models
of C1 and C2. This inequality can be viewed as an arithmetic analog of Castelnuovo’s inequality
(6) (see the comments after Theorem 7). The proof of Theorem 2 is easily described as follows.
Combining the new inequality of Theorem 7 with an inequality of Song and Tucker bounding
the arithmetic discriminant in terms of certain height functions, one obtains an upper bound for
an arithmetic discriminant on C in terms of a height function on C, [k(P ) : k], g1, g2, d1, and d2.
Thus, in view of the left-hand side of Vojta’s inequality, if g and r are large enough compared to
ν, g1, g2, d1, and d2, then any set T of (D,S)-integral points as in (5) must be finite. A calculation
shows that g and r are large enough precisely when (4) holds, yielding Theorem 2.
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2. Some examples and corollaries

We first give two examples which show that the inequality (4) is sharp in the sense that Theorem 2
is false if ‘>’ is replaced by ‘�’ in (4).

Example 1. Let C be a nonsingular curve, defined over a number field k, of bidegree (d1, d2) on
C1 × C2 = P1 × P1 with d1 � d2 > 0. Let P,Q ∈ P1(k) be two points above which φ2 = π2|C is
unramified, and let D = P + Q. Over sufficiently large number fields k, there are infinitely many
k-rational (D,S)-integral points on P1. Pulling back these integral points by φ2, we obtain infinitely
many (φ∗2D,S)-integral points on C (of degree at most d2 = ν over k), where φ∗2D is a sum of
r = 2d2 distinct points. We have g = (d1 − 1)(d2 − 1) and we see that equality holds in (4).

Example 2. Let C1 × C2 = P1 × E, where E is an elliptic curve defined over a number field k. Let
d1 > d2+1 > 2. Let C be a nonsingular curve, defined over a number field k, of type (d1, d2) on P1×E
(i.e. deg π1|C = d1 and deg π2|C = d2). Then by the adjunction formula, g = g(C) = d1(d2 − 1) + 1.
Let ν = d2 and r = 0. Then a simple calculation shows that equality is achieved in (4), but the set
{P ∈ C(k̄) | [k(P ) : k] � ν} is infinite for sufficiently large k since C has a degree ν = d2 map down
to E.

Note that when C1 × C2 = P1 × P1, the inequality (4) simplifies to

2g − 2 + r > max{2(ν − 1)d1, 2(ν − 1)d2}.
As a curve of degree d � 2 in P2 can be mapped birationally onto a curve of bidegree (d− 1, d− 1)
in P1 × P1, we obtain the following corollary.

Corollary 2. Let C ⊂ P2 be a curve, defined over a number field k, of degree d � 2 and geometric
genus g. Let S be a finite set of places of k. Let D =

∑r
i=1 Pi be an effective divisor on C, defined

over k, with P1, . . . , Pr distinct points of C(k̄). If

2g − 2 + r > 2(ν − 1)(d − 1) (7)

for some positive integer ν, then any set of (D,S)-integral points

T ⊂ {P ∈ C(k̄) | [k(P ) : k] � ν}
is finite. In particular, if g − 1 > (ν − 1)(d − 1), then the set

{P ∈ C(k̄) | [k(P ) : k] � ν}
is finite.

By definition, the geometric genus of C is the genus of the normalization of C. For nonsingular
plane curves, a better theorem on rational points has been proven by Debarre and Klassen [DK94]
using Falting’s theorem on rational points on subvarieties of abelian varieties.

Theorem 3 (Debarre, Klassen). Let C ⊂ P2 be a nonsingular curve of degree d, defined over
a number field k, that does not admit a map of degree � d − 2 onto a genus one curve (this is
automatically satisfied if d � 7). Then the set

{P ∈ C(k̄) | [k(P ) : k] � d− 2}
is finite.

Recall that a curve is called hyperelliptic (respectively bielliptic) if it admits a map of degree two
onto a curve of geometric genus zero (respectively one). Harris and Silverman [HS91] have shown,
again using Falting’s theorem on subvarieties of abelian varieties, that curves possessing infinitely
many quadratic points are either hyperelliptic or bielliptic.
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Theorem 4 (Harris, Silverman). Let C be a nonsingular curve defined over a number field k. If C
is not hyperelliptic or bielliptic, then the set {P ∈ C(k̄) | [k(P ) : k] � 2} is finite.

A similar theorem is true for degree three rational points (see [AH91]), but not for degrees
four and higher (see [DF93]). For quadratic integral points, there is a result due to Corvaja and
Zannier [CZ04].

Theorem 5 (Corvaja, Zannier). Let C be a nonsingular curve defined over a number field k. Let
S be a finite set of places of k. Let D =

∑r
i=1 Pi be an effective divisor on C, defined over k, with

P1, . . . , Pr distinct points of C(k̄). Let T ⊂ {P ∈ C(k̄) | [k(P ) : k] � 2} be a set of (D,S)-integral
points on C. Then the following statements hold.

(a) If r > 4, then T is finite.

(b) If r > 3 and C is not hyperelliptic, then T is finite.

In addition, in the case C is hyperelliptic and r = 4 (where T may be infinite), Corvaja and
Zannier show how to parametrize all but finitely many of the quadratic integral points. The proof of
Theorem 5 in [CZ04] makes use of an appropriate version of the Schmidt subspace theorem [Sch91,
p. 178]. We now show that Corollary 2 implies a slight improvement to Theorem 5. Specifically, we
show that the inequality in part (b) can be improved to cover the case r = 3.

Theorem 6. Let C be a nonsingular curve defined over a number field k. Let S be a finite set of
places of k. Let D =

∑r
i=1 Pi be an effective divisor on C, defined over k, with P1, . . . , Pr distinct

points of C(k̄). Let T ⊂ {P ∈ C(k̄) | [k(P ) : k] � 2} be a set of (D,S)-integral points on C. Then
the following statements hold.

(a) If r > 4, then T is finite.

(b) If r > 2 and C is not hyperelliptic, then T is finite.

Proof. By Corollary 2, to prove statement (a) it suffices to show that any curve C of genus g has a
birational plane model of degree g + 2. This is true for g = 0, so suppose g > 0. Since any divisor
of degree 2g + 1 on C is very ample and nonspecial, we obtain an embedding of C as a degree
2g+ 1 curve in Pg+1. Projecting from the linear span of g− 1 general points of C, we obtain a map
φ : C → P2 birational onto its image with deg φ(C) = g + 2 (see [ACGH85, p. 109]).

Similarly, to prove statement (b) it suffices to show that if C has genus g and is not hyperelliptic,
then C has a birational plane model of degree g + 1. Since C is not hyperelliptic, the canonical
embedding realizes C as a curve of degree 2g − 2 in Pg−1. Projecting from the linear span of g − 3
general points of C, we obtain a plane curve of degree g + 1 birational to C.

Part (a) of Theorem 6 can also be obtained directly from Vojta’s inequality. As noted in [CZ04],
Vojta’s conjecture predicts that the inequality in part (b) can be improved to r > 0. This improved
inequality can be proved for certain classes of curves using Theorem 2 (of course, by Theorem 4,
only bielliptic curves are of interest here). For instance, Theorem 2 implies that if E is an elliptic
curve, one may take r > 0 in Theorem 6 for any nonsingular bielliptic curve C of type (a, 2), a > 3,
on P1 × E. The full ramifications of Theorem 2 in this direction remain to be determined.

3. Proofs of results

Let C be a nonsingular curve defined over a number field k. Let R denote the ring of integers
of k and let B = SpecR. Let π : X → B be a regular model for C over R. For every complex
embedding σ : k ↪→ C we have a canonical volume form on Cσ = C ×σ C and an associated
canonical Green’s function gσ. With this data one can define intersections of Arakelov divisors
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(see [Lan88]). Let P ∈ C(k̄) and let EP denote the horizontal prime divisor on X corresponding
to P (we also denote the curve on X corresponding to P by EP ). Let ωX/B denote the relative
dualizing sheaf, with its canonical Arakelov metric [Lan88, ch. 4]. We then define the arithmetic
discriminant da(P ) by

da(P ) =
EP .(ωX/B + EP )

[k(P ) : Q]
.

Of course, contrary to the notation, da(P ) depends on more data than just P . We can also give an
alternative formula for da(P ). Let L = k(P ). Then EP = SpecA, where A is an order of the number
field L. Let

WA/R = {b ∈ L | TrL/k(bA) ⊂ R}
be the Dedekind complementary module. It is a fractional ideal of A containing A. For a fractional
ideal a of A, we define the fractional ideal

a−1 = {x ∈ L | xa ⊂ A}.
In arbitrary orders, one may not necessarily have aa−1 = A. We now define the Dedekind different
(of A over R) as

DA/R = W−1
A/R.

This is an integral ideal of A. For a nice discussion of the relation between the different, discriminant,
and conductor of an order, we refer the reader to the article by Del Corso and Dvornicich [DD00].
Now define

dA/R =
log[A : DA/R]

[L : Q]
.

Let S∞ be the set of archimedean places of k. For v ∈ S∞, let

EP × Cv = {Pv,1, . . . , Pv,[L:k]}
be the set of points in Cv = C×Cv into which EP splits. By the Arakelov adjunction formula [Lan88,
Theorem 5.3], we have

da(P ) = dA/R +
1

[L : Q]

∑

v∈S∞

∑

i�=j

Nvλv(Pv,i, Pv,j), (8)

where Nv = [kv : Qv] and λv = 1
2gv (with gv normalized as in [Lan88]). We use that λv is a

Weil function for the diagonal ∆v in Cv ×Cv, i.e. if the Cartier divisor ∆v is locally represented by
a function f on the open set U , then there exists a continuous function α on U such that

λv(P ) = −log|f(P )| + α(P )

for all P ∈ U \ ∆v.

Theorem 7. Let C1, C2, and C3 be nonsingular curves defined over k and let X1, X2, and X3 be
regular models over R for the respective curves. Let ψ : X3 → X1 × X2 be a morphism that is
birational onto its image and let φ : C3 → C1 × C2 be the natural morphism induced by ψ. Let φ1

and φ2 denote φ composed with the projection maps of C1 × C2 onto the first and second factors,
respectively. Then for all P ∈ C3(k̄),

da(P ) � da(φ1(P )) + da(φ2(P )) +O(1). (9)

The inequality (9) can be viewed as a natural arithmetic analog of Castelnuovo’s inequality (6).
We identify the points P1 = φ1(P ), P2 = φ2(P ), and P (or the corresponding arithmetic curves
on X1, X2, and X3) with the curves C1, C2, and C3, respectively, of Castelnuovo’s inequality.
In view of the adjunction formula, it is natural to identify EP .(ωX/B + EP ), EP1 .(ωX/B + EP1),
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and EP2.(ωX/B + EP2) with 2g − 2, 2g1 − 2, and 2g2 − 2, respectively. Furthermore, [k(P ) : k(P1)]
and [k(P ) : k(P2)] correspond to d1 and d2, respectively, in Castelnuovo’s inequality. Multiplying
(9) by [k(P ) : Q] and identifying the error term O([k(P ) : Q]) with O(d1d2), under the above
correspondences (9) corresponds to the inequality

g � d1g1 + d2g2 − d1 − d2 + 1 +O(d1d2).

Replacing the term O(d1d2) by d1d2 gives exactly Castelnuovo’s inequality. Since EP , EP1 , and EP2

are not necessarily regular, a more precise analogy would involve a Castelnuovo-type inequality for
(not necessarily nonsingular) curves C, C1, C2, and their arithmetic genera.

Our strategy for proving Theorem 7 is to break up da into a finite and infinite part as in (8),
and then prove the inequality for each part separately. Since there is an O(1) term in (9), we can
clearly ignore the finite set Z of C(k̄) on which φ fails to be invertible. To prove the inequality for
the finite part dA/R of (8), we use the following lemma.

Lemma 1. Let R be the ring of integers of a number field k. Let A1 and A2 be R-orders of the
number fields L1 and L2, respectively (with some fixed embedding in k̄). Let L3 = L1L2 and let
A3 = A1A2. If A1, A2, and A3 are Gorenstein rings, then

dA3/R � dA1/R + dA2/R. (10)

Proof. As shown in [DD00], an R-order A is Gorenstein if and only if DA/R is an invertible ideal of
A (see [Bas63] for the many equivalent definitions of a Gorenstein ring). Let A′

i denote the integral
closure of Ai in Li for i = 1, 2, 3. For the Gorenstein rings A1, A2, and A3 we have the relations
(see [DD00, Proposition 3])

DAi/RA
′
i = CAiDA′

i/R, i = 1, 2, 3, (11)

where

CAi = {x ∈ A′
i | xA′

i ⊂ Ai}
is the conductor of Ai. For an invertible ideal a of A3 (see [DD00, Theorem 1]),

[A3 : a] = [A′
3 : aA′

3].

Now to prove the lemma, it suffices to show that

DA1/RDA2/RA
′
3 ⊂ DA3/RA

′
3.

Indeed, this inclusion gives

[A3 : DA3/R] = [A′
3 : DA3/RA

′
3] � [A′

3 : DA1/RDA2/RA
′
3]

which is equivalent to (10) as

[A′
3 : DA1/RDA2/RA

′
3] = [A′

3 : DA1/RA
′
3][A

′
3 : DA2/RA

′
3]

= [A′
1 : DA1/RA

′
1]

[L3:L1][A′
2 : DA2/RA

′
2]

[L3:L2]

= [A1 : DA1/R][L3:L1][A2 : DA2/R][L3:L2].

We now show that DA1/RDA2/RA
′
3 ⊂ DA3/RA

′
3. By (11),

DA1/RDA2/RA
′
3 = CA1DA′

1/RCA2DA′
2/RA

′
3

and

DA3/RA
′
3 = CA3DA′

3/R = CA3DA′
3/A′

1
DA′

1/R.

Therefore, we need to show that CA1CA2DA′
2/RA

′
3 ⊂ CA3DA′

3/A′
1
. It is a standard fact that DA′

2/R is
generated by elements of the form f ′(α), where α ∈ A′

2, k(α) = L2, and f is the minimal polynomial
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of α over k. Let g be the minimal polynomial of α over L1. Note that L1(α) = L3 and that g′(α)
divides f ′(α) in A′

3. It is easily shown that g′(α)A′
3 = CA′

1[α]DA′
3/A′

1
. We have

CA1CA2CA′
1[α] ⊂ CA3

since
CA1CA2CA′

1[α]A
′
3 ⊂ CA1CA2A

′
1[α] ⊂ CA1CA2A

′
1A

′
2 ⊂ A1A2 = A3.

Therefore,
CA1CA2f

′(α) ⊂ CA1CA2CA′
1[α]DA′

3/A′
1
⊂ CA3DA′

3/A′
1
.

As DA′
2/R was generated by the f ′(α), we obtain CA1CA2DA′

2/RA
′
3 ⊂ CA3DA′

3/A′
1

as desired.

Let ψ1 and ψ2 denote ψ composed with the projection maps of X1 × X2 onto the first and
second factors, respectively. Let EP = E3 = SpecA3 be the prime horizontal divisor corresponding
to P ∈ C(k̄) \ Z, and let ψ1(EP ) = E1 = SpecA1 and ψ2(EP ) = E2 = SpecA2. Note that A1

and A2 are naturally subrings of A3 (via ψ1 and ψ2) and A3 = A1A2. Indeed, the closed immersion
ψ : EP → X1×X2 factors through E1×E2, and therefore the natural map A1⊗A2 → A3 is surjective.
Since X1, X2, and X3 were assumed regular, EP , E1, and E2 are locally complete intersections (they
are Cartier divisors). This implies in particular that A1, A2, and A3 are Gorenstein rings. Therefore,
using Lemma 1, we have proved the finite part of the inequality (9).

We now consider the archimedean part of (9). With notation as above, let L1, L2, and L3 be the
quotient fields of A1, A2, and A3. Let v ∈ S∞. Let Eiv be the set of points of Ei × Cv, i = 1, 2, 3.
Let λ∆1 , λ∆2 , and λ∆3 denote the Weil functions of (8) for C1v, C2v , and C3v, respectively, where
Civ = Ci × Cv and ∆i is the diagonal of Civ × Civ. It suffices to prove the following lemma.

Lemma 2. In the notation above,

1
[L3 : Q]

∑

P,Q∈E3v
P �=Q

λ∆3(P,Q) � 1
[L1 : Q]

∑

P,Q∈E1v
P �=Q

λ∆1(P,Q) +
1

[L2 : Q]

∑

P,Q∈E2v
P �=Q

λ∆2(P,Q) +O(1).

The lemma will follow easily from the following ‘distribution relation’ of Silverman [Sil87, Propo-
sition 6.2(b)] (proved by Silverman in greater generality).

Theorem 8 (Silverman). Let C and C ′ be nonsingular complex curves. Let π : C → C ′ be a
morphism. Let ∆ and ∆′ denote the diagonals of C ×C and C ′ ×C ′, respectively. Let λ∆ and λ∆′

be Weil functions associated to ∆ and ∆′ (under the usual complex absolute value). Then for any
P ∈ C and q ∈ C ′ with π(P ) �= q,

λ∆′(π(P ), q) =
∑

Q∈π−1(q)

eπ(Q/q)λ∆(P,Q) +O(1)

where eπ(Q/q) is the ramification index of π at Q.

Proof of Lemma 2. Let φ, φ1, and φ2 be the maps of Theorem 7 base extended to C3v. For all but
finitely many E3v, if P,Q ∈ E3v, P �= Q, then either φ1(P ) �= φ1(Q) or φ2(P ) �= φ2(Q). Note
also that the maps E3v → E1v and E3v → E2v are [L3 : L1]-to-one and [L3 : L2]-to-one maps,
respectively. Thus, we obtain

∑

P,Q∈E3v
P �=Q

λ∆3(P,Q) �
∑

P,Q∈E3v

φ1(P )�=φ1(Q)

λ∆3(P,Q) +
∑

P,Q∈E3v

φ2(P )�=φ2(Q)

λ∆3(P,Q) +O(1)

�
∑

P∈E3v

∑

Q∈φ−1
1 (E1v)

φ1(P )�=φ1(Q)

λ∆3(P,Q) +
∑

P∈E3v

∑

Q∈φ−1
2 (E2v)

φ2(P )�=φ2(Q)

λ∆3(P,Q) +O(1)
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�
∑

P∈E3v

∑

q∈E1v

φ1(P )�=q

λ∆1(φ1(P ), q) +
∑

P∈E3v

∑

q∈E2v

φ2(P )�=q

λ∆2(φ2(P ), q) +O(1)

� [L3 : L1]
∑

p,q∈E1v
p �=q

λ∆1(p, q) + [L3 : L2]
∑

p,q∈E2v
p �=q

λ∆2(p, q) +O(1),

where the implied constants in the O(1) terms are independent of E1v, E2v , and E3v. Dividing
everything by [L3 : Q] gives the lemma.

Theorem 7 now follows from Lemmas 1 and 2. We now prove Theorem 2 from the introduction.
We need the following estimate of Song and Tucker (see [ST99] and [ST01]) for da(P ) on a curve.

Lemma 3 (Song, Tucker). Let C be a nonsingular curve defined over a number field k with canonical
divisor K. Let X be a regular model for C over the ring of integers of k. Let A be an ample divisor
on C and let ε > 0. Then for all P ∈ C(k̄),

da(P ) � hK(P ) + (2[k(P ) : k] + ε)hA(P ) +O([k(P ) : k]).

Proof of Theorem 2. Let T be as in the hypotheses of Theorem 2 and suppose that the inequality
(4) of Theorem 2 is satisfied. Consider the three sets

T1 = {P ∈ T | [k(φ1(P )) : k] = [k(P ) : k]},
T2 = {P ∈ T | [k(φ2(P )) : k] = [k(P ) : k]},
T3 = {P ∈ T | [k(φ1(P )) : k] < [k(P ) : k], [k(φ2(P )) : k] < [k(P ) : k]}.

Clearly T = T1∪T2∪T3. As we assumed 2g−2+r > 2(ν+g1−1)d1 and 2g−2+r > 2(ν+g2−1)d2,
it follows from a trivial generalization of Corollary 1 that T1 and T2 are finite. So we are reduced
to showing that if 2g − 2 + r > (ν + 2g1 − 2)d1 + (ν + 2g2 − 2)d2, then T3 is finite. Let K, K1, and
K2 denote the canonical divisors of C, C1, and C2, respectively. Let h, h1, and h2 denote heights
associated to some degree one divisor on C, C1, and C2, respectively. Using Theorem 1, Theorem 7,
and Lemma 3, we get, for any ε > 0,

mS(D,P ) + hK(P ) � da(P ) + εh(P ) +O(1)
� da(φ1(P )) + da(φ2(P )) + εh(P ) +O(1)
� hK1(φ1(P )) + (2[k(φ1(P )) : k] + ε)h1(φ1(P ))

+ hK2(φ2(P )) + (2[k(φ2(P )) : k] + ε)h2(φ2(P )) +O(1).

Note that for P ∈ T3, [k(φ1(P )) : k] � ν/2 and [k(φ2(P )) : k] � ν/2, since k(φ1(P )) and
k(φ2(P )) are both proper subfields of k(P ). Since T is a set of (D,S)-integral points, mS(D,P ) =
hD(P ) +O(1) for P ∈ T . Using functoriality of heights and quasi-equivalence of heights associated
to numerically equivalent divisors, we obtain, for any ε > 0,

(2g − 2 + r)h(P ) � ((ν + 2g1 − 2)d1 + (ν + 2g2 − 2)d2 + ε)h(P ) +O(1)

for P ∈ T3. Taking ε < 1, since there are only finitely many points of bounded degree and bounded
height with respect to h, we see that if

2g − 2 + r > (ν + 2g1 − 2)d1 + (ν + 2g2 − 2)d2

then T3, and hence T , must be finite.

80

https://doi.org/10.1112/S0010437X06002557 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002557


Points of bounded degree on curves

Acknowledgements

I would like to thank Joe Silverman for helpful conversations and for directing me to the reference
for Theorem 8. I would also like to thank the anonymous referee for pointing out the connections
with Castelnuovo’s inequality.

References

AH91 D. Abramovich and J. Harris, Abelian varieties and curves in Wd(C), Compositio Math. 78
(1991), 227–238.

ACGH85 E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, vol. I,
Grundlehren der Mathematischen Wissenschaften, vol. 267 (Springer, New York, 1985).

Bas63 H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
CZ04 P. Corvaja and U. Zannier, On integral points on surfaces, Ann. of Math. (2) 160 (2004), 705–726.
DF93 O. Debarre and R. Fahlaoui, Abelian varieties in W r

d (C) and points of bounded degree on algebraic
curves, Compositio Math. 88 (1993), 235–249.

DK94 O. Debarre and M. J. Klassen, Points of low degree on smooth plane curves, J. reine angew.
Math. 446 (1994), 81–87.

DD00 I. Del Corso and R. Dvornicich, Relations among discriminant, different, and conductor of an
order, J. Algebra 224 (2000), 77–90.

HS91 J. Harris and J. H. Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc.
112 (1991), 347–356.

Lan83 S. Lang, Fundamentals of Diophantine geometry (Springer, New York, 1983).
Lan88 S. Lang, Introduction to Arakelov theory (Springer, New York, 1988).
Sch91 W. M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in

Mathematics, vol. 1467 (Springer, Berlin, 1991).
Sil87 J. H. Silverman, Arithmetic distance functions and height functions in Diophantine geometry,

Math. Ann. 279 (1987), 193–216.
ST99 X. Song and T. J. Tucker, Dirichlet’s theorem, Vojta’s inequality, and Vojta’s conjecture, Com-

positio Math. 116 (1999), 219–238.
ST01 X. Song and T. J. Tucker, Arithmetic discriminants and morphisms of curves, Trans. Amer.

Math. Soc. 353 (2001), 1921–1936 (electronic).
Voj87 P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in

Mathematics, vol. 1239 (Springer, Berlin, 1987).
Voj91 P. Vojta, Arithmetic discriminants and quadratic points on curves, in Arithmetic algebraic

geometry, Texel, 1989, Progress in Mathematics, vol. 89 (Birkhäuser, Boston, MA, 1991),
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