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Introduction. Let S be a prime Noetherian ring and G a finite group acting on 5
such that G is A'-outer on S. We give sufficient conditions for the skew group ring S * G to
be a prime maximal order. If we impose the further hypothesis that the order of G be a
unit of S, then these conditions are also necessary. Moreover, if 5 is a commutative
Noetherian domain, then there are necessary and sufficient conditions for S*G to be a
prime maximal order, without requiring that the order of G be a unit in S.

1.1 Given a ring 5 and a group G acting on 5 we write ss for the image of s e S under
the action of g e G, and define the skew group ring S * G to be the ring which is a free left
5-module with the elements of G as a basis. Multiplication is extended linearly from S and
G, and gs = sgg for all s e 5, g e G. Our aim is to prove the following result.

THEOREM 3.13. (Main Theorem). Let S be a prime Noetherian ring and G a finite
group acting on Ssuch that G is X-outer. Let T = S*G be the skew group ring, and denote
by Qo tne set of reflexive height-l G-prime ideals of S. Consider the following hypotheses:

(a) 5 is a G-maximal order;
(b) p0T is a prime ideal of T for all p0 e Qo-
(i) //(a) and (b) both hold, then T is a prime maximal order.
(ii) Suppose that the order of G is a unit of S. If T is a (prime) maximal order, then

(a) and (b) both hold.

Here, a G-maximal order is an order which is not properly contained in any G-invariant
order to which it is equivalent; see 2.1 for the precise definition.

We give an example (Example 3.14) to show that statement (ii) of the Main Theorem
does not hold without the additional hypothesis that the order of G be a unit in 5.

Compare our results with [12, Theorem 3.1], where sufficient conditions are given for
a ring R, strongly graded by a finite group G with the order of G a unit in R, to be a tame
order. A tame order is a generalisation of the concept of a maximal order; a prime
Noetherian maximal order integral over its centre is a tame order.

We also prove a result, namely Theorem 4.6, that is the commutative analogue of
Theorem 3.13; as we shall see, no hypothesis on the order of G is required in this case.

1.2 See [13, Section 12] for a definition of A'-outer. Let R be a ring and G a group.
In Section 2 we offer some results concerning G-maximal orders. As is to be expected,
many of these are analogues of results in the (ordinary) maximal order case. In Section 3
we turn to the proof of the Main Theorem, a key tool of which is Theorem 3.2 (which we
refer to as the Test Theorem); we also give a G-equivariant version of this as Theorem
3.3. The Test Theorem is partially proved in [1, Proposition 1.10(b)] and [7, Lemma
1.2(ii)], and, although the result is undoubtedly well-known, a suitable reference for the
complete proof could not be found. Section 4 is concerned with the proof of the analogue
of the Main Theorem for the case where the coefficient ring of T is a commutative
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Noetherian domain. As we shall see, we do not require the hypothesis that the order of G
be a unit in S.

1.3 A full account of maximal orders can be found in [8] and [10]. Our main source
for skew group rings was [13]. Throughout, the Jacobson radical and quotient ring of any
ring A will be denoted by J(A) and Q(A) respectively. The results of this paper form part
of the author's Ph.D. thesis at the University of Glasgow, under the supervision of
Professor K. Brown. I would like to thank Professor H. Marubayashi (Naruto) for his
careful reading of an earlier version of this paper.

2. G -Maxima] orders.

2.1 DEFINITIONS. Let R be a prime Noetherian ring with simple Artinian quotient
ring Q. Then R is an order in Q and an order S in Q is said to be equivalent to R if there
exist units a, b, c, d in Q such that aRb £ 5 and cSd £ R. We call R a maximal order if it is
maximal within its equivalence class; that is if S is an order in Q equivalent to R and
containing R, then S must be equal to R. Let / be a non-zero ideal of R. Define
O/(/) = {q e Q :ql £ /} and Or(/) = {q eQJqzI}. Then O,(7) and Or(7) are orders in Q
equivalent to R. The following lemma is an easy consequence of [10, Proposition 1.3.1].

LEMMA. Let R be a prime Noetherian ring with the property that O,(P) = Or(P) = R,
for all (non-zero) prime ideals P of R. Then R is a maximal order.

Let R be a prime Noetherian ring and G a finite group acting on R with G c Aut(7?).
It follows that G acts on the quotient ring Q of R; in particular, G permutes the set of
right orders in Q. Let S be a G-invariant right order in Q. We say that R is equivalent to
S (written R~S) if there exist units a, b, c, d in Q such that aRb c S and cSd c R. It is
easy to check that ~ is an equivalence relation.

The ring R is said to be a G-maximal right order in Q if R is strictly contained in no
other G-invariant right order to which it is equivalent. G-maximal left orders and
G-maximal orders are defined similarly. (Compare this definition to that of a maximal
order given above.)

Suppose that I is a proper G-invariant ideal of a ring R on which a group G acts. We
say that / is a G-prime ideal of R if, for all G-invariant ideals A, B of R, the inclusion
AB g R forces either A^loxB^I.

We have the following analogue of Lemma 2.1 that is proved in a similar way.

2.2 PROPOSITION. Let R and G be as in 2.1. Then R is a G-maximal order if and only
if 0,{P) = Or(P) = R, for all non-zero G-prime ideals of P of R.

The next result shows that the concept of a G-maximal order yields nothing new in
the commutative case.

2.3 LEMMA. Let S be a commutative Noetherian domain and G a finite group acting
as automorphisms on S. Then S is a G-maximal order if and only if S is a maximal order.

Proof. It is clear from the definitions that if 5 is a maximal order then 5 is a
G-maximal order.

Conversely, suppose that 5 is a G-maximal order which is not a maximal order. By
[8, Lemma 5.3.2] it is enough to show that, if S is contained in a subring T of Q = Q(S)
with T = ^{yjS:i = 1, . . . ,n} a finitely generated S-module, then T = S. Given such a
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ring T, put f := (Tg: g E G). Then f is a G-invariant subring of Q containing S and T.
Also t is a finitely generated 5-module, for, consider any monomial

y y^y<i • • • y^

in the G-conjugates of {yu... ,yn} with t > \G\. It is clear that y involves components of
the form (say) yg and yl, for some g e G. Since Q is commutative, we can write g (with
rearrangement if necessary) so that yj,yl are adjacent. Then we can express yjy% as an
S-linear combination of {yf,... , yg

n}. Hence t is a finitely generated 5-module and so,
since 5 is a G-maximal order by hypothesis, f - S. Hence T = S and S is a maximal order,
as required.

2.4 EXAMPLE. We now give an example to show that (non-commutative) G-maximal
orders which are not maximal orders do exist. Let R = Z2z and put

R R

\2R R

a prime Noetherian ring. Let

Put G:=(g) = C2, the cyclic group of order 2. It is easy to check that G acts on 5 by
conjugation, viewing S as a subring of M2(U), with

a
2c

ht-1

Pg

d) "I

prime

I2R
~\2R

- ( *

<d c\
\2b ar

ideal

R)
R)

2RI

of 5. Then

P and Ps are the only non-zero prime ideals of 5, and both have height one. One can
check that

0

and so 5 is not a maximal order. However, 5 is a G-maximal order: by Proposition 2.2 it is
enough to show that

o,(P n pg) = or(P n pg) = s.
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To this end, let a e O,(P n Ps) and put

(x y
a —

where x,y,z,w e Q(S), the quotient ring of S. Let

2a b
2c 2d

be a non-zero element of P D P8. Then

y\(2a b\(2(ax + cy) bx + 2dy\ (2R R \
w)\2c Id) \2(az + cw) bz+2dw) \2R 2RI

Since a, b, c, d can be arbitrary integers, we must have that x,y, w e R and z e 2R so that.
a s S. Hence O,(P H P*) = S. Similarly, Or(P n Pg) = S and S is a G-maximal order, as
claimed.

The following result is a G-equivariant version of [7, Lemma 2.1 (ii)], and since the
proof of our result is similar to the proof of theirs, we do not include it here.

2.5 PROPOSITION. Let R be a prime Noetherian G-maximal order, where G is a finite
group acting on R. If P is a reflexive height-1 G-prime ideal of R, then P is localisable.

2.6 DEFINITION. For a non-zero ideal / of a prime Noetherian ring R, put
If = {q sQ(R):qIcR} and I* = {q e Q(R): Iq c R}. When R is a maximal order, we
have If ~ I* := I* by [8, Proposition 5.1.8]. The ideal / is said to be invertible if
(/,*)/ = /(/•) = R, and / is reflexive when (/,*)* = (/*)* = /•

By a local ring R, we mean that R/J(R) is simple Artinian; R is semilocal if R/J(R) is
semisimple Artinian.

2.7 PROPOSITION. Let R be a prime Noetherian local ring with J: = J(R) reflexive.
Then the following are equivalent:

(i) R is a maximal order;
(ii) R is hereditary;
(iii) / is invertible.

Proof. (ii)O(iii). [6, Proposition 1.3].
(i)=>(iii). It is clear that J*J is a non-zero ideal of R. Since O,(7) = R, JcJ*J. Due

to the maximality of / we must have J*J = R. Similarly, JJ* = R, and so / is invertible.
(iii) =^ (i). Suppose that / is invertible, but that R is not a maximal order. Let 0 ¥= I be

an ideal of R such that R <z 0,(7), and choose / to be maximal with respect to this
property. Now, 0;(/)7 £ / implies that

since J is invertible. Hence 0/(7) = R. A similar argument gives Or(J) = R. Therefore by
choice of /, IaJ and it follows that J*=Jf=J*. Put K = IJ*, an ideal of R. Then
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KJ = IJ*J = /, since J is invertible. It is clear that I <=K; suppose that I = K. Then
KJ = K, contradicting Nakayama's Lemma. Therefore / <= K.

Let x E O,(/). Then xl c / so that xKJ <=, KJ. We have

xK = xKJJ* ^ KJJ* = K

since 7 is invertible, and so x e O,(JQ. Therefore R ez O,(7) g O/(/Q with / c K,
contradicting the initial choice of /. Hence there exists no such ideal /. A similar argument
works on the right, and so R is a maximal order. This completes the proof.

The next result is a generalisation of (i) ̂ > (iii) of Proposition 2.7. Here, and in 2.9,
we write Mo for Pi {M8; g s G}, where M is an ideal of a ring R on which a group G acts.

2.8 PROPOSITION. Let R be a prime Noetherian semilocal ring and G a finite group
acting on R. Suppose that J: = J(R) is reflexive. If R is a G-maximal order, then J is
invertible.

Proof. We claim that each Mo is reflexive. Fix a maximal ideal M of R. Since R is a
G-maximal order, it is enough to show that Mo is the right annihilator of a non-zero
submodule of QIR (where Q is the quotient ring of R). Now, since / is right reflexive by
hypothesis, there exists a submodule A of Q strictly containing R with J = r.ann(A/R).
Since R is semilocal, R/J is semisimple Artinian. Therefore R/J is isomorphic to a direct

sum of matrix rings over division rings, say R/J = 0 Mn{Dt), where nt is a natural
/ = 1 ' r

number and each £>, is a division ring. We can also write Mo/J = 0 Afn.(D,-), with

reindexing if necessary, for some r < t. Since AIR is a faithful i?//-module, AIR includes
at least one copy of each isomorphism class of irreducible R //-modules in its
decomposition. For each i = l,... ,t let V) be an irreducible Mn.(D,)-module. Let B/R
denote the sum in A/R of all the irreducible 7?//-modules isomorphic to Vh where
i = r + 1 , . . . , t. It follows that Mo is the right annihilator (in R) of B/R. Therefore Mo is
right reflexive.

We now show that MQ is invertible. Now, M*M0 is an ideal of R containing Mo, and is
easily checked to be G-invariant. If MQMOCZR, then MQM0<^MS, for some g E G. Then

Mo*Mo = Pi {(M0*M0)
g: g e C j c f l {M*: g E G} = Mo,

so that M* £ O/(M0) = /?, since /? is a G-maximal order. This is a contradiction to the
reflexivity of Mo, and so MQM0 = R. Similarly M0MQ = i? and A/o is indeed invertible. The
ideals Mo are maximal G-invariant, so one sees easily, adapting the proof of [8, Theorem
5.2.10], that p | {Mo: M maximal} = II {Mo: M maximal}. Since a product of invertible ideals
is again invertible, the result follows.

2.9 COROLLARY TO PROPOSITION 2.8. Let R be a prime Noetherian semilocal ring and
G a finite group acting on R. Suppose that J : = J(R) is reflexive. Then the following are
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equivalent:
(i) R is a G-maximal order;
(ii) Mo is invertible for each maximal ideal M of R.

Proof, (i) ̂  (ii). This follows from the proof of Proposition 2.8.
(ii) => (i). Suppose that Mo is invertible for each maximal ideal M of R. Then / is also

invertible. Suppose that R is not a G-maximal order, so that there exists a non-zero
G-invariant ideal I of R such that R <=• 0,(7). Choose / to be maximal with respect to this
property. Now, since / is G-invariant, / is contained in Mo for some maximal ideal M of R.
Since Mo is invertible, Mo is (right and left) projective by [8, Lemma 5.2.5]. It now follows
from [8, Section 5.1.7] that Mo is reflexive.

Put K = IM*, a G-invariant ideal of R. We have / = IM*MQ = KM0 c K\ suppose that
I = K. Then KM0 = K, so that K = KM0 = (KM0)M0 = . . . = K(M0)' for all t s= 0. Therefore
K £ Pi {(Mo)': i - 1 , . . . , °°}. But Mo being invertible means that Mo has the /l/?-property,
by [8, Corollary 4.2.5], and so f l (M,)': i = 1, . . . , » } = 0 by [6, Corollary 2.2]. Hence
K = 0, a contradiction, and so I <= K.

In the same way, as was shown in the proof of Proposition 2.7, we have
R c O/(7) c O,(K). This contradicts our initial choice of /, and so R is a G-maximal order.
Thus (i) holds and the proof is complete.

3. The Main Theorem.

3.1 Let R be a prime Noetherian ring with quotient ring Q, and recall from 2.6 the
definitions of If and If. for an ideal / of R. Define

Ro:= {q e Q: ql^ R for some non-zero ideal / of R},

R'o:= {q e Q: Iq c R for some non-zero ideal / of R).

Note that

/?o = LJ{/*:0^/an ideal of/?} and R'o = U {/?: 0 * I an ideal of /?}.

Suppose that i? is a maximal order. Then, since If = If for each / of R, we see that
^o = ^o-

In the proof of the main result of this paper, we will use the following theorem
(referred to as the Test Theorem). This result—which is probably well-known—is
partially proved in the literature; in particular, that R is a maximal order implies (iv) is
shown in [1, Proposition 1.10(b)], and that R is a maximal order implies (i) is given in [7,
Lemma 1.2(ii)]. For further details of the complete proofs of Theorem 3.2 and Theorem
3.3, see [9].

3.2 THEOREM. (Test Theorem). Let R be a prime Noetherian ring and denote by Q.
the set of all height-1 reflexive prime ideals of R. Then R is a maximal order if and only if
the following conditions hold:

(i) each P e Q is localisable;
(ii) RP is a maximal order for all P E Q.\
(iii) Ro = R'o,
(iv) R = Ro
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We also have a G-equivariant version of the Test Theorem. It is proved by making
straightforward adjustments to the proof of Theorem 3.2, using, for example, Proposition
2.5 to deduce (i).

3.3 THEOREM. Let S be a prime Noetherian ring and G a finite group acting on S.
Denote by T the set of all height-1 reflexive G-prime ideals of S. Then S is a G-maximal
order if and only if the following conditions hold:

(i) p0 is localisable, for all p0 e F;
(ii) SPo is a G-maximal order, for all p0 e F;

(iii) SO = S'O:
(iv) S =

3.4 NOTATION AND HYPOTHESES. Unless stated otherwise, the following will apply. Let
S be a prime Noetherian ring and G a finite group acting on S. Suppose that the action of
G is A'-outer on S. Denote the skew group ring S * G by T. Let

Q = {p e Spec(S): p is reflexive and has height 1},

&o = {Po- Po = Pi ipg- g e G}, for some p e D}.

Note that, under the above hypotheses, [13, Corollary 12.6] guarantees that T is prime.

3.5 LEMMA. Let S, G and T be as in 3.4. Then To = S0*G.

Proof. It is easy to see that T has an Artinian quotient ring Q(T), and that
Q(T) = Q(S) * G. Let x E TO g Q(T) = Q(S) * G, and write x = 2 {sgg: g e G} with sg e
Q(S) for each g e G. By the definition of To, there exists a non-zero ideal 1 of T with
xl c T. Now T is prime so that, by Goldie's Theorem, Q(T) is simple Artinian. Therefore

Q(T) = IQ(T) = I(Q(S) * G) = /G(0(<>)) = I(Q(S)).

Hence there exist elements a e / and c e C5(0) with 1 = ac~l, and so a = c e / n S. It
follows that / n S is a non-zero G-invariant ideal of 5. Therefore (/ Pi S) * G is a non-zero
ideal of 7 contained in /. We have x((I D 5) * G) g xl g 7, so that

This means that sg(/ Pi 5) <=, S, for all g e G , since / n 5 is G-invariant. Therefore sg e 50

for all g E G and so x sS0*G. The reverse inclusion is similar, but easier.

3.6 REMARK. It is easily checked that an ideal p0 of 5 belongs to QQ if and only if it is
G-prime, reflexive and has height 1. In particular, if S is a G-maximal order, p0 is
localisable, by Proposition 2.5. In fact, Cs(p0) is an Ore set in T, by an argument similar
to the proof of [16, Lemma 2.6]. Equivalently, the ideal V(por) of T is a localisable
semiprime ideal of T. We denote the localisation of T at V(/?07) by TPo; note that by
construction, TPa = SPo * G.

3.7 LEMMA. Adopt the notation of 3.4 and suppose that S is a G-maximal order, then

r = r o n ( n TP0).
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Proof. If S is a G-maximal order, then by Theorem 3.3,

s = son( n sPo).
Therefore

= (son( n

= (S0*G)n(

It now follows that

TP

by Lemma 3.5 and Remark 3.6, as required.

3.8 LEMMA. Adopt the notation of 3.4 and suppose that T = S*G is a {prime
Noetherian) maximal order. Then S is a G-maximal order.

Proof. Let / be a non-zero G -invariant ideal of 5. Then 1 := /* G is a non-zero ideal
of T. Now, O,(/)7 g / implies that

O,(I)I = O;(7)(7*G)g/*G = /.

Therefore 0/(7) <= 0,(7) = T, since 7 is a maximal order. Let Q denote the quotient ring
of 5. We have 0,(7) c r D Q = 5, so that O,(7) = 5. Since 7 is G-invariant 7 = 7 * G =
G * 7, so that we can use symmetry along with the above argument to show that Or(7) = S.
Hence by Proposition 2.2 5 is a G-maximal order, as required.

3.9 LEMMA. Adopt the notation and hypotheses of 3.4. Suppose further that S is a
semilocal G-maximal order with J(S) reflexive, and that |G|~' e 5. Then T is a semilocal
hereditary ring.

Proof. First we show that T is semilocal. Since IGp1 e S, [13, Theorem 4.2] gives
that J(T) = J(S) * G. Now S is semilocal, and so S/J(S) is semisimple Artinian. We have

77/(7-) = (S * G)/(J(S) * G) = (S/J(S)) * G,

an Artinian ring. Hence T is semilocal, as claimed. By Proposition 2.8, J(S) is invertible.
Therefore

J(T)(J(T))* = (J(S) * G)(J(S) * G)* = (J(S) * G)(J(S)* * G)

= J(S)(J(S))**G = S*G = T.

Similarly (J(T))*J(T) = T, and J(T) is also invertible.
Put / :=J(T). By [8, Lemma 5.2.5] jJ and JT are projective and so pr.dim.(r//)r = 1.

Therefore by [8, Theorem 7.3.14]

gl.dim.(7) s= gl.dim.(77/) + pr.dim.(77/) = 0 + 1 = 1.

Hence T is hereditary, as required.
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3.10 REMARK. Adopt the notation of 3.4. It follows from easy adaptations of [13,
Lemma 14.1] and [2, Theorem 1.6], together with the initial comment of Remark 3.6, that
if P is a height-1 reflexive prime ideal of T, then po:= P DS belongs to QQ. In particular,
Po is G-prime and so p0T is an ideal of T, and is contained in P. The following results give
sufficient conditions for equality.

3.11 LEMMA. Let S be a Noetherian ring and G a finite group acting on S. Let T
denote the skew group ring S *G. Let P be a prime ideal of T and put po = P D S. Suppose
that p0 is localisable and that PTPo = p0TPo. Then P = p0T.

Proof. As explained in Remark 3.6, Cs(p0) is an Ore set in T, and so TPo exists. It is
clear that p0T £/>. For the reverse inclusion, let a e P and write a = ac~} with a <=p0T
and c E Cs(p0). Then ac = a E p0T. But c E Cs(po) ̂  CT(p0T), and so ac e p0T implies
that a E p0T as required.

3.12 PROPOSITION. Adopt the notation and hypotheses of 3.4 and suppose that
IGp1 E 5. Suppose further that T is a prime Noetherian maximal order. Let P be a reflexive
prime ideal of T and put po = P C\S. Then P - p0T.

Proof. By Lemma 3.8, 5 is a G-maximal order. Then, by Remark 3.10, p0 E QQ, and
so is localisable by Remark 3.6. First we localise S at p0, so that without loss of generality,
in view of Lemma 3.11, 5 is a semilocal ring. Of course, G is still outer on S. Lemma 3.9
now applies to give that T is semilocal and hereditary. By [8, Theorem 5.2.10], we see that
each finitely generated projective T-module is a generator. In particular, this is so for the
projective 7-module GT, where G = S g- Since Endr(GT)s=Sc by [8, Proposition

geC

7.8.5], it follows that T = Mn(W), where W = SC (and in fact n = \G\).
The result we seek will follow if we can display an isomorphism 8 from T to Mn(S

c)
for which the inverse image of the scalar matrices is the subring Sc of T. First, note that
Sc is a prime hereditary semilocal Noetherian ring by Morita theory. Since u-
dim5o(5) = «.M-dim5<r.(5G) from the isomorphism of the previous paragraph, [4] ensures
that S is a free 5c-module of rank n. Now the Morita context connecting Sc with T [8,
§7.8] is in fact a Morita equivalence, as can be seen either from the isomorphism already
mentioned, or from [8, Proposition 3.5.6] and the fact that TGT = T; the latter holds
since TGT is an idempotent invertible ideal [8, Proposition 5.2.6 and Theorem 5.2.10].

Thus T = Endsc(scS). Realising this isomorphism via a basis {1, s2,. • • , sn} of S°S
(whose existence follows using the trace map) yields the desired isomorphism 6.

We are now in a position to prove the main result of this section, which is as follows.

3.13 THEOREM. Adopt the notation and hypotheses o/3.4 and consider the following
hypotheses:

(a) 5 is a G-maximal order;
(b) p0T is a prime ideal of T, for all p0 e Qo-
(i) / / (a) and (b) both hold, then T is a prime maximal order.
(ii) Suppose that the order of G is a unit in S. If T is a (prime) maximal order, then

(a) and (b) both hold.
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Proof, (i) Suppose first that (a) and (b) both hold. Since S is a G-maximal order by
(a), any ideal p0 in QQ is localisable by Proposition 2.5. By Remark 3.6, Cs(po) is an Ore
set in T and TPo exists. Recall that T is prime. Now

T/PoT = (S * G)/(p0 * G) = (5/po) * G,

for all p0 e QQ. Therefore poT' prime implies that (S/p0) * G is prime for all such p 0 . Then
Q(S/p0) * G = Q((S/p0) * G is simple Artinian. But

o5Po

so that p0SPo*G is a prime ideal of SPo*G. We have that J(SPo)*G is prime. Using
[13, Theorem 4.2] we see that

for some « E M , But since J(SPo) * G is prime, we must have

J(SPo)*G=J(TPo),

T
so that /(7^0) is prime. Therefore ^" is simple Artinian, and so 7p0 is local. Now S is a

G-maximal order, and so by Theorem 3.3, SPo is a G-maximal order. Therefore SPo is
hereditary, by Corollary 2.9, and so J(SPo) is projective. Thus, since TPo is a free left
5^-module, J(TPo) =J(SPo)®SpoG is a projective 7^-module, and hence is reflexive. We
can now apply Proposition 2.7 to give that TPo is a maximal order.

Observe that, if P is a reflexive height-1 prime of T, then po:= PC\S belongs to flo>
by Remark 3.10. Since P is minimal over p0T, by [13, Theorem 16.6], hypothesis (b)
guarantees that P=p0T. By this fact and Lemma 3.7,

T = TnD

where P runs over the set of height-1 reflexive primes of T. Moreover, To = T'o, by Lemma
3.5. Now Theorem 3.2 (the Test Theorem) gives us that T is a maximal order, as required.

(ii) Suppose that the order in G is a unit in S, and that T is a prime maximal order.
That (a) holds is immediate from Lemma 3.8. Let p0 belong to QQ. Since p0 is reflexive, it
follows that pQT is the annihilator in T of p*T/T, and so p0T is also reflexive. Therefore
p0T is contained in a maximal reflexive prime ideal P of T, which is a height-1 prime of T
by [7, Lemma 2.1] (since T is a maximal order). Then, by [13, Theorem 16.6], P D 5 =pQ.
It now follows from Proposition 3.12 that P = p0T, so that p0T is a prime ideal of T. This
proves (b), and so (ii) holds.

We now give an example to show that statement (ii) of the Main Theorem does not
hold without the hypothesis that the order of G be a unit in S. Note, however, that G is
not A"-outer in this example.
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3.14 EXAMPLE. Let k = Z/2Z and put

S = k[x,x-'][y,d/dx],

the differential operator ring. Let G = (g) be a cyclic group of order 2 acting on S via
sg = xsx~1, for all s e S. Now, S is finitely generated as a module over its centre
k[x2,x~2,y2], and so it is a prime Noetherian PI ring. Let M = (x2- 1)5, a G-invariant
height-1 prime ideal of 5. Put 5 = SIM and consider the skew group ring S*G. Then

(xg - I)2 = (x2g2 -2xg + l) = x2g2-l = x2-l = 0,

since k has characteristic 2 and G has order 2. Hence (jcg — 1) is a non-zero central
nilpotent element of 5* G, and so

(5 * G)/(M * G ) = (S/M) *G = S*G

is not semisimple Artinian. Therefore M * G is not a semiprime ideal of T = 5 * G, and so
condition (b) of Theorem 3.13 does not hold. But T is a maximal order, as can be seen
using the Test Theorem (Theorem 3.2). In more detail, it can be checked that all height-1
prime ideals of T are localisable; hence we deduce (i) and (iv) of Theorem 3.2; since T is
FBN, (iii) of Theorem 3.2 is vacuous. Finally, part (ii) of Theorem 3.2 follows from [17,
Example 6.2] and Proposition 2.7. Hence this example shows that T, being a prime
maximal order, does not imply condition (b) of Theoem 3.13 when the order of G is not a
unit in S.

4. Commutative Coefficients.

4.1 In this section, we prove a result (Theroem 4.6) analogous to Theorem 3.13 for
the case where the coefficient ring is commutative. The following result is an easy
generalisation of [14, Theroem 10.1.16], where the case with R a field is given. Our
definition of local is given in 2.6.

4.2 THEOREM. Let R be a ring and G a finite group. Then the group ring RG is local if
and only if the following conditions hold:

(i) R is local;
(ii) when char(R/J(R)) = 0, G = {1}; and when char(R/J(R)) = p > 0, G is a p-group.

4.3 LEMMA. Let S be a ring and G a finite group acting on S. Denote the skew group
ring S*G by T, and suppose that T is local. Letp be a maximal ideal of S. Define

H(p):= is e G: ps = p;g acts as identity on Sip).

Then H(p) = {1} ifchar(S/p) = 0, and H(p) is a p-group ifchar(S/p) = p > 0.

Proof. Suppose that T is local, but that H:= H(p) does not satisfy the hypotheses of
the lemma. Put

R:={Slp)*H = {Slp)H,

the ordinary group ring. We claim that R is not local.
Consider when char(S/p) = 0; then H ¥={1}. By Maschke's Theorem R is semisimple

Artinian, but R is not simple since H ¥" {1}. Therefore R is not local. In the case where
char(S/p) = p > 0, H is not a p-group and so R is not local by Theorem 4.2. This proves
the claim. Since T/J(T) is Artinian, it is easy to see that Sip, and hence R, are both
Artinian.
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In the following, char(S//?) may be either 0 or p. Since H is normal in K := K(p) =
{geG:p8=P},

(S/p) * K = (S/p)H * (K/H) = R * (K/H).

Consider the augmentation ideal A of R. Since R is,not local, there exists a prime
ideal B of R different from A. If a non-identity element k of K is such that Bk = A, then
B = (Bky = A'=A (where / = A:"1) since A is .K-invariant, a contradiction. Hence no
/^-conjugate of B can equal A, and so there are distinct /C-orbits Ox, O2 of primes of R.
Put

N^niP'-PeOJ and N2 = D{Q:Qe02}.

By Lying Over (LO) ([13, Theorem 16.6]) there exist maximal ideals A/,, M2 of R * {K/H)
with MXDR = Nx and M2DR = N2. If A^ = M2, then A/j = JV2, a contradiction to the fact
that O\^O2. Hence Afi^M2_and we have distinct maximal ideals of (S/p)*K. Put
Po = H {/>S; £ e C} andlet MUM2 be the inverse images in (S/po)*K of MUM2

respectively. Note that Afj ̂  M2, but

p/p0 = A#! n (5/po) = M2 n (5/po)-

Using [13, Theorem 14.7] we see that there exist distinct maximal ideals of T, a
contradiction to the fact that T is local. Hence the result holds.

4.4 NOTATION AND DEFINITION. Let S be a commutative Noetherian domain and G a
finite group acting on S. Let T denote the skew group ring S*G. For each l¥=g e G,
define

I(g) = {s-s*:seS}S.

It is clear that each I(g) is an ideal of 5. It is easy to check that, for any ideal J of 5, the
subset {g e G: I(g) £ /} is a subgroup of G; in fact it is the largest subgroup of G which
fixes J as a set and acts trivially on S/J.

If we impose the condition that each non-identity element of G acts non-trivially on
S, then this ensures that T is prime.

4.5 LEMMA. Let S, G and T be as in 4.4. Then T is a prime ring if and only if there
does not exist a non-identity element of G which acts trivially on S.

Proof. First suppose that T is prime. Let

H = {g E G: g acts trivially on 5}

and suppose that H ¥={!}. Note first that H is a normal subgroup of G, being the kernel of
the map from G into Aut(5). Put H = 2 {h: h e / / } ; it is clear that H ¥=0. Note that H
commutes with all g e G. Also, H acts trivially on elements of 5, by definition, so that H
is central in T. Choose 1 #/i e H. Then, for all t e T, 0 = f#(/i - 1) = #f(/i - 1) so that
THT(h -1)7 = 0; a contradiction to the primeness of T. Therefore H = {1}, and no
non-identity element of G acts trivially on 5.

On the other hand, assume that no non-identity element of G acts trivially on S. As
in the proof of Lemma 3.5, T has quotient ring Q(T) = Q(S) * G. By hypothesis, G is a
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group of X-outer automorphisms of 5, and hence of Q(S). Therefore the set of dinner
automorphisms, Ginn of Q(S) is equal to {1}. Now Q{S) is a field and so is certainly prime.
Using [13, Corollary 12.6] Q{S)*G is also prime. Therefore Q(T) = Q(S)*G is simple
Artinian and so 7 is prime, as required.

We now turn to the main result of this section, the proof of which appears as 4.12.

4.6 THEOREM. Let 5, G and T be as in 4.4. Then T is a prime maximal order if and
only if the following conditions hold:

(a) 5 is integrally closed;
(b) there exists no non-identity element g of G such that I(g) c p , for some height-l

prime p of 5.

For the case where the coefficient ring is a Dedekind domain, the corresponding
result appears in [15, Theorem 40.14], and is due to Auslander, Goldman and Rim.

REMARK. Recall from [8, Proposition 5.1.3] that a commutative Noetherian domain is
a maximal order precisely when it is integrally closed; Lemma 2.3 then implies the
equivalence of condition (a) above and condition (a) of Theorem 3.13. The following
result together with Remark 3.6 shows how condition (b) above implies condition (b) of
Theorem 3.13.

Observe that Proposition 4.7 cannot be generalised to non-commutative coefficient
rings 5; to see this, take T = S*G as in Example 3.14 and P to be a prime ideal of 7
minimal over M*G. (In fact, there is only one such P.) It is easy to calculate that, in this
example, y - ys = x~l e I(g), so that I(g) = S.

4.7 PROPOSITION. Adopt the notation of 4.4 and suppose there exist no non-identity
elements of G acting trivially on S. Let P e Spec(7). Put

V: = {p e Spec(S): p is minimal over P D 5}.

Suppose further that I(g)£p, for all 1 ¥=g e G, p e W. Then P = (P D 5)7.

Proof. We know that (PDS)T^P and that by [13, Lemma 14.1] P D S is a G-prime
ideal of 5. Now, P lies over P n 5 and using [13, Theorem 16.6], Incomparability implies
that there does not exist P, e Spec(7) with Px <z P and P, f~l 5 = P D 5. Therefore P
is minimal over (PDS)T. To show that (PnS)T = P it is enough to show that
(PHS)T B Spec(r). Consider

we show that the latter ring is prime. It is clear that S/(PD5) is G-prime. Let p e f .
Then pl(Pn S) is a minimal prime of S/(P D S). Put K:={g sG:pg =p}. Since I(g)£p
for all l¥=geG, no element of K acts trivially on Sip. Lemma 4.5 then gives that
{Sip) * K is prime. Now,

{(S/(P n S))l{pl(P n 5))} * K = {Sip) * K

and so by [13, Corollary 14.8], {SI{P n 5)) * G is prime. Therefore T/{{P n 5)7") is prime,
{P D 5)7 e Spec(7) and P = {PD 5)7, as required.

4.8 PROPOSITION. Let 5, G, and T be as in 4.4, and let P be a prime ideal of 7. / /
P = {P n 5)7, then P is localisable.
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Proof. By [8, Theorem 4.2.7], all ideals of S have the right AR-property since 5 is a
commutative Noetherian domain. In particular, PC\S does. Then, by [17, Lemma 4.4],
P = (PC\S)T has the right and left AR -property. Using [8, Proposition 6.8.21 (ii)], we see
that P is localisable.

In view of Proposition 4.7, it follows immediately from Theorem 3.13 that conditions
(a) and (b) of Theorem 4.6 are sufficient for T to be a maximal order. We now
concentrate on the necessity of these conditions.

4.9 LEMMA. Adopt the notation of 4.4 and suppose that each non-identity element of
G acts non-trivially on S. Let P be a localisable height-1 prime of T and put p0 = P OS. Let
q := P f l Z = po(~\ Z, a height-1 prime of Z, where Z is the centre of T. Then
TP= Tpo= Tq. In particular, Tpo is a local ring.

Proof. Since T is a maximal order, by hypothesis, P is localisable by Theorem 3.2. By
[5, Lemma 12.17], the clique of P is equal to {P}. Thus, by [5, Theorem 11.20] (also
discussed in [11]), P is the one and only prime ideal of T lying over P C\Z = q. The proof
is now routine.

4.10 PROPOSITION. Adopt the notation of 4.4 and suppose that each non-identity
element of G acts non-trivially on S. Let P be a localisable height-1 prime of T, and put
po = P C\S = p | {p8: g e G) for some height-1 prime p of S (see Lemma 3.5).. Suppose that
char(S/p) = 0. Then there exists no non-identity element g of.G such that I(g) c p .

Proof. Since TPa is local, by Lemma 4.9, Lemma 4.3 implies that H(p) = {1} (where
H(p) is as defined in Lemma 4.3). It is now immediate that there exists no non-identity
element g e G such that I(g) £ p , as required.

We now prove an analogous result to Proposition 4.10 for the case where Sip has
positive characteristic.

4.11 PROPOSITION. Adopt the notation of 4.4 and suppose that each non-identity
element of G acts non-trivially on S. Assume that T is a maximal order. Let p be a height -1
prime of S, and suppose that char(S/p) = p > 0. Then no non-identity element g of G is
such that

Proof. Firstly, TPo is a local ring by Lemma 4.9. Let H = H(p). By Lemma 4.3, H is a
p-group. Let \¥*x e H be such that x has order p. First we claim that TPo has infinite
global dimension. For, put N:=pSPo, a maximal ideal of SPo. Note that SPo/N = Q(S/p),
and that char(SpJN) = p. Define

G(N):={g E G: 5 -sg e N for all 5 E 5PJ.

We have x e G(N) and x has order p. Therefore, by [17, Theorem 5.2] gl.dim.(7^0) = °°,
as claimed.

Now, since TPo has a unique non-zero prime ideal J: = J(TPo), it is clear that J is
reflexive. Then Proposition 2.7 gives that TPo is not a maximal order. It follows that T is
not a maximal order, a contradiction to our initial hypothesis. Therefore there exists no
such element x, and so H = {1}. This completes the proof.
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4.12 PROOF OF THEOREM 4.6. As was noted above, the sufficiency of conditions (a) and
(b) of Theorem 4.6 is a direct consequence of Theorem 3.13. For the converse, suppose
that T is a prime maximal order. That (a) holds follows from Lemma 3.8 together with
Lemma 2.3 and the fact that a commutative Noetherian domain is a maximal order
precisely when it is integrally closed. Condition (b) is then proved necessary by
Proposition 4.10 and Proposition 4.11.
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