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1. Introduction

The famous theorem of Turán [39] determines ex(n,Kr), the maximum number of edges

in a graph with n vertices that does not contain the r-clique Kr (the case r = 3 was

previously solved by Mantel [25]). The unique extremal graph is the Turán graph Tr−1(n),

the complete (r − 1)-partite graph of order n whose part sizes differ at most by 1. Thus,

for fixed r, we have

ex(n,Kr) =

(
1 − 1

r − 1

)(
n

2

)
+ O(1).

Rademacher (unpublished, 1941) proved that a graph with ex(n,K3) + 1 edges has at

least �n/2� triangles. This prompted Erdős [10] to pose the more general problem: What

is gr(m, n), the smallest number of Kr-subgraphs in a graph with n vertices and m edges?

Various results have been obtained by Erdős [11, 13], Moon and Moser [26], Nordhaus

and Stewart [28], Bollobás [2], Fisher [15], Lovász and Simonovits [20, 21], Razborov

[34, 35], Nikiforov [27], Reiher [36], and others.
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Let us consider the asymptotic question, that is, what is the limit

gr(a)
def
= lim

n→∞

gr
(
�a

(
n
2

)
�, n

)
(
n
r

)
for any given a ∈ [0, 1] and r? While it is not difficult to show that the limit exists,

determining gr(a) is a much harder task that was accomplished only relatively recently

(for r = 3 by Razborov [35], for r = 4 by Nikiforov [27], and for r � 5 by Reiher [36]).

The following construction gives the value of g3(a) (as well as gr(a) for every r � 4).

Given a ∈ (0, 1), we choose integer t � 1 and real c ∈ [1/(t+ 1), 1/t) such that the complete

(t+ 1)-partite graph of order n → ∞ with t largest parts each of size (c+ o(1))n has edge

density a+ o(1). Formally, let the integer t � 1 satisfy

a ∈
(

1 − 1

t
, 1 − 1

t+ 1

]
(1.1)

and let

c =
t+

√
t(t− a(t+ 1))

t(t+ 1)
(1.2)

be the (unique) root of the quadratic equation

2

((
t

2

)
c2 + tc(1 − tc)

)
= a (1.3)

with c � 1/(t+ 1). Since a > 1 − 1/t, it follows from (1.2) (or from (1.3)) that c < 1/t.

Partition the vertex set [n] = {1, . . . , n} into t+ 1 non-empty parts V1, . . . , Vt+1 with

|V1| = · · · = |Vt| = �cn� for i ∈ [t]. Let G be obtained from the complete t-partite graph

K(V1, . . . , Vt−1, U), where U = Vt ∪ Vt+1, by adding an arbitrary triangle-free graph G[U]

on U with |Vt| |Vt+1| edges1. Clearly, the edge density of G is a+ o(1). Thus g3(a) � h(a),

where

h(a)
def
= 6

((
t

3

)
c3 +

(
t

2

)
c2(1 − tc)

)
. (1.4)

If a = 1, we let G be the complete graph Kn and define h(1) = 1. If a = 0, we take the

empty graph and let h(0) = 0. For a ∈ [0, 1], let Ha,n be the set of all possible graphs G

on [n] that arise in this way, Ha
def
= ∪n∈NHa,n, and H def

= ∪a∈[0,1]Ha. In general, Ha,n has

many non-isomorphic graphs and this seems to be one of the reasons why this extremal

problem is so difficult.

Although each of the papers [27, 35, 36] implies the lower bound g3(a) � h(a), it is not

clear how to extract the structural information about extremal graphs from these proofs.

Here we partially fill this gap by showing that, modulo changing a negligible proportion

of adjacencies, the set H consists of all almost extremal graphs for the g3-problem. Here

is the formal statement.

1 One possible choice is to take G[U] = K(Vt, Vt+1), resulting in G = K(V1, . . . , Vt+1). But since each edge of

G[U] belongs to exactly |V1| + · · · + |Vt−1| triangles, the choice of G[U], due to its triangle-freeness, has no

effect on the triangle density.
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Theorem 1.1. For every ε > 0 there are δ > 0 and n0 such that every graph G with n � n0

vertices and at most (g3(a) + δ)
(
n
3

)
triangles, where a = e(G)/

(
n
2

)
, can be made isomorphic

to some graph in Ha,n by changing at most ε
(
n
2

)
adjacencies.

We remark that although this statement resembles (and implies) the celebrated Triangle

Removal Lemma, it does not say anything new in that direction since its proof relies on

the lemma. What our Theorem 1.1 can and should be compared to, is the following old

result due to Lovász and Simonovits.

Theorem 1.2 ([21, Theorem 2]). For any real ε > 0 and integers t � r − 1 � 2, there are

δ > 0 and n0 such that every graph G with n � n0 vertices, (1 − 1/t± δ)
(
n
2

)
edges, and at

most (gr(1 − 1/t) + δ)
(
n
r

)
copies of Kr can be made isomorphic to Tt(n) by changing at most

ε
(
n
2

)
adjacencies.

Note that Tt(n) is o(n2)-close in the edit distance to every graph in H1−1/t,n, hence the

difference between them is immaterial. Thus, comparing our Theorem 1.1 to Theorem 1.2,

note that Theorem 1.1 covers all values of a (not only those that are close to critical

points a = 1 − 1/t for an integer t � r − 1) but it deals with the case r = 3 only.

Theorem 1.1 is obtained by building upon the flag algebra approach from [35]. In order

to prove it we have to characterize first the set of extremal flag algebra homomorphisms

for the g3-problem. This is done in Theorem 2.1 of Section 2, where the precise statement

can be found. This task requires some extra work in addition to the arguments in [35]

and is an example of how flag algebra calculations may lead to structural results about

graphs. (For some other results of a similar type, see, e.g., [8, 9, 17, 29, 30].)

Theorem 1.1 (or more precisely Theorem 2.1) can be viewed as a small step towards

the more general problem of understanding graph limits with given edge and triangle

densities. The latter problem naturally appears in the study of exponential random graphs

(see, e.g., [1, 6, 31, 32, 33]) and large deviation inequalities for the triangle density in

Erdős–Rényi random graphs (see, e.g., [4, 5, 7, 23, 24]).

Let us now briefly review what is known (and conjectured) about exact results. As with

any extremal problem, the two relevant and related questions here are the following (see

[21, Problems 1, 2]).

Question 1. Determine gr(m, n) as tightly as possible.

Question 2. Say as much as possible about the structure of extremal configurations.

Toward Question 1, it makes sense to compare gr(m,m) with the function gr(a), now

explicitly known due to [27, 35, 36]. A straightforward blow-up construction (see, e.g., [35,

Theorem 4.1]) gives us

gr(m, n) � nr

r!
gr(2m/n

2).
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In the reverse direction, an obvious calculation based on the graphs from Ha,n gives the

estimate

gr(m, n) � nr

r!
gr(2m/n

2) + O

(
nr+1

n2 − 2m

)
.

Nikiforov [27, Theorem 1.3] improved this to

gr(m, n) � nr

r!
gr(2m/n

2) +
nr

n2 − 2m
.

Lovász and Simonovits made the following remarkable conjecture.

Conjecture 1.3 ([20, Conjecture 1]). For every r � 3 there is n0 such that for every n � n0

and m with 0 � m �
(
n
2

)
at least one of gr(m, n)-extremal graphs is obtained from a complete

partite graph by adding a triangle-free graph inside one part.

If Conjecture 1.3 is proved, then one may consider Question 1 combinatorially answered:

the number of Kr-subgraphs in such a graph G is some explicit polynomial in m, n, and

part sizes, and the question reduces to its minimization over the integers. This task may

be difficult but it involves no graph theory. In fact, it is not hard to show (see, e.g., [27,

Section 3]) that the optimal part ratios are approximately those of the graphs in Ha,

where a = m/
(
n
2

)
. (However, our rounding |V1| = �cn�, etc., was rather arbitrary: it was

chosen just to have the family Ha well-defined.)

Since the value of g3(m, n) resulting from Conjecture 1.3 does not even have a nice

analytical expression, it is conceivable that the only way of attacking Question 1 is via

Question 2, using the so-called stability approach. This indeed turned out to be so in

the only non-trivial intervals where the problem has been solved so far. Namely, assume

that ex(n,Kt+1) � m � ex(n,Kt+1) + ε(r, t)n2, where ε(r, t) > 0 is a rather small constant;

in other words, that a is in a small (upper) neighbourhood of a critical point 1 − 1/t.

Then for r � 4 Lovász and Simonovits [21] proved Conjecture 1.3 in a much stronger

universal form. Given recent developments, we would like to make the explicit conjecture

that their result can be extended to arbitrary values of m.

Conjecture 1.4. For every r � 4 there exists n0 such that for every n � n0 and m with

0 � m �
(
n
2

)
every gr(m, n)-extremal graph is obtained from a complete partite graph by

adding a triangle-free graph inside one part.

For the case r = 3 Lovász and Simonovits verified Conjecture 1.3 in the same neigh-

bourhoods of critical points. Conjecture 1.4, however, is no longer true: for some pairs

(m, n), there are additional extremal graphs; see the families U0 and U2 in [21].

We hope that the techniques in our paper will turn out to be helpful in attacking

Conjectures 1.3 and 1.4 for arbitrary m.

The paper is organized as follows. We outline the main ideas behind flag algebras

and state some of the key inequalities from [35] in Section 2. There, we also state our

result on the structure of g3-extremal homomorphisms (Theorem 2.1) and show how this
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implies Theorem 1.1. Section 3 contains a sketch of the proof from [35] that g3(a) = h(a).

Theorem 2.1 is proved in Section 4.

2. Flag algebras

In order to understand this paper the reader should be familiar with the concepts

introduced in [34]. We do not see any reasonable way of making this paper self-contained,

without making it quite long and repeating large passages from [34]. Therefore, we restrict

ourselves to sketching the proofs in [34, 35], during which we informally illustrate the main

ideas by providing some analogues from the discrete world. This serves two purposes:

to state the key inequalities from [34, 35] that we need here and to provide some

guiding intuition for the reader who is about to start reading [34]. We stress that some

flag algebra concepts do not have direct combinatorial analogues or require a plethora

of constants to state them in terms of graphs. Here we just try to distil and present

some motivational ideas. Besides, even if the theory was intentionally developed to cover

arbitrary combinatorial structures, in our brief exposition we confine ourselves to the case

of ordinary graphs, as the most intuitive one.

Many proofs in extremal graph theory proceed by considering possible densities of

small subgraphs and deriving various inequalities between them. These calculations often

become very cumbersome and difficult to keep track of ‘by hand’, especially since the

number of non-isomorphic graphs increases very quickly with the number of vertices. One

of the motivations behind introducing flag algebras was to develop a framework where

the mechanical book-keeping part of the work is relegated to a computer.

So suppose that we have a graph G. Let n = |V (G)| be its order.

The density of a graph F in G, denoted by p(F,G), is the probability that a random

|V (F)|-subset of V (G) spans a subgraph isomorphic to F . The quantities that we are

interested in are finite linear combinations
∑s

i=1 αip(Fi, G), where Fi is a graph and αi is a

real constant. One can view a formal finite sum
∑s

i=1 αiFi as a function that evaluates to∑s
i=1 αip(Fi, G) on input G. Since we would like to operate with these objects on computers,

we try to keep redundancies to minimum. In particular, the graphs Fi are unlabelled and

pairwise non-isomorphic. Let F0 consist of all (unlabelled non-isomorphic) graphs and

let RF0 be the vector space that has F0 as a basis. (The meaning of the superscript 0 will

be explained a bit later.)

There are some relations which are identically true when it comes to evaluations on

input G: for example if n � � � |V (F̃)| for some graph F̃ and we know the densities of

all subgraphs on � vertices, then the density of F̃ can be easily determined:

p(F̃ , G) =
∑
F∈F0

�

p(F̃ , F)p(F,G), (2.1)

where F0
� ⊆ F0 consists of all graphs with exactly � vertices. So it makes sense to factor

over K0, the subspace of RF0 generated by

F̃ −
∑
F∈F0

�

p(F̃ , F)F,
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over all choices of F̃ and � � |V (F̃)|. Let

A0 def
= RF0/K0.

By (2.1), any element of A0 can still be identified with an evaluation on (sufficiently large)

graphs.

Let some Fi ∈ F0
�i

for i = 1, 2 be fixed. The product p(F1, G)p(F2, G) is the probability

that two random subsets U1, U2 ⊆ V (G) of sizes �1 and �2, drawn independently, induce

copies of F1 and F2 respectively. With probability 1 − O(1/n) (recall that n = |V (G)|), the

sets U1 and U2 are disjoint. Let us condition on this event. The conditional distribution

can be generated as follows: first pick a random (�1 + �2)-set U and then take a random

partition U = U1 ∪U2 with |Ui| = �i. Thus

p(F1, G)p(F2, G) =
∑

F∈F0
�1+�2

p(F1, F2;F)p(F,G) + O(1/n), (2.2)

where p(F1, F2;F) denotes the probability that F[Ui] ∼= Fi (i.e., the subgraph of F induced

by Ui is isomorphic to Fi) for both i = 1, 2 when we take a random partition U1 ∪U2 of

the vertex set of F ∈ F0
�1+�2

with part sizes �1 and �2. Since we are interested in the case

when n → ∞, we formally define the product F1 · F2 to be equal to∑
F∈F0

�1+�2

p(F1, F2;F)F ∈ RF0

and extend this multiplication to RF0 by linearity. It is not surprising that this definition

is compatible with the factorization by K0, making A0 a commutative associate algebra

with the empty graph being the multiplicative identity; see [34, Lemma 2.4].

Unfortunately, we do not have the property that graph evaluations preserve multiplic-

ation exactly. This can be rectified if we take as input not just a single graph G but a se-

quence of graphs {Gn} which is convergent, by which we mean that |V (G1)| < |V (G2)| < · · ·
(we call such sequences increasing) and for every graph F the limit

φ(F)
def
= lim

n→∞
p(F,Gn) (2.3)

exists. Then the ‘value’ of
∑s

i=1 αiFi ∈ RF0 on {Gn} is

s∑
i=1

αiφ(Fi).

One can take the dual point of view, considering φ as a map from RF0 to R; it is routine

to see that, for each convergent sequence {Gn}, the corresponding map φ : RF0 → R is

compatible with the factorization by K0 and, in fact, gives an algebra homomorphism

from A0 to R (which we also denote by φ); see [34, Theorem 3.3]. We say that φ is the limit

of {Gn} and, following the notation in [34, Section 3.1], denote this as φ = limn→∞ p
Gn ,

where

pGn(F)
def
= p(F,Gn)

if |V (F)| � |V (Gn)|, and 0 otherwise.
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Clearly, φ is non-negative, that is, φ(F) � 0 for every graph F . Let Hom+(A0,R) be the

set of all non-negative homomorphisms.

It turns out that every non-negative homomorphism φ : A0 → R is the limit of some

sequence of graphs. It is instructive to sketch a proof of this; see Lovász and Szegedy [22,

Lemma 2.4] for details (or [34, Theorem 3.3] in a more general context). Take some

integer n. Since the identity
∑

F∈F0
n
F = 1 holds in A0, we have that

∑
F∈F0

n
φ(F) = 1, that

is, φ defines some probability distribution on F0
n . Let Gn,φ ∈ F0

n be drawn according to

this distribution with the choices for different values of n being independent. Fix some F

and ε > 0. Let n � |V (F)|. An easy calculation shows that the expectation of p(F,Gn,φ) is

exactly φ(F). Also, the variance of p(F,Gn,φ), which can be expressed via counting pairs

of F-subgraphs versus two independent copies of F , is O(1/n). Chebyshev’s inequality

implies that the probability of the ‘bad’ event |p(F,Gn,φ) − φ(F)| > ε is O(1/n) and the

Borel–Cantelli Lemma shows that with probability 1 only finitely many bad events occur

when n runs over, for example, all squares. Since there are only countably many choices

of F and, for example, ε ∈ {1, 1/2, 1/3, . . .}, we conclude that {Gn2,φ} converges to φ with

probability 1. Thus the required convergent sequence exists.

If one wishes that the graph orders in the sequence span all natural numbers, one

can pick some convergent sequence and fill all orders by uniformly ‘blowing’ up its

members; see, e.g., [17, Section 2.3]. Alternatively, one can show that the sequence {Gn,φ}
itself converges with probability 1 via a stronger concentration result for p(F,Gn,φ) that

considers its first four moments; see [19, Lemma 11.7].

How can these concepts be useful for proving that g3(a) = h(a)? Pick an increasing

sequence of graphs {Gn} of edge density a+ o(1) such that the limit of p(K3, Gn) exists

and is equal to g3(a). A standard diagonalization argument shows that {Gn} has a

convergent subsequence; let φ be its limit. Then φ(K2) = a. Now, if we can show that

∀φ ∈ Hom+(A0,R) (φ(K2) = a =⇒ φ(K3) � h(a)), (2.4)

then we can conclude that indeed g3(a) = h(a), as was done in [35].

In this paper, we achieve more: we describe the set of all extremal homomorphisms,

that is, those φ ∈ Hom+(A0,R) that achieve equality φ(K3) = g3(φ(K2)).

Let Φ ⊆ Hom+(A0,R) consist of all possible limits of convergent sequences {Gn} for

which there is a ∈ [0, 1] such that Gn ∈ Ha for all n. Equivalently, Φ can be defined

as follows. Recall that the join G1 ∨ . . . ∨ Gk of graphs G1, . . . , Gk is obtained by taking

their disjoint union and adding all edges in between. We define a similar operation on

homomorphisms φ1, . . . , φk ∈ Hom+(A0,R). We need a more general construction where

one specifies how much relative weight each φi has, by giving non-negative reals α1, . . . , αk
with sum 1. Let n → ∞ and, for i ∈ [k], let Gi,n be a graph with �αin� vertices such

that the sequence {Gi,n} converges to φi; as we have already remarked, it exists. Let

Fn = G1,n ∨ · · · ∨ Gk,n. Let the join φ = ∨(φ1, . . . , φk; α1, . . . , αk) be the limit of {Fn} (it is

easy to see that the limit exists).

Alternatively, we can define the join φ without appealing to convergence. To this end, it

is enough to define the density of each graph F ∈ F0, and we do it as follows. Let aut(F)
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denote the number of automorphisms of F . Let

φ(F)
def
=

|V (F)|!
aut(F)

∑
(V1 ,...,Vk)

k∏
i=1

(
α

|Vi|
i φi(F[Vi])

aut(Fi)

|Vi|!

)
, (2.5)

where the summation runs over all possible ways (up to isomorphism) to partition

V (F) = V1 ∪ · · · ∪ Vk into k labelled parts (allowing empty parts) so that the induced

bipartite subgraph F[Vi, Vj] is complete for all 1 � i < j � k. The reader is welcome to

formally check that the join is well-defined (with respect to the factorization by K0) and

belongs to Hom+(A0,R). (These facts are obvious from the first definition.)

Now, Φ is exactly the set of all possible joins

∨(0, . . . , 0︸ ︷︷ ︸
t−1 times

, ψ; c, . . . , c︸ ︷︷ ︸
t−1 times

, 1 − (t− 1)c),

where 0 denotes the (unique) non-negative homomorphism in Hom+(A0,R) of zero edge-

density, ψ ∈ Hom+(A0,R) is arbitrary with ψ(K3) = 0 and

ψ(K2) = 2c(1 − tc)/(1 − (t− 1)c)2,

and c is a real from the interval [1/(t+ 1), 1/t).

Our main result states that the set of g3-extremal homomorphisms is exactly Φ.

Theorem 2.1.

Φ = {φ ∈ Hom+(A0,R) : φ(K3) = g3(φ(K2))}.

Let us show that Theorem 2.1 implies Theorem 1.1. The shortest way is to refer to

some known results about the so-called cut-distance δ� that goes back to Frieze and

Kannan [16]. We omit the definition of δ� but refer the reader to [3, Definition 2.2] (see

also [19, Chapter 8]).

Suppose for the sake of contradiction that Theorem 1.1 is false, which is witnessed by

some ε > 0. Then we can find an increasing sequence {Gn} of graphs with

p(K3, Gn) � g3(p(K2, Gn)) + o(1)

that violates the conclusion of Theorem 1.1. By passing to a subsequence, we can assume

that {Gn} is convergent. Let φ0 ∈ Hom+(A0,R) be its limit. Let a = φ0(K2). Clearly,

φ0(K3) = g3(a). By Theorem 2.1, φ0 ∈ Φ and we can choose a sequence {Hn} in H which

converges to φ0 with V (Hn) = V (Gn).

This convergence means that asymptotically Gn and Hn have the same statistics of fixed

subgraphs. This does not necessarily imply that Gn and Hn are close in the edit distance.

(For example, two typical random graphs of edge density 1/2 have similar subgraph

statistics but are far in the edit distance.) However, the presence of a spanning complete

partite graph in Hn implies a similar conclusion about Gn, as follows.

Theorem 2.7 in Borgs, Chayes, Lovász, Sós and Vesztergombi [3] gives that δ�(Gn,Hn) =

o(1), that is, the cut-distance between Gn and Hn tends to 0. (An important property of the
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cut-distance is that an increasing sequence {Gn} is convergent if and only if it is Cauchy

with respect to δ�.)

By [3, Theorem 2.3], we can relabel V (Hn) so that for every disjoint S, T ⊆ V (Gn) we

have

|e(Gn[S, T ]) − e(Hn[S, T ])| = o(v2), (2.6)

where v = v(n) is the number of vertices in Gn. Informally, this means that the graphs Gn
and Hn have almost the same edge distribution with respect to cuts. Take the partition

V (Hn) = V1 ∪ · · · ∪ Vt−1 ∪U that was used to define Hn. Let i ∈ [t− 1]. If we set S = Vi
and T = V (Gn) \ Vi in (2.6), then we conclude that the number of S − T edges that are

missing from Gn is o(v2). Also, the number of edges in G[Vi] is o(v2), for otherwise a

random partition Vi = S ∪ T would contradict (2.6). Thus, by changing o(v2) adjacencies

in Gn, we can assume that the graphs Gn and Hn coincide except for the subgraph induced

by U. Suppose that |U| = Ω(n) for otherwise we are done. We have

|e(Gn[U]) − e(Hn[U])| = |e(Gn) − e(Hn)| = o(v2).

Of course, when we modify o(v2) adjacencies in Gn, then the number of triangles changes

by o(v3). Each edge of Gn[U] (and of Hn[U]) is in the same number of triangles

with the third vertex belonging to V (Gn) \U. Since Hn[U] is triangle-free and Gn is

asymptotically extremal, we conclude that Gn[U] spans o(v3) triangles. By the Triangle

Removal Lemma [14, 37] (see e.g., [18, Theorem 2.9]), we can make Gn[U] triangle-free

by deleting o(v2) edges.

If e(Gn[U]) � e(Hn[U]), then we just remove some edges from Gn[U] until exactly

e(Hn[U]) edges are left, in which case the obtained graph Gn belongs to Ha,n and

Theorem 1.1 is proved. Otherwise we obtain the same conclusion for all large n by

applying the following lemma to Gn[U] and s = e(Hn[U]).

Lemma 2.2. For every ε > 0 there are δ > 0 and n0 such that for every K3-free graph G

on n � n0 vertices and every integer s with

e(G) < s � min(e(G) + δn2, �n2/4�) (2.7)

one can change at most εn2 adjacencies in G so that the new graph is still K3-free and has

exactly s edges.

Proof. Clearly, it is enough to show how to ensure at least s edges in the final K3-

free graph. Given ε > 0, choose small positive constants c � δ. Let n be large and let s

satisfy (2.7). Let m = e(G).

We can assume that, for example, m � εn2/3. Also, assume that m � �n2/4� − cn2, for

otherwise we are done by the Stability Theorem of Erdős [12] and Simonovits [38], which

implies that G can be transformed into the Turán graph T2(n) by changing at most εn2

adjacencies.
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The number p of paths of length 2 in G is

∑
x∈V (G)

(
d(x)

2

)
,

which is at least n
(
2m/n

2

)
by the convexity of the function

(
x
2

)
. By averaging, there is an

edge xy ∈ E(G) that belongs to at least

2p

m
�

2n
(
2m/n

2

)
m

� 4m

n
− δn

such paths (which is just the number of edges between the set {x, y} and its complement).

Let G′ be obtained from G by adding cn clones of x and cn clones of y. Thus G′ has

n′ = (1 + 2c)n vertices and m′ � m+ cn (4m/n− δn) + (cn)2 edges. If we take a random

n-subset U of V (G′), then each edge of G′ is included with probability
(
n
2

)
/
(
n′

2

)
. Thus there

is a choice of an n-set U such that the number of edges in H = G′[U] is at least the

average, which in turn is at least

(m+ cn (4m/n− δn) + (cn)2)
(
n
2

)
(
(1+2c)n

2

) � m+
c2(n2 − 4m) − 2cδn2

(1 + 2c)2
.

This is at least m+ δn2 � s by our assumption on m. Since G and H coincide on the set

V (G) ∩ V (H) of least n− 2cn vertices, G can be transformed into the K3-free graph H by

changing at most 2cn2 � εn2 adjacencies, as required.

3. Sketch of proof of φ(K3) � h(φ(K2))

Let us sketch the proof of (2.4) from [34, 35], being consistent with the notation defined

there. Let ρ
def
= K2 ∈ F0

2 . Consider the ‘defect’ functional f(φ) = φ(K3) − h(φ(ρ)), where

h is defined by (1.4). We can identify each homomorphism φ ∈ Hom(A0,R) with the

sequence

(φ(F))F∈F0 ∈ R
F0

of its values on graphs. Let us equip all products with the pointwise convergence (or

product) topology. The set Hom(A0,R) is a closed subset of R
F0

as the intersection

of closed subsets corresponding to the relations that an algebra homomorphism has to

satisfy. Thus the set

Hom+(A0,R) =
⋂
F∈F0

{φ ∈ Hom(A0,R) : φ(F) � 0}

is closed too. Moreover, it lies inside the compact space [0, 1]F
0
, so it is compact as well.

Since h(x) is a continuous function (including the special point x = 1), our functional f

is also continuous and achieves its smallest value on Hom+(A0,R) at some non-negative

homomorphism φ0. Fix one such φ0 for the rest of the proof. Let a = φ0(ρ). Let t = t(a)

and c = c(a) be defined as in the Introduction. Let b = φ0(K3). We have to show that

b � h(a).

If a = φ(ρ) � 1/2, then h(a) = 0 and there is nothing to do.

https://doi.org/10.1017/S0963548316000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000110


148 O. Pikhurko and A. Razborov

Let us write an explicit formula for the function h(x) defined in (1.4) when 1 − 1/t �
x � 1 − 1/(t+ 1):

ht(x)
def
=

(t− 1)
(
t− 2

√
t(t− x(t+ 1))

)(
t+

√
t(t− x(t+ 1))

)2

t2(t+ 1)2
. (3.1)

If a = 1 − 1/(t+ 1), then we are done by the well-known bound – proved independently

by Moon and Moser [26] and Nordhaus and Stewart [28] – that for every 0 � m �
(
n
2

)

g3(m, n) � x(x− 1)(x− 2)

6

(
n

x

)3

, x
def
= (1 − 2m/n2)−1. (3.2)

So let us assume that a lies in the open interval (1 − 1/t, 1 − 1/(t+ 1)). Here the

function ht(x) is differentiable, and it is routine to see that h′
t(a) = 3(t− 1)c. A calculation-

free intuition is that if we add one edge to H ∈ Ha then the number of triangles increases

by ((t− 1)c+ o(1))n (while the effect of the change in the part sizes is relatively negligible);

so we expect that

h′
t(a)

(
n

2

)−1

≈ (t− 1)cn

(
n

3

)−1

.

Let us see which properties φ0 has. Let {Gn} converge to φ0 with |V (Gn)| = n. Let ε > 0

be a small constant.

It is impossible that at least εn2 edges of Gn are each in more than ((t− 1)c+ ε)n

triangles: by removing a uniformly spread subset of these edges we get a change that is

noticeable in the limit and strictly decreases the defect functional f. Thus, if we pick a

random edge from E(Gn), then with probability 1 − o(1) there are at most ((t− 1)c+ o(1))n

triangles containing this edge. (Note that Gn has Ω(n2) edges by our assumption a � 1/2.)

The corresponding flag algebra statement [35, (3.3)] reads

φE
0 (KE

3 ) � 1

3
h′
t(a) a.e. (= almost everywhere). (3.3)

Let us explain (3.3) informally. It involves counting triangles that contain a specified

edge. Let FE consist of E-flags, by which we mean graphs with some two adjacent vertices

being labelled as 1 and 2. Any isomorphism has to preserve the labels. We may represent

elements of FE as (G; x1, x2), where G ∈ F0 is a graph and xi ∈ V (G) is the vertex that gets

label i. Suppose that we wish to keep track of various subgraph densities and their finite

linear combinations for E-flags. We can view (F; y1, y2) ∈ FE as an evaluation on FE that

on input (G; x1, x2) returns p((F; y1, y2), (G; x1, x2)), the probability that the E-subflag of G

induced by a random |V (F)|-set X with {x1, x2} ⊆ X ⊆ V (G) is isomorphic to (F; y1, y2).

Again, if we know the densities of all E-flags with � � |V (F)| vertices, then we can

determine the density of (F; y1, y2) by the analogue of (2.1). So we can define the

corresponding linear subspace KE and let AE def
= RFE/KE . The obvious analogue of (2.2)

holds, and the corresponding coefficients define a multiplication on RFE that turns AE

into a commutative algebra. The multiplicative identity is E ∈ FE , the unique E-flag

on K2. As in the unlabelled case, the limits of convergent sequences of E-flags are

precisely non-negative algebra homomorphisms from AE to the reals ([34, Theorem 3.3]).
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Now, we can turn Gn into an E-flag by taking a random edge uniformly from E(Gn)

and randomly labelling its endpoints by 1 and 2. Thus for each n we have a probability

distribution on E-flags which weakly converges to the distribution on Hom+(AE,R), and

it is very important that this distribution can be uniquely retrieved from φ0 only (see [35,

Section 3.2]). In particular, it will not depend on the choice of the representing convergent

sequence {Gn}. In (3.3), φE
0 denotes the extension of φ0 (that is, a random homomorphism

from Hom+(AE,R) drawn according to this distribution), while KE
3 is the unique E-flag

with the underlying graph being K3.

Let us consider the effect of removing a vertex x from Gn. When we first remove d(x)

edges at x, the edge density goes down by d(x)/
(
n
2

)
. Next, when we remove the (now

isolated) vertex x, the edge density is multiplied by(
n

2

)/(
n− 1

2

)
= 1 +

2

n
+ O(n−2).

Thus the edge density changes by

−d(x)
/(

n

2

)
+ 2a/n+ O(n−2).

Likewise, the triangle density changes by

−K1
3 (x)

/(
n

3

)
+ 3b/n+ O(n−2),

where K1
3 (x) is the number of triangles per x. Thus for all but at most εn vertices x we

have

(−2d(x)/n+ 2a)h′
t(a) < −3K1

3 (x)
/(

n

2

)
+ 3b+ ε,

for otherwise by removing εn such vertices (and taking the limit of a convergent

subsequence of the resulting graphs) we can strictly decrease the defect functional f.

In the flag algebra language this reads as

−2h′
t(a)φ

1
0(K

1
2 ) + 2h′

t(a)a � −3φ1
0(K

1
3 ) + 3b, a.e., (3.4)

where F1 consists of all graphs with one vertex labelled 1, K1
2 , K

1
3 ∈ F1 ‘evaluate’ the

edge and triangle density at the labelled vertex, and φ1
0 ∈ Hom+(A1,R) is the random

extension of φ0 constructed similarly2 to φE
0 .

Note that if we take the expectation of each side of (3.4) with respect to the random

φ1
0 ∈ Hom+(A1,R), then we get 0. (A calculation-free intuition is that the edge/triangle

density of a graph G is equal to the average density of edges/triangles sitting on a random

vertex of G.) Thus we conclude that (3.4) is in fact equality a.e. ([35, (3.2)]).

How can (3.3) and (3.4) be converted into statements about φ0? If, for example, one

applies the averaging operator �...�1 ([34, Section 2.2]) to (3.4), that is, taking the expected

value of (3.4) over φ1
0, then one obtains the identity 0 = 0, as we have just mentioned.

However, one can multiply both sides of (3.4) by some 1-flag F and then average. (In

2 Now it is an appropriate place to observe that the superscript in F0 refers to the empty type 0.
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terms of graphs this corresponds to weighting vertices of Gn proportionally to the density

of F-subgraphs rooted at them.) What sufficed in [34, 35] was to take F = K1
2 . Denoting

e = K1
2 for convenience and rearranging terms, we get ([35, (3.4)])

φ0(3�eK
1
3 �1 − 2h′

t(a)�e
2�1) = a(3b− 2ah′

t(a)). (3.5)

Applying the operator �. . .�E (averaging over φE
0 and multiplying by the probability

that two random vertices induce the type E) directly to (3.3) is not useful. Namely, if we

take a graph G ∈ Ha, then the graph analogue of (3.3) may have slack for edges that

connect two larger parts; thus the obtained inequality will not be best possible. The trick

in [34] was first to multiply (3.3) by the E-flag P̄ E
3 whose graph is the complement of the

3-vertex path. (Thus each edge of Ha with slack gets weight 0.) We obtain ([35, (3.5)])

φ0(�P̄
E
3 K

E
3 �E) � 1

3
h′
t(a)φ0(�P̄

E
3 �E) =

1

9
h′
t(a)φ0(P̄3). (3.6)

We will also need the following identity, which may be routinely checked (compare with

[35, Lemma 3.2]):

3�eK1
3 �1 + 3�P̄ E

3 K
E
3 �E = 2K3 +K4 +

1

4
K̄1,3, (3.7)

where Ks,t is the complete bipartite graph with part sizes s and t. (Thus K̄1,3 is a triangle

plus an isolated vertex.) Also, we have

1

3
P̄3 + 2�e2�1 = ρ+K3. (3.8)

Now, if we apply φ0 to (3.7) and (3.8) and combine with (3.5) and (3.6), then we obtain

the following inequality (see [35, (3.6)], where it is also proved that h′
t(a) + 3a− 2 > 0):

b �
a(2a− 1)h′

t(a) + φ0(K4) + 1
4
φ0(K̄1,3)

h′
t(a) + 3a− 2

. (3.9)

If φ0(K̄1,3) = 0 and φ0(K4) is equal to the limiting K4-density in Ha, then the right-hand

side of (3.9) is exactly h(a). Thus it remains to bound φ0(K4) from below. In particular,

we are already done if a � 2/3 since every graph in Ha has no (or very few) copies of K4;

this is what was done in [34]. Of course, the result of Nikiforov [27] – who determined

g4(a) for all a – would suffice here, but in order to prove our new Theorem 2.1 we need

to analyse the argument of [35] further.

Following [35, page 612] define

A
def
=

2

3
h′
t(a) = 2(t− 1)c,

B
def
= Aa− b =

2

3
ah′

t(a) − b. (3.10)

Then, for example, (3.4), which is an equality a.e., can be rewritten as

φ1
0(K

1
3 ) = Aφ1

0(e) − B a.e. (3.11)

Also, let us apply the averaging operator �. . .�E,1 to (3.3). Informally speaking, given the

labelled vertex x1 ∈ V (Gn), we pick the second labelled vertex x2 uniformly at random
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and take the expectation of (3.3) multiplied by the indicator function of x1 and x2 being

adjacent. Since �KE
3 �E,1 = K1

3 and �1�E,1 = �E�E,1 = e, we get ([35, (3.8)])

φ1
0(K

1
3 ) � 1

3
h′
t(a) φ1

0(e) =
A

2
φ1

0(e) a.e. (3.12)

The combinatorial meaning of the last step is very simple: if each edge is in at most

(t− 1)cn triangles, then a given vertex x1 can belong to at most 1
2
d(x1)(t− 1)cn triangles.

From (3.11) and (3.12) we obtain

0 <
B

A
� φ1

0(e) � 2B

A
a.e. (3.13)

Now let us take any individual φ1 ∈ Hom+(A1,R) for which (3.11)–(3.13) hold. Let

ψ
def
= φ1πe ∈ Hom+(A0,R), (3.14)

see [35, page 612]. Informally, we take an arbitrary vertex x of Gn and assume that

the density of edges/triangles containing x satisfies (3.11)–(3.13). Then ψ corresponds to

taking the subgraph Hn of Gn induced by the neighbourhood of x. For example, the edge

density of Hn can be calculated by taking the triangle density at x and multiplying it by(
n− 1

2

)/(
d(x)

2

)
≈

(
n− 1

d(x)

)2

.

In the flag algebra formalism this reads ([35, (3.13)])

ψ(ρ) =
φ1(K1

3 )

(φ1(e))2
=
Aφ1(e) − B

(φ1(e))2
=
z − μ

z2
, (3.15)

where following [35, page 612] we define

z
def
= φ1(e)/A and μ

def
= B/A2. (3.16)

Some calculations based on (3.2) show that ([35, (3.15)])

ψ(ρ) � 1 − 1

t
. (3.17)

Summarizing (in the graph theory language): the degree of a typical x ∈ V (Gn)

determines the edge density of Gn[N(x)], the subgraph induced by the neighbourhood

N(x) of x. Moreover, this density is at most 1 − 1/t+ o(1). This gives us a strategy for

bounding the number of K4’s in Gn from below: use induction on t to bound the number

of K3’s in N(x) and then sum this over all x ∈ V (Gn) (and divide by 4). Unfortunately,

this bound on ψ(K3) involves radicals and it is not clear how to average it, since t(ψ(ρ))

may assume different values for different choices of φ1. These difficulties are overcome by

proving the following lower bound on φ1(K1
4 ) = ψ(K3)(φ

1(e))3, which is a linear function

of φ1(e) that does not depend on t(ψ(ρ)) ([35, (3.24)]):

φ1(K1
4 ) � A3

(
3

2
(1 − 2μ)

(
φ1(e)

A
− ηt−1

)
+ η3

t−1

(t− 2)(t− 3)

(t− 1)2

)
, (3.18)

where, for 1 � s � t− 1, ηs is the unique root of the equation

ηs − μ

η2
s

= 1 − 1

s
(3.19)
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that lies in the interval [μ, 2μ]; see [35, (3.17)]. Thus the random extension φ1
0 satisfies (3.18)

a.e. and we can average it, obtaining a lower bound on φ0(K4), which is [35, (3.25)]. (Note

that the expectation of φ1
0(K

1
4 ) is φ0(K4).) It turns out that this lower bound, when substi-

tuted into (3.9), suffices for proving the desired conclusion b � h(a). The derivations (also

those of (3.18)) are rather messy, do not involve any genuine flag algebra calculations and

are not needed for our proof. So we omit them and refer the reader to [35] for all details.

4. Proof of Theorem 2.1

All notation here is compatible with that of [34, 35]. As before, let 0, 1, and E denote the

(unique) types with respectively 0, 1 and 2 (adjacent) vertices. Also,

ρ
def
= K2 ∈ F0

2 and e
def
= K1

2 ∈ F1
2

are the (unique) 0- and 1-flags having two adjacent vertices. In the arXiv version of our

paper (arXiv.org:1204.2846) we offer a Mathematica code that verifies some laborious

flag algebra (in)equalities that are needed here.

Let Φ ⊆ Hom+(A0,R) be the set of the conjectured extremal homomorphisms defined

in Section 2. Let φ0 ∈ Hom+(A0,R) be arbitrary such that φ0(K3) = h(φ0(ρ)). We have to

show that φ0 ∈ Φ. Let

a
def
= φ0(ρ) and b

def
= φ0(K3).

We prove Theorem 2.1 (that is, the claim that φ0 ∈ Φ) by induction on the parameter

t = t(a) that was defined by (1.1). If t = 1, then a � 1/2, b = 0, and there is nothing to do:

every non-negative homomorphism of triangle density 0 is in Φ by definition. Let t � 2

and assume that we have proved the theorem for all smaller t.

Suppose first that a = 1 − 1/s for some integer s. Apply Theorem 1.2 to any sequence

{Gn} convergent to φ0, say with |V (Gn)| = n, to conclude that Gn is o(n2)-close to the

Turán graph Ts(n) in the edit distance. Clearly, when we change o(n2) edges in Gn, then

the density of any fixed graph F changes by o(1), so φ0 is still the limit of {Gn}. Since the

limit of {Ts(n)} is in Φ, we are done in this case.

So let a lie in the open interval (
1 − 1

t
, 1 − 1

t+ 1

)
.

Let c be defined by (1.2). We assume that the reader is familiar with the proof in [35]; part

of it was sketched in Section 3, and we utilize the notation and facts established there.

Since φ0 is extremal, we know that b = h(a). This gives some noticeable simplifications

to (3.10), (3.16) and (3.19):

B = t(t− 1)c2,

μ =
B

A2
=

t

4(t− 1)
,

ηt−1 = 1/2. (4.1)
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The support of the random extension φσ
0 discussed in the previous section is the smallest

closed subset of Hom+(Aσ,R) of measure 1; it will be denoted by Sσ(φ0). A useful property

of the support is that if some closed property has measure 1, then every element of Sσ(φ0)

has this property. We fix an arbitrary φ1 ∈ S1(φ0). Inequalities (3.11)–(3.13) hold a.e. and

define a closed subset, thus φ1 satisfies them. In particular, (3.13) simplifies to

0 <
tc

2
� φ1(e) � tc < 1. (4.2)

So, we can define ψ by (3.14).

Let us prove that ψ is extremal (that is, has the smallest possible triangle density given

its edge density). It is this part of our proof that most heavily relies upon [35]; it basically

amounts to checking that the extremality assumption b = h(a) makes tight sufficiently

many useful inequalities proved there.

Claim 4.1. ψ ∈ Φ and

ψ(ρ) ∈
[
1 − 1

t− 1
, 1 − 1

t

]
.

Proof. Let s be such that

ψ(ρ) ∈
(

1 − 1

s
, 1 − 1

s+ 1

]
.

We know that the result of averaging (3.18) (which is [35, (3.25)]) is an equality. Hence

(3.18) is equality a.e., and by the same token as before, it holds for every φ1 ∈ S1(φ0).

The analysis of the calculations in [35] shows that [35, (3.16)] (which is equivalent to

ψ(K3) � hs(ψ(ρ))) is also equality. Thus the homomorphism ψ ∈ Hom+(A0,R) is extremal.

By (3.17) we have that s � t− 1. The (global) induction assumption implies that ψ ∈ Φ.

We still have to show the second part of the claim when t � 3. Recall that

ψ(ρ) =
z − μ

z2

by (3.15). In view of (4.1), the quadratic equation

z − μ

z2
= 1 − 1

t− 1

has two roots: z = 1/2 and z = t/(2t− 4). By (4.2), it is impossible that z � t/(2t− 4)

(which is equivalent to φ1(e) � t(t− 1)c/(t− 2)). Thus, if we assume that s � t− 2, then

ψ(ρ) � 1 − 1

t− 1
and z � 1

2
= ηt−1.

Thus, when we apply the proof of [35, Claim 3.3], the case z � ηt−1 takes place. This

implies that [35, (3.21)] is tight. Then [35, (3.23)] is also tight. Its proof on page 615 of

[35] shows that this is possible only if μ = (s+ 1)/4s is the largest element of[
z

2
,
s+ 1

4s

]
,

the admissible interval for μ. By (4.1) we have that s = t− 1, as required.
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Claim 4.1 alone suffices to verify Theorem 2.1 in the toy-like case φ0(P̄3) = 0, where

P̄3 denotes the complement of the 3-vertex path; combinatorially this means that φ0

is the limit of complete multipartite graphs. Indeed, φ0(P̄3) = 0 obviously implies that

the homomorphism ψ defined by (3.14) also satisfies ψ(P̄3) = 0 and, moreover, φ0 is

equal to the join ∨(0, ψ; 1 − φ1(e), φ1(e)). The latter fact readily follows from definitions;

combinatorially it means that every vertex x in a complete multipartite graph Gn defines

its decomposition as the join Gn = In ∨Hn, where Hn is the subgraph induced by all

neighbours of x and In is the independent set induced by all non-neighbours of x. Thus,

applying Claim 4.1 inductively, we conclude that every φ0 ∈ Φ with φ0(P̄3) = 0 necessarily

has the form

∨(0, . . . , 0︸ ︷︷ ︸
k times

; c1, . . . , ck),

where, say, 0 < c1 � · · · � ck , for some fixed finite k. We are only left to prove that

c2 = · · · = ck , and the simplest way of doing this is to invoke [27, Claim 2.13] used by

Nikiforov for an essentially identical purpose.

Claim 4.2. Let γ3 � γ2 � γ1 > 0 be real numbers satisfying

γ1 + γ2 + γ3 = α,

γ1γ2 + γ2γ3 + γ3γ1 = β,

and let γ1γ2γ3 be minimized subject to these two constraints. Then γ2 = γ3.

The case φ0(P̄3) > 0 is way more elaborate, and this is where the main novelty of our

contribution lies. We begin with the following claim. The intuition behind it is as follows.

Identity (3.11) gives a linear relation between triangle and edge densities via a vertex. By

Claim 4.1 we know that (3.11) also holds for the subgraph induced by the neighbourhood

of almost every vertex x ∈ V (G). If we average this for all choices of x, then we get some

linear relation between the densities of K4, K3, and K2 that has to hold for all extremal

homomorphisms. Repeating, we get a linear relation for K5, K4, and K3, and so on.

Claim 4.3. For every r � 3, we have

φ0(Kr) = 2(t− r + 2)cφ0(Kr−1) − (t− r + 3)(t− r + 2)c2φ0(Kr−2). (4.3)

Proof. We use induction on r. If r = 3, then the identity relates b = φ0(K3) and a = φ0(ρ).

Both of these parameters have been explicitly expressed in terms of c and t and the desired

identity (4.3) can be routinely checked.

Suppose that (4.3) is true (for all extremal φ0). Let us prove it for r + 1. Let φ1 ∈ S1(φ0)

be arbitrary and let ψ = φ1πe. By Claim 4.1 we know that

ψ(ρ) ∈
[
1 − 1

t− 1
, 1 − 1

t

]
.
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Let γ = c(ψ(ρ)), where c(x) is defined by (1.3), that is, γ is the unique root of

2

((
t− 1

2

)
γ2 + (t− 1)γ(1 − (t− 1)γ)

)
= ψ(ρ) (4.4)

with γ � 1/t. We have that γ = c/φ1(e). Indeed, this value satisfies (4.4) by (3.15) and is

at least 1/t by (4.2). (An informal reason is that all derived inequalities are sharp for Φ

and, if we pass to a neighbourhood of a vertex in some H ∈ Ha, then its t− 2 largest

parts have the same (absolute) sizes as the t− 1 largest parts of H .)

By Claim 4.1, we have that t(ψ(ρ)) = t− 1. Thus, by the induction assumption,

ψ(Kr) = 2(t− r + 1)γψ(Kr−1) − (t− r + 2)(t− r + 1)γ2ψ(Kr−2).

If we now substitute

γ = c/φ1(e) and ψ(Ks) = φ1(K1
s+1)/(φ

1(e))s,

cancel all occurrences of (φ1(e))−r , and average the result, we obtain exactly what we

need.

Let us define h(r)(1) = 1 and, for 0 � x < 1,

h(r)(x)
def
= r!

((
t

r

)
cr +

(
t

r − 1

)
cr−1(1 − tc)

)
,

where c = c(x) is again defined by (1.3). In other words, h(r)(x) is the limiting density of

Kr in the graphs from Hx,n as n → ∞. (In particular, h(3) is equal to our function h.) It is

an upper bound on gr(x) and, as it was recently shown by Reiher [36], they are in fact

equal: gr(x) = h(r)(x).

Claim 4.3 has the following useful corollary.

Claim 4.4. Let r � 3. Then φ0(Kr) = h(r)(a), that is, each clique has the ‘right’ density. In

particular, φ0(Ks) = 0 for s � t+ 2.

Proof. This is true for r = 3 as φ0(K3) = g3(a). The general case follows from Claim 4.3

by induction on r.

Recall that we assume φ0(P̄3) > 0 (as the case φ0(P̄3) = 0 was tackled earlier). We need

a few auxiliary results. For a graph F ∈ F0
� , let F (1) ∈ F1

�+1 be the 1-flag obtained by

adding a new vertex x that is connected to all vertices of F (i.e., taking the join F ∨K1)

and labelling x as 1.

Claim 4.5. φ0(�P̄
(1)
3 �1) > 0.

Proof. By Claim 4.4 we have that φ0(K4) = h(4)(a). When we substitute this value into

(3.9) we obtain a tight inequality except for the extra term involving K̄1,3 (a triangle plus

an isolated vertex). We conclude that

φ0(K̄1,3) = 0. (4.5)
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G1 G2

Figure 1. Exceptional graphs.

1 2

PE,b
4

1 2

FE

1 2

PE,c
4

Figure 2. Some E-flags.

Inequality (3.6) is also used in the proof, so it has to be tight. Since we assumed that

φ0(P̄3) > 0, we have that φ0(�P̄
E
3 K

E
3 �E) > 0, where P̄ E

3 is the unique E-flag on P̄3. But

�P̄ E
3 K

E
3 �E =

1

4
K̄1,3 +

1

3
�P̄ (1)

3 �1,

and the claim follows.

The two graphs in Figure 1, called G1 and G2, will play a special role.

Claim 4.6. φ0(G1) = φ0(G2) = 0.

Proof. We apply the same strategy (although with much more involved calculations)

as the one used to prove (4.5). Namely, we make up an analogue of (3.9) that is tight

on extremal homomorphisms and such that the ‘overall slackness’ involved will cover G1

and G2.

Form the element fE ∈ FE
4 as follows:

fE
def
=

1

2
P
E,c
4 − 1

2
P
E,b
4 − FE,

where PE,c
4 , P

E,b
4 , FE ∈ FE

4 are shown on Figure 2. Since (3.6) is tight,

φE
0 (KE

3 ) <
1

3
h′
t(a) =⇒ φE

0 (P̄ E
3 ) = 0 a.e.

Since both PE,b
4 and FE contain P̄ E

3 , this implies that

φE
0 (KE

3 ) <
1

3
h′
t(a) =⇒ φE

0 (fE) � 0 a.e. (4.6)

(Recall that ht is just the restriction of h to the interval [1 − 1/t, 1 − 1/(t+ 1)] as defined

by (3.1).) Thus, by (3.3), we can multiply the left-hand side of (4.6) by fE , obtaining a

true inequality. If we apply the averaging operator �. . .�E to this new inequality, we get
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that

φ0(�f
EKE

3 �E) � 1

3
h′
t(a)φ0(�f

E�E). (4.7)

Next, similarly to [35, (3.4)] but multiplying [35, (3.2)] (i.e., our formula (3.4) which is

equality a.e.) by K1
3 rather than by e, we obtain

φ0(3�(K1
3 )

2�1 − 2h′
t(a)�eK

1
3 �1) = b(3b− 2ah′

t(a)). (4.8)

Subtracting (4.8) from (4.7) multiplied by 3, and re-grouping terms, we obtain

3φ0(�f
EKE

3 �E − �(K1
3 )

2�1) + h′
t(a)φ0(2�eK

1
3 �1 − �fE�E) � b(2ah′

t(a) − 3b). (4.9)

But we also have

2�eK1
3 �1 − �fE�E =

4

3
K3 +

2

3
K4 − 1

3
K̄1,3 (4.10)

and

�fEKE
3 �E − �(K1

3 )
2�1 � 1

60
(G1 + G2) −

(
1

2
K4 +

1

3
ρK3 +

1

6
K5

)
. (4.11)

Substituting these relations into (4.9), and using Claim 4.4, we conclude by (4.5) that

1

20
φ0(G1 + G2) � b(2ah′

t(a) − 3b) − h′
t(a)

(
4

3
b+

2

3
h(4)(a)

)

+

(
3

2
h(4)(a) + ab+

1

2
h(5)(a)

)
= 0.

Claim 4.6 is proved.

Lemma 4.7. Let G be a graph on V = {x1, x2, x3, y, z} with the following properties. The

vertices x1, x2, x3 induce P̄3 with x1x2 ∈ E(G), y is adjacent to each xi and z is non-adjacent

to at least one xi.

If yz �∈ E(G), then G contains K̄1,3 as an induced subgraph or G is isomorphic to G1 or G2.

Proof. If zx1, zx2 ∈ E(G), then zx3 �∈ E(G) and G− y ∼= K̄1,3. If zx1, zx2 �∈ E(G), then

G− x3
∼= K̄1,3. So we can assume without loss of generality that zx1 ∈ E(G) and zx2 �∈

E(G). Now, if zx3 �∈ E(G), then G is isomorphic to G1; otherwise G ∼= G2.

Now we are ready to put everything together. The next argument would look particularly

simple and elegant in genuinely flag-algebraic notation, but it would require introducing

some more notions and techniques, notably upward operators ([34, Section 2.3.1]) and

relating extensions for different types ([34, Theorem 3.17]). We prefer not to indulge into

this endeavour in the concluding part of our paper, so we replace this with (admittedly,

crude) translation to the finite world.

Let σ be the 3-vertex type whose graph is P̄3 with labels 1 and 2 being adjacent. Let

{Gn} converge to φ0 with |V (Gn)| = n. By Claim 4.5, Gn has Ω(n4) copies of F0 ∈ F0
4 , which

denotes a triangle with a pendant edge. Let F1 ∈ F1
4 be obtained from F0 by putting label
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1 on a vertex of degree 2. Let F3 ∈ Fσ
4 be the (unique) σ-flag that can be obtained from

F1 by adding labels 2 and 3.

Fix small positive constants ε � δ. Let

X = {x1 ∈ V (Gn) : p(F1, (Gn; x1)) > ε}.

By counting copies of F0 in Gn, we conclude that

2(φ(F0) + o(1))

(
n

4

)
� |X|

(
n− 1

3

)
+ (n− |X|)ε

(
n− 1

3

)
,

implying that, e.g., |X| � φ(F0)n/3 � 2εn. An easy counting shows that for every x1 ∈ X

there are at least δn2 pairs (x2, x3) of vertices with p(F3, (Gn; x1, x2, x3)) � δ. Likewise,

by (4.2), the set

Y = {x1 ∈ V (Gn) : p(e, (Gn; x1)) < 1 − ε}

has size at least (1 − ε)n. Thus |X ∩ Y | � εn and there are at least εn · δn2 choices of

(x1, x2, x3) such that x1 ∈ X ∩ Y and p(F3, (Gn; x1, x2, x3)) � δ. Given such a triple, let V1

consist of all vertices of Gn adjacent to all of x1, x2, x3 and let V2 = V (Gn) \ V1. We have

|V1| � δ(n− 3). Since x1 ∈ Y , we have |V2| � ε(n− 1) (note that all non-neighbours of x1

are in V2). For each non-adjacent y ∈ V1 and z ∈ V2, the 5-set {x1, x2, x3, y, z} contains

G1, G2 or K̄1,3 by Lemma 4.7. By (4.5) and Claim 4.6, each of these graphs has density

o(1) in Gn. Thus there is a triple (x1, x2, x3) with e(Ḡ[V1, V2]) = o(n2).

Fix one such choice. By taking a subsequence, we can assume that |Vi|/n tends to

a limit αi and that Gn[Vi] converges to some homomorphism φi, for i = 1, 2. Now,

φ0 = ∨(φ1, φ2, α1, α2), where α1 � δ and α2 � ε are bounded away from 0.

Let i = 1 or 2. Each φi is an extremal homomorphism: for example, if there exists φ′
1

with φ′
1(ρ) = φ1(ρ) and φ′

1(K3) < φ1(K3), then ∨(φ′
1, φ2, α1, α2) contradicts the extremality

of φ0. Since φ0(Kt+2) = 0 and α3−i > 0, we have φi(Kt+1) = 0 for i = 1, 2. Turán’s theorem

implies that φi(ρ) � 1 − 1/t. Thus we can apply the (global) induction and conclude that

φi ∈ Φ.

We have proved so far that φ0 is a join of two elements from Φ; in particular, it has

the form

φ0 = ∨(0, . . . , 0︸ ︷︷ ︸
k times

, ψ1, ψ2; c1, . . . , ck, d1, d2), with c1, . . . , ck > 0, (4.12)

where ψ1(K3) = ψ2(K3) = 0. Let

ψ′
i

def
= ∨(0, 0; pi, 1 − pi),

where pi � 1/2 satisfies 2pi(1 − pi) = ψi(ρ). Since ψ′
i(ρ) = ψi(ρ) and ψ′(K3) = ψ(K3) (= 0),

after plugging ψ′
i for ψi into φ0, we will get another extremal homomorphism

φ′
0

def
= ∨(0, . . . , 0︸ ︷︷ ︸

k+4 times

; c1, . . . , ck, d1p1, d1(1 − p1), d2p2, d2(1 − p2)). (4.13)

The equality φ′
0(P̄3) = 0, as we have proved earlier, implies φ′

0 ∈ Φ, that is, all non-zero

weights in (4.12) are equal except for possibly one that is allowed to be smaller than
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others. But φ0(P̄3) > 0 which implies that for at least one ψi, say, ψ1, we have d1 > 0 and

0 < p1 < 1/2. This already creates the exceptional weight d1p1 in (4.13); all other weights

must lie in {0, d1(1 − p1)}. In particular, either d2 = 0 or p2 ∈ {0, 1/2}; in the first case ψ2

can be crossed out from (4.12), and in the second case ψ2 = ψ′
2 and it can be merged with

the first k terms. Thus, φ0 ∈ Φ.

This finishes the proof of Theorem 2.1.

References

[1] Aristoff, D. and Radin, C. (2013) Emergent structures in large networks. J. Appl. Probab. 50

883–888.

[2] Bollobás, B. (1976) On complete subgraphs of different orders. Math. Proc. Camb. Phil. Soc. 79

19–24.

[3] Borgs, C., Chayes, J., Lovász, L., Sós, V. T. and Vesztergombi, K. (2008) Convergent sequences of

dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math. 219 1801–1851.

[4] Chatterjee, S. and Dembo, A. (2014) Nonlinear large deviations. arXiv:1401.3495

[5] Chatterjee, S. and Dey, P. S. (2010) Applications of Stein’s method for concentration inequalities.

Ann. Probab. 38 2443–2485.

[6] Chatterjee, S. and Diaconis, P. (2013) Estimating and understanding exponential random graph

models. Ann. Statist. 41 2428–2461.

[7] Chatterjee, S. and Varadhan, S. R. S. (2011) The large deviation principle for the Erdős–Rényi
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