
London Mathematical Society ISSN 1461–1570

COMPUTATIONAL ASPECTS OF CLASSIFYING SINGULARITIES

N. P. KIRK

Abstract

A Maple package which performs the symbolic algebra central to
problems in local singularity theory is described. This is a gener-
alisation of previous projects, which dealt only with problems in
elementary catastrophe theory. Applications to specific problems are
described, and a survey given of the powerful techniques from sin-
gularity theory that are used by the package. A description of the
underlying algorithm is given, and some of the more important com-
putational aspects discussed. The package, user manual and instal-
lation instructions are available in the appendices to this article.

1. Introduction

Calculations that arise in local singularity theory lend themselves naturally to symbolic
algebra methods. In this article we describe a package which deals with problems in classi-
fication and unfolding theory for the standard equivalence relations encountered in singu-
larity theory. The package, calledTransversal, consists of a collection of procedures
which run under the symbolic algebra systemMaple [7].

We refer to the survey article of Wall [25] and the book of Martinet [17] for a compre-
hensive discussion of the singularity theory used in this article. The more recent advances
in determinacy and classification theory are discussed in the articles by Bruce, Kirk, du
Plessis and Wall [4, 6]. The techniques developed in these provide a very efficient, wide-
ranging classification scheme involving algebraic calculations which may be reduced to
finite-dimensional symbolic problems. However, the calculations can become very inten-
sive and repetitive, which is where the need for a specialist computer package arises.

The applications we have in mind require the calculation of certain ‘tangent spaces’ in a
jet-space. This calculation involves the manipulation of truncated polynomial vectors and
is therefore really just a problem in linear algebra that can be handled by a computer. For
example, in classification problems the calculation can be reduced to the enumeration of
the orbits of the jet-group. In this situation we are considering Lie groups acting on smooth
manifolds and have powerful techniques such asMather’s lemma[25, Lemma 1.1] and
complete transversals[4] at our disposal. (In fact, we are dealing with algebraic groups
overR or C acting algebraically on an affine space and stronger results can be established.
Although of theoretical importance, we will not need such results in our present appli-
cations.) It turns out that all of the information that we require can be obtained from a
calculation of the tangent spaces to the orbits of the jet-group in the jet-space. Calculations
in unfolding theory can be reduced to similar symbolic manipulations. We do not have a
Lie group action in this case (we only have the notion of ‘extended equivalence’ at the
germ level) but unfolding theory allows us to work with the associated ‘extended tangent
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Computational aspects of classifying singularities

spaces’. Once we have concluded that a given germ is finitely determined (using the above
methods) we may perform unfolding calculations in a suitable jet-space. At the jet level, the
calculation of these ‘extended tangent spaces’ involves identical symbolic manipulations
to those required in classification calculations.

The ‘tangent spaces’ are given by the action of a space of vector fieldsL on a given germ
or jet. For example, ifL is the Lie algebra of a jet-group then the tangent space to the orbit
through the jetf is given by the natural action of the Lie algebra and is denoted byL · f .
We will use ‘tangent space’ as a general term to refer to such spacesL · f (even though
they are not necessarily tangent to some submanifold). The terminology is used at both the
jet and the germ levels. (This notation was established in the more recent work [4, 6] as a
preferred alternative to the ad-hoc notationT G ·f used previously.) The main feature of our
package is its ability to calculate and manipulate the spacesL ·f . Our aim was to produce a
package capable of performing the calculations over a wide range of equivalence relations.
In particular, it must apply to the cases whereG, a subgroup ofK defining the equivalence
relation, is one of the standard Mather groupsR, L, A, C or K [25]; or, more generally,
one of Damon’s geometric subgroups [9] for which a set of generators of the Lie algebra
LG can be written down explicitly.

Let us consider one of the important research areas in singularity theory, namely the
case ofA-equivalence. Not only is this a natural generalisation ofR-equivalence, but
it has significant applications in geometry and related areas such as computer vision. For
example, in such applications one often wants to consider the simultaneous contact between
a submanifold and a whole family of model submanifolds, typically families of lines, planes,
circles, spheres, and so forth. In these situations we must work withA-equivalence rather
than contact (K) equivalence, the difference essentially being that contact between nearby
fibres of the map is preserved underA-equivalence, whereasK-equivalence relates only to
the contact class associated to one fibre. For a recent survey of geometrical applications of
singularity theory we refer to the article of Bruce [3] and the extensive bibliography therein.
A real obstruction in obtainingA-classifications is the size of the computations involved in
all but the simplest of examples. One only has to refer to the existing papers dealing with
A-classification to see this, for example, those of Mond, du Plessis and Rieger [19,20,23].
For such applications any useful package must be able to calculateL · f in a given jet-
space for a given jetf whereL = LA (for applications of Mather’s lemma, calculation
of A-invariants, moduli detection);L = LA1 with the possible inclusion of a nilpotent
part (for determinacy and complete transversal calculations in classification problems); and
L = LAe (for unfolding calculations). The package achieves all of these requirements
and we cite its success inA-classifications as its single most important application. For
example, the aforementioned results of Mond and Rieger were all reproduced in a matter of
hours usingTransversal. Recent applications of Transversal [5, 12,13,14,15,26]
represent some of the most extensive classifications carried out to date. The package has
been extended to deal with weighted homogeneous filtrations, multigerms and cases where
the equivalenceG derives from a set of liftable or lowerable vector fields (the latter providing
new results in the theory of caustics and envelopes). The package and all its variants are
described, together with detailed examples and discussions of the underlying algorithms,
in the Transversal User Manual [16].

The remainder of this article is organised as follows. In Section2 specific applications
of our package to singularity theory are described and the mathematical background re-
viewed. We give an overview of the package in Section3. This begins with a brief survey
of previous applications of computer techniques to singularity theory. We then describe the
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basic functionality of our package and the underlying algorithm. Some of the more technical
aspects of the algorithm are discussed separately in the final part of this section. Finally, in
Section4 we give several examples involvingA-classification and discuss how the package
deals with the calculations.

Appendix Aincludes a README file which gives detailed installation instructions for
the package, and a comprehensive user manual [16].Appendix Bprovides a link that allows
one to download the package itself, in a version that runs underMaple V, Releases 1–4.
Appendix Cprovides the link to theMaple V, Relase 5, version. Since the package is a
(somewhat large) collection ofMaple procedures (stored in text format) it should run under
all versions ofMaple (for example, Unix, PC, Mac). In addition, the Unix version comes
with a simple shell script which installs the package as aMaple library (setting up paths,
and so on), thus making matters easier.

2. Applications to singularity theory

We discuss how our package may be used to solve problems in singularity theory and,
for completeness, review the mathematical techniques which are required. Section3 will
describe how one actually implements these techniques in the package.

The notation used throughout this article is standard, based on (some of) that developed
in [17,25]. In addition, we adopt the more systematic notation used in [4,6] and clarify the
following. The theory applies over both the real and complex numbers, andF will denote
eitherR or C. (In addition, the classifications in these cases hardly differ. Minor simplifi-
cations occur in theC case due to the collapsing of orbits, most commonly resulting in the
removal of a± sign in the normal form.) The local ring of differentiable/analytic function-
germsFn, 0 → F is denoted byEn and its maximal ideal byMn. The corresponding module
of map-germsFn, 0 → Fp is denotedE(n, p); those with zero target are therefore given by
MnE(n, p). We define the standardkth jet-spaceJ k(n, p) to beMnE(n, p)/Mk+1

n E(n, p).
This is identified with the space ofp-tuples of polynomials inn indeterminates overF which
vanish at 0∈ Fn, truncated to degreek, a germf being identified with its Taylor expan-
sion to degreek. Unless otherwise stated,G will denote a subgroup of the contact group
K, usually one of the standard Mather groupsR, L, A, C or K, but in principle one of
Damon’s geometric subgroups. We letGk be the normal subgroup ofG consisting of those
germs whosek-jet is equal to that of the identity. The standardkth jet-groupJ kG is defined
to be the quotient groupG/Gk. This is a Lie group and acts on the affine spaceJ k(n, p).
We will abbreviate the term ‘complete transversal’ to ‘CT’ from now on.

2.1. Classification theory: complete transversals and determinacy

In classification theory we seek to list orbits of finitely determined germsf ∈ MnE(n, p)

under the action of the groupG, choosing suitable normal forms as representatives. Classi-
fication is done inductively at the jet-level, classifying in turn all(k + 1)-jets with a given
k-jet until determined jets result (or pre-selected upper bounds on moduli or codimension
are reached). The method of ‘complete transversals’ provides an efficient means of carrying
out this procedure. We recall some of the main results from [4,6].

The groupG is said to bejet-closedif for eachr > 1,J rG is a closed subgroup ofJ rK.
If G is jet-closed it follows thatJ s(LG) ⊂ L(J sG) for all s. In many cases we have equality.
If a jet-closed groupG satisfiesJ s(LG) = L(J sG) for all s then we call itfibrant. We find
thatR, L, A, C andK are all jet-closed and fibrant. Further examples are given via the
following concept. LetH be a subgroup ofG; thenH is said to bestrongly closedin G if
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Hs = Gs for somes (equivalentlyGs ⊂ H ), andJ sH is closed inJ sG. Now, a strongly
closed subgroupH of a jet-closed groupG is itself jet-closed. If, in addition,G is fibrant
then so isH .

The map

L(J 1K) ∼= gl(n, F) ⊕ gl(p, F) → gl(n + p, F)

(M, N) 7→
(

M 0
0 N

)
,

wheregl(n, F) denotes the Lie algebra of the general linear groupGL(n, F), is a faithful
representation of the Lie algebraL(J 1K) on Fn+p. Suppose thatL(J 1G) acts nilpotently
on Fn+p under this representation. This happens if the source and target parts ofL(J 1G)

are spanned bystrictly upper (or lower) triangular matrices, for example. Generally the
requirement is equivalent toJ 1G being unipotent. In this situation the following sum is
finite (see [6]) and we may define thenilpotent filtrationof MnE(n, p),

Mr,s(G) =
∑
i>s

(LG)i · (Mr
nE(n, p)) + Mr+1

n E(n, p),

for integersr > 1 ands > 0. Observe that this is finer than the standard filtration by degree.
For r = 0 we defineM0,0(G) to be MnE(n, p) for consistency. The associated(r, s)-
jet-spaceJ r,s(n, p) is then defined to beMnE(n, p)/Mr,s(G). This is a refinement of the
standard jet-spaceJ r(n, p) = MnE(n, p)/Mr+1

n E(n, p). Thus,J r,0(n, p) is J r−1(n, p),
and ass increasesJ r,s(n, p) contains more of the homogeneous terms of degreer, until for
some finites = kr where we find thatJ r,kr (n, p) is the whole ofJ r(n, p) (kr exists due
to nilpotency). Provided that we work with these refined jet-spaces, we have the following
complete transversal result.

Theorem 2.1. [4, Theorem 2.9]Let G be a fibrant subgroup ofK such thatL(J 1G) acts
nilpotently onFn+p. Let f be a smooth germFn, 0 → Fp, 0 and letT be a subspace of
Mr,s(G) with

Mr,s(G) ⊂ T + LG · f + Mr,s+1(G).

Then any germg : Fn, 0 → Fp, 0 with g − f ∈ Mr,s(G) is G-equivalent to a germ of the
formf + t + φ with t ∈ T andφ ∈ Mr,s+1(G).

This is really just a question in the standard jet-spaceJ r(n, p), provided that we order
the homogeneous terms of degreer as dictated byMr,s(G). The latter can be achieved by
using a system of weights, see Section3.3. The spacesT andf +T are both referred to as a
complete transversal(CT). One of the main features of the package is to calculate a basis for
T , takingL = J r(LG). In practice, this is a process which has to be carried out numerous
times and, as the classification proceeds, soon becomes computationally infeasible without
the help of a computer.

Example 2.2. An example should clarify the discussion above. Consider the classification
of map-germsF2, 0 → F2, 0 underA-equivalence. Let(x, y) denote coordinates in the
source, and(u, v) those in the target. Recall thatA1 denotes the subgroup ofA consisting
of those germs whose 1-jet is the identity, and defineG to be the unipotent subgroup ofA
having nilpotent Lie algebra

L = LA1 ⊕ F{x∂/∂y} ⊕ F{v∂/∂u}.
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Table 1: Generators for the homogeneous part ofJ r,s(G).

(r, s) Homogeneous part Weight
(1,0) {0}
(1,1) {(0, y)} 1
(1,2) {(y, 0), (0, x)} 2
(1,3) or (2, 0) {(x, 0)} 3
(2, 1) {(0, y2)} 2
(2, 2) {(y2, 0), (0, xy)} 3
(2, 3) {(xy, 0), (0, x2)} 4
(2, 4) or (3,0) {(x2, 0)} 5

This acts on a germf = (f1, f2) by

L · f = M2
2〈∂f/∂x, ∂f/∂y〉 + f ∗(M2

2){e1, e2} + F{x∂f/∂y, f2e1},
wheree1 ande2 are the canonical basis vectors inF2. Each(r, s)-jet-space is just a refinement
of the standardr-jet-space and a convenient way to describe these spaces is to list the
‘homogeneous’ generators for each of the spacesJ r,s(2, 2); see Table1. The ‘weight’
column demonstrates the use of weights to partition the monomial vectors into their(r, s)-
levels as described in Section3.3; hereα = (2, 1) andβ = (−1,0). This example is
discussed further in Section4.

Example 2.3. The above results incorporate the notion ofstrong equivalence. For example,
two germs are defined to bestronglyA-equivalentif they areA1-equivalent; that is, the
diffeomorphism defining the equivalence has linear part the identity. Here we can takeG
to be the unipotent groupA1. Thus,Mr,s(G) = Mr+1

n E(n, p) for all s > 0 and the CT
theorem applies to the standard jet-spacesJ r(n, p). Given a germf : Fn, 0 → Fp, 0,
suppose thatT is a vector subspace of the space of homogeneous jets of degreek + 1 such
that

Mk+1
n E(n, p) ⊂ T + LA1 · f + Mk+2

n E(n, p).

Then every germF with F − f ∈ Mk+1
n E(n, p) is A1-equivalent to a germ of the form

f + t +φ with t ∈ T andφ ∈ Mk+2
n E(n, p). That is, ifjkF = jkf thenjk+1F isJ k+1A1-

equivalent to a jet of the formjk+1f + t , for somet ∈ T . This provides anA-classification
procedure with respect to familiar polynomial degree. However, in many classifications
we need to use larger unipotent subgroups thanA1 to obtain an efficientA-classification
procedure, at least during the early stages of the classification. We therefore have to classify
in finer steps, using the refined jet-spacesJ r,s(n, p), as in Example2.2.

We now turn to the determinacy question. Algebraic criteria which characterise determi-
nacy were found in [6]. These results also provide excellent determinacy estimates for use
in practical situations. A version of the results suited to our needs is as follows. We shall
restrict ourselves here to the case whereG is one of the standard Mather groups, to avoid
the extra technicalities, though the determinacy results do apply to a larger class of groups.
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Theorem 2.4. [6, Theorem 2.1]LetG be one ofR, L, A, C or K and letH be a strongly
closed subgroup ofG such thatL(J 1H) acts nilpotently onFn+p. Then a smooth germ
f : Fn, 0 → Fp, 0 is k-H -determined if and only if

Mk+1
n E(n, p) ⊂ LH · f.

Although the results are stated in terms of germs, they may be reduced to questions
involving jets. We will show that establishing the degree of determinacy of a germ is a
special case of calculating CTs. When the tangent spaceL · f is a module overEn (for
example, whenG = R, C or K) this follows from a simple application ofNakayama’s
lemma; see [17, p. 131] and [25, p. 489]. We find that the germ isk-G-determined if, when
considered as ak-jet, the CT of degreek + 1 is empty. For the remaining cases of interest,
whereL · f is a module overEp via f ∗, we apply a result of du Plessis [6, Lemma 2.6].
Probably the most important and informative application is whereG = A, so we take this
as an example. Applying du Plessis’ result to the above determinacy theorem gives the
following theorem.

Theorem 2.5. Using the notation of Theorem2.4,f is k-H -determined if and only if

Mk+1
n E(n, p) ⊂ LH · f + Mk+1

n f ∗(Mp)E(n, p) + M2k+2
n E(n, p).

Thus,f is k-A-determined if the successive transversals from degreek + 1 to degree
2k + 1 are empty. (Of course, the terms inMk+1

n f ∗(Mp)E(n, p) can be used to reduce the
upper limit from 2k + 1. This is extremely important in applications, but the revised upper
limit that one obtains depends on the particular germf .)

The spacesL ·f used in determinacy calculations are precisely those used in CT calcula-
tions. We therefore obtain a very efficient classification process: if the determinacy criterion
fails due to a non-empty transversal we simply continue the classification, the transversal
providing us with a list of (possible) new branches in the classification tree.

Example 2.6. We reconsider Examples2.2 and2.3. For the former we takeH in Theo-
rems2.4 and2.5 to be the unipotent groupG defined in Example2.2. For strong deter-
minacy considered in Example2.3 we takeH to beA1. As a further example, consider
R-determinacy of function-germs. The condition for strong determinacy is given by taking
H to beR1, and can be rewritten in the familiar form found in texts on elementary catas-
trophe theory, such as that by Poston and Stewart [21, p. 134 and p. 159], as follows. The
germf is k-R1-determined if and only if

Mk+1
n ⊂ LR1 · f = M2

n〈∂f/∂x1, . . . , ∂f/∂xn〉.
This provides a practical criterion forR-determinacy.

2.2. Working with jet-groups: Mather’s lemma and the detection of moduli

The method of CTs gives a complete set of representatives for theJ k+1G-orbits over a
given k-jet f . This set is given as an affine space inJ k+1(n, p) throughf and we wish
to reduce it further, preferably to a finite set of representatives. This can often be achieved
using ‘scaling’ coordinate changes in the source and target, a simple problem involving
linear algebra. However, in cases where moduli are present, scaling is not possible, and
we need a criterion to detect such moduli. Alternatively, the family given by the affine
space may beG-trivial, collapsing to give one normal form,f . The spaceL used in CT
calculations is generally smaller than the tangent space to the whole groupLG, so it is not
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surprising that a CT may contain redundant terms. (In general we cannot takeL to be the
whole ofLG.)

In cases where further simplification is necessary we have to work with the whole group
G, and a result specifically intended to deal with such questions isMather’s lemma[25,
Lemma 1.1]. We state it in our special case of interest, where a jet-groupJ kG acts on
J k(n, p).

Lemma 2.7. Let X be a connected submanifold ofJ k(n, p). ThenX is contained in a
single orbit ofJ kG if and only if

(i) for each jetx ∈ X, the tangent spaceTxX ⊂ Tx(J
kG · x), and

(ii) dim Tx(J
kG · x) is constant for allx ∈ X.

The tangent space to the orbit throughx is given by the action of the Lie algebra thus,
Tx(J

kG ·x) = L(J kG) ·x. The two conditions of Mather’s lemma are extremely difficult to
check using hand calculations but are easily dealt with by our package, takingL = L(J kG).
Verifying the inclusion condition (i) requires little computational overhead once a basis for
the tangent space has been calculated. Note that the jet passed to the package contains
arbitrary parameters and represents a whole affine space inJ k(n, p). Our algorithm will
provide a set of exceptional values where the dimension of the tangent space may drop or
the inclusion condition (i) fails. These exceptional values are stored for examination by the
user after the algorithm has terminated; see Section3.3.

A related issue is the detection of moduli. The CT process may produce an entire family
of jets which are all distinct up toG-equivalence. To prove that moduli are indeed present
we use the following straightforward criterion.

Lemma 2.8. Let W be a smooth constructible subset of the jet-spaceJ k(n, p) and for
w ∈ W define

d(w) = dim
((

Tw(J kG · w) + TwW
)
/Tw(J kG · w)

)
.

Then, given an integerr > 1, if the set{ w ∈ W : d(w) 6 r − 1} is a constructible subset
of W of smaller dimension, then every germf with jkf ∈ W is ofG-modalityr or greater.

Again, this is an extremely difficult condition to check using hand calculations. It may
be verified easily by our package, takingL = L(J kG).

2.3. Unfolding theory

Let F : Fn × Fs , 0 → Fp × Fs , 0 defined by(x, u) 7→ (f (x, u), u) be an unfolding
of f0 ∈ MnE(n, p). We recall the following fundamental result from unfolding theory.
(The case whereG is one of the standard Mather groups is discussed in [17, 25]; for the
generalisation to geometric subgroups ofK see [9].)

Theorem 2.9. F is G-versal if and only if

LGe · f0 + F{Ḟ1, . . . , Ḟs} = E(n, p),

where the initial speedṡFi ∈ E(n, p) of F are defined by

Ḟi(x) = ∂f/∂ui(x, 0), for i = 1, . . . , s.
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Corollary 2.10. If g1, . . . , gs ∈ E(n, p) form anF-spanning set for the normal space to
LGe · f0 in E(n, p) thenF(x, u) = (f (x) + ∑s

i=1 uigi(x), u) is a versal unfolding off0,
whereu = (u1, . . . , us).

Thus, to calculate a versal unfolding off0 we need to determine thegi . As stated, this is
a problem at the germ level. However, iff0 is k-G-determined then by the characterisation
of determinacy given in [6] (see [6, Theorem 1.9] forG a standard Mather group, and [6,
Theorems 4.5 and 4.6] for more general subgroups ofK) we have Mk+1

n E(n, p) ⊂ LG ·f0.
But the latter is a subset ofLGe · f0 and it therefore suffices to calculate the normal space
to LGe · f0 in J k(n, p). This is a simple application of the package, takingL = J k(LGe).
(Note that in practical situations one usually establishesk-determinacy off0 by applying a
determinacy result such as Theorem2.4. In this case the above inclusionMk+1

n E(n, p) ⊂
LG · f0 follows directly from the determinacy criterion anyway.)

3. Package overview

3.1. Survey of existing computer packages

We begin this section by describing several existing computer packages which are aimed
at singularity theory. The packages related most closely to ours are theCATFACTpackage
developed by Cowell and Wright [8]; the OCRMprogram written by Olsen, Carter and
Rockwood (published in the book by Poston and Stewart [21], and corrected and enhanced
by Millington [18]); and theTGf program written by Ratcliffe and referred to in [22]. The
first two deal with the case of function-germs underR-equivalence (an area which is often
called ‘elementary catastrophe theory’). The program developed by Ratcliffe is notable in
that it performs similar calculations toTransversal and was written, independently, at
about the same time thatTransversal was written. The original version was restricted
toA-equivalence of map-germs from surfaces to 3-space and was used successfully in [22].
BothTGf andOCRMsuffered from being written in a non-symbolic language (respectively,
Pascal and a version ofALGOL). The final version ofTGf (1994) was rewritten inMaple
and the restriction to map-germs from surfaces to 3-space was lifted. All three programs
are no longer being developed. The major improvementsTransversal makes on these
packages include an extensive broadening of the types of problems considered (for example,
a greater variety of equivalence relations; extensions to multigerms and lowerable fields)
together with the implementation of the latest classification techniques [4,6]. Its success in
several important projects (cited in the introduction) is an indication of these claims.

We should add that theCATFACTpackage performs a lot more than determinacy and
unfolding calculations. It contains a ‘recognition’ algorithm which identifies if a given
function-germ belongs to one of those on Arnold’s list of low-modality singularities [1],
and a ‘reduction’ algorithm which solves the ‘mapping-problem’ for unfoldings [8]. The
‘recognition’ algorithm calculates the Boardman symbol of the singularity (using Gröbner
basis methods) and uses the fact that this identifies the low-modality singularities. One
needs to know Arnold’s classification in advance to exploit such observations, which is
why it is necessary to obtain similar classifications of map-germs under the other important
equivalence relations (in particular, theA andK cases). On a similar theme, we note the
‘recognition’ program of Tari [24]. This implements a version of Arnold’s ‘determinator’
algorithm [1] usingMaple.

Other packages aimed at singularity theory includeSingular andMacaulay [11,2],
though the latter deals more with applications in algebraic geometry. Both represent ex-
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tensive ongoing projects. Each has its own kernel, which is purpose-written to exploit
techniques from computational commutative algebra, and its own user-interface and pro-
gramming language. They have numerous applications in singularity theory, algebraic ge-
ometry and commutative algebra, but are not suited to the specialist area of classification
problems discussed in this article, especially in the case ofA-classification.

3.2. Basic functionality and underlying algorithm

The main principle behind the algorithm is to treat the spacesL · f as vector subspaces
of the jet-space. Once a basis has been found, we can answer all of the questions raised by
the theory. For example, given some subgroupG of K, whose action defines the required
equivalence relation, the package can:

(i) calculate complete transversals;

(ii) check determinacy criteria;

(iii) calculate tangent spaces;

(iv) calculate codimension and versal unfoldings;

(v) check the hypotheses of Mather’s lemma;

(vi) detect the presence of moduli.

Note that all of these calculations may be reduced to finite-dimensional problems within
some jet-space. Cases (i), (v) and (vi) deal implicitly with calculations in a jet-space. For
(ii) we appeal to results such as Nakayama’s lemma or Theorem2.5. Provided that the germ
in question is finitely determined, calculations (iii) and (iv) may also be performed in an
appropriate jet-space (for example, one of degree equal to the order of determinacy); see
Section2.3.

For (i) and (ii) we would typically perform the calculations using some unipotent sub-
group ofG; for (v) and (vi) we work withG and setL = L(J kG), and similarly for (iii) and
(iv), except that the ‘extended tangent space’L = J k(LGe) may be required instead. An im-
portant consideration therefore is how the user should specify the variety of different types
of spacesL which are needed in such calculations. The approach we adopt is to decompose
L into the direct sum of two components: ‘source’ and ‘target’. The source component is
defined to be anEn-module generated by a set of user-specified vector fields. The target
component is more rigid, being limited to theL andC types of equivalence at present.
Several global ‘setup’ variables are used to specify features such as the ‘type’ of equiva-
lence, the generating set of ‘source’ vector fields, the powers to which the maximal ideals
are to be raised in the defining equation forL, and extra ‘nilpotent’ terms. These details
are discussed further below under the section ‘Initialisation Step’; see also the Transversal
User Manual [16, Chapter 4, Section 4.2]. The scheme clearly has its limitations. However,
a reasonable compromise is reached, in that virtually every case which comes up in appli-
cations is covered and, from a practical viewpoint, it is straightforward for the user to apply
the setup procedure.

Assuming that the formalities of how the user actually specifies the spaceL have been
dealt with, it is a simple matter to calculate a spanning set forL — reducing this to a basis
is the major computational problem. Elements of the jet-space correspond to truncated
polynomial vectors over the field of real or complex numbers. By extracting monomial
coefficients we can treat jets as familiar coordinate vectors and reduce the spanning set to
a basis using Gaussian elimination. A major concern with this approach is the size of the
matrices involved. However, these matrices are highly sparse and, as numerous examples
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demonstrate, can be reduced relatively quickly. In addition, there are several features of the
problem which we may exploit to reduce the computational overhead at the elimination
stage. It is wasteful to extract coefficient vectors (which are generally of a high dimension)
and create a matrix. Instead, we apply the elimination directly to the polynomial vectors,
manipulating them as symbolic expressions. This technique will be calledindexed Gaussian
elimination. The symmetry present in the ‘target’ tangent spaces (for example, typesL and
C) is exploited at the elimination stage also. We will discuss these and other technical issues
in Section3.3.

Our concerns regarding large coefficient matrices were also noted in [18], and Gröbner
basis methods were used in the underlying algorithm inCATFACT. Although successful,
this approach cannot generalise toA-calculations because the algebraic structure of the
A-tangent space is that of a mixed module. That one has to treat theA-tangent space as
a vector space and work with the associated large matrices appears to be an unavoidable
problem. The utility of our approach is ultimately measured by its success in dealing with
important problems.

The stages of the algorithm are summarised below.

Initialisation step. Firstly, L is specified as one of five broad ‘types’, which we will
denote byR, L, C, A andK. The required ‘type’ is set by a global variable, which may
take the string constant values R, L, C, A and K. For ‘type’R, L is defined to act on a
given jetf by

L · f = Mt1
n

〈
ξ1 · f, . . . , ξs · f

〉
,

where the exponentt1 is given by a user-defined integer variable and theξi are user-defined
vector fields. Theξi are defined via a procedure which takesf as a parameter and returns the
vectorsξi ·f ; the procedure is pointed to by another global variable and is called at run-time.
Several procedures are provided: the standardR case, whereξi = ∂/∂xi , is covered, as are
cases whereL is the space of vector fields tangent to a discriminant variety. Thus, ‘type’
R, with ξi = ∂/∂xi andt1 = 0, 1 and 2, defines the tangent spacesLRe, LR andLR1,
respectively. For ‘type’L, L is defined to act by

L · f = f ∗(Mt2
p ){e1, . . . , ep},

where theei are the canonical basis vectors inFp andt2 is a user-defined integer variable.
For ‘type’ C the action is defined by

L · f = Mt2
n f ∗(Mp)E(n, p).

As one would expect, for ‘types’A andK, L ·f is defined as the sum of the spaces defined
by ‘types’R, L andR, C, respectively.

This approach allows one to define a wide range of tangent spacesL, and covers virtually
everything which arises in practice. For complete transversal and determinacy techniques
we often work with a unipotent subgroup ofK and the corresponding nilpotent tangent
spaceL is given by the sum of a ‘standard’ tangent space and a linear space spanned by a
set of ‘extra’ vectors. For example, in theA case the spaceL is given by the sum ofLA1
and a space spanned by ‘extra’ vectors belonging toLA \ LA1; see [4, 6]. Further global
variables specify these ‘extra’ vectors, and the package can be used in such situations.

Having initialised the calculation, we now call the appropriate functions in the package.
The first three stages of the algorithm form the major part of the calculation, and are
performed by one function which takes a jetf and jet-space degreek as parameters.
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Step 1. For the given jetf , jet-space degreek and tangent spaceL, calculateL · f in
J k(n, p). Specifically, calculate a spanning set forL · f as a vector subspace ofJ k(n, p).
The algorithm constructs this set using the definition ofL · f given above for each ‘type’,
and essentially follows the same procedure as that used if one were doing the calculation by
hand. For example, in a standardR classification, using the complete transversal method
with L = LR1 say, we calculateL · f = M2

n〈∂f/∂x1, . . . , ∂f/∂xn〉 by first obtaining
the vectors which generateL · f as anEn-module,{∂f/∂xi}. These are multiplied by all
monomials of degree 2 and higher in the source variables until we obtain jets whose initial
degree is greater than the jet-space degreek. The spaceJ k(n, p) is identified with the space
of p-tuples of polynomials inn indeterminates overF, truncated to degreek. The spanning
set is therefore given as a set of such polynomial vectors.

Step 2. The spanning set calculated in Step 1 is reduced to echelon form using Gaussian
elimination. By ordering the monomial vectorsx

i1
1 . . . x

in
n ej ∈ J k(n, p), each jet inJ k(n, p)

corresponds to a coordinate vector overF via extraction of coefficients. The spanning set
obtained in Step 1 then corresponds to the matrix whose rows consists of these coefficient
vectors. Reducing this matrix using Gaussian elimination gives a canonical basis for the
tangent space. We actually use the technique of indexed Gaussian elimination, mentioned
above and discussed in Section3.3.

Step 3. A basisC for the complementary (normal) space to the tangent space is calculated.
That is, the independent set obtained in Step 2 is extended to one of full rank inJ k(n, p) by
the addition of monomial vectors. In theAe andA cases (for example) this gives the terms
required in a versal unfolding and the corresponding codimension (for determined jets). In
theA1 complete transversal case (for example) the monomial jets inJ k(n, p) are ordered
so that those of degreek correspond to the latter columns of the matrix. The monomial
vectors inC of degreek will then form a basis for a complete transversal. This process can
be generalised to deal with complete transversal calculations using a unipotent subgroupG
and corresponding nilpotent filtration; see Section3.3.

Step 4. Calculating a basis for the tangent space is the main computational overhead in
the algorithm. During this procedure all by-products of the reduction process which may
be of further use (such as the bases for the tangent and normal spaces, invariants such as
the dimension and codimension of these spaces) are stored as global variables for access
by other routines. Step 4 deals with output and manipulation of these results. A number of
procedures are associated with Step 4 and perform functions such as displaying the bases,
displaying a basis for a complete transversal, and testing whether a given set of vectors
is independent to the tangent space (such questions arise in checking the hypotheses of
Mather’s Lemma and in moduli detection). The computational overhead of such procedures
is negligible compared to that involved in Steps 1 – 3.

3.3. Technical and computational considerations

We will now describe some of the more important computational issues behind the
algorithm. Further details on the actual program code and a presentation of parts of the
algorithm in the form of pseudo code were given in [15]. In addition, we remark that the
Maple source code is fully documented.
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3.3.1. Symbolic pivots: fraction-free Gaussian elimination
Writing the package in a symbolic language such asMaple allows great flexibility. One
notable advantage is that parameters (such as moduli) may be present in the jets we work
with, thus allowing us to perform calculations for whole families. The matrix created in
Step 2 will contain polynomial entries, and we must take this into account during the
Gaussian elimination routine. We choose numeric pivotal elements (in this context meaning
‘constant polynomials’) where possible, but when we are forced to choose a non-constant
polynomial pivotal elementnodivision is performed on the chosen row to reduce the pivot to
unity. Division is still performed (working in the field of rational functions) when using the
pivot to reduce the rest of the column to zero. This is in contrast to standard ‘fraction-free’
Gaussian elimination [10, p. 82] where the pivot and the term it is to eliminate are multiplied
up, and no division occurs at all. Our method provides a valid elimination algorithm for
jets involving parameters without the inconvenience of standard fraction-free elimination
where the matrix entries rapidly blow-up into large expressions. The elimination only breaks
down for certain values of the parameters for which a pivot vanishes, but the conditions
determining this are retained. The list of all non-numeric pivots is stored for global access
after the algorithm terminates, and may be examined by a procedure associated with Step 4.

The non-numeric pivots will, in general, be rational functions in the parameters, the
vanishing of their numerators defining a finite set of proper algebraic varieties within the
parameter space. The elimination applies to members of the family corresponding to values
of the parameters not lying on these varieties, and the algorithm therefore determines the
generic behaviour by default. To investigate the exceptional behaviour we must inspect
each of the non-numeric pivots in turn, obtaining conditions on the parameters for which
the elimination breaks down. In many cases (at least those with one or two parameters) the
solutions can be determined explicitly using one of theMaple factor or solver procedures,
the solutions being substituted back into the family and the calculation repeated. This
process detects phenomena such as exceptional values in modular families, or cases where
applications of Mather’s lemma break down thus obstructing triviality within the family but
providing a finite list of normal forms.

3.3.2. Exploiting sparsity: indexed Gaussian elimination
Working with a matrix of coefficient vectors in Step 2 is wasteful on memory and CPU
time. By the very nature of the algorithm, the data is created as a set of polynomial vectors
(truncated to the prescribed degreek). This is a very efficient data structure to work with.
Storage of the sparse data (the non-zero coefficients) is optimised, as is its manipulation.
The idea is to work with the set of polynomial vectors and manipulate these directly using
symbolic techniques; thus a coefficient matrix is never created. We use a set of indexing
tables which, for a given row and column(i, j) of the would-be coefficient matrix, index
the appropriate coefficient of theith polynomial vector in our spanning set. The columnj

therefore indexes two pieces of information: the component of the vector and a monomial
term in the resulting polynomial. During elimination, coefficients are looked-up from this
set of polynomial vectors using the indexing tables and, for all intents and purposes, could be
thought of as matrix entries. However, the row-reduction operations performed in Gaussian
elimination are now achieved by direct polynomial addition — a very efficient process in
Maple, which uses the internal kernel functions.

We had to completely rewrite the Gaussian elimination routine found inMaple in order
to incorporate both the above method and the type of fraction-free elimination described
in the previous section. The resulting elimination algorithm proved, on average, to be two
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to three times faster, using three to four times less memory than methods that extract an
explicit matrix of coefficients and apply the standardMaple library routines.

3.3.3. Exploiting symmetry in the target
TheL andC ‘type’ tangent spaces exhibit a large degree of symmetry. Their respective
action on a given germf is given by,

f ∗(Mt2
p ){e1, . . . , ep} and Mt2

n f ∗(Mp)E(n, p).

In theL case we create a spanning set for the idealf ∗(Mt2
p ) as a vector subspace ofJ k(n, 1)

and reduce this to echelon form using (indexed) Gaussian elimination. In theC case we
do the same for the idealMt2

n f ∗(Mp). We then produce a spanning set for the fullL or C
tangent space by stacking togetherp copies of the resulting ‘matrix’. The important point
is that we can do this in such a manner as to create a spanning set for the full tangent space
which isalreadyin echelon form and therefore requires no further elimination. This is clear
if the matrices were stacked together to form a diagonal block matrix, but this corresponds to
a specific ordering of the monomial vectors inJ k(n, p). The monomial orderings required
in certain problems, such as complete transversal calculations, do not give rise to such
a simple diagonal block matrix, but the principle still applies and we indeed find that the
matrix formed by stacking is automatically in echelon form. The reduction in computational
overhead is clear.

Finally, in a problem dealing withA-equivalence orK-equivalence, this basis for the
target tangent space is adjoined with a spanning set for the source tangent space and the re-
sulting ‘matrix’ reduced to echelon form. Represent these as matrices of coefficient vectors,
M1 andM2, respectively. The full tangent space matrix, formed by adjoining these,(

M1

M2

)

is reduced to echelon form. However,M1 is already in echelon form and a full-blown
Gaussian elimination is replaced by the following algorithm. Keep the current row and
column pointer in the matrixM1. If the corresponding entry is a pivot then reduce as usual;
only the column inM2 needs to be reduced to zero, as the column inM1 will already be
zero. Otherwise, (if the entry inM1 is zero) try and find a pivot inM2. If this is possible,
again only the column inM2 needs to be reduced. However, if we need to useM2 to obtain
a pivot then we do notswapthe rows ofM1 andM2 as in standard Gaussian elimination,
but ratherinsert the row ofM2 into M1, thus preserving the fact thatM1 is echelon. This is
the basic idea at least. In the code it is more efficient to create a separate matrix that stores
the final result: when a pivot is found the corresponding row is added to this ‘result matrix’,
thus eliminating the need to insert a row ofM2 into M1 (moving all the remaining rows
of M1 down). In addition, the process is carried out using the indexing tables referred to
above, not coefficient matrices.

We remark that the presence of target tangent spaces and a target dimension greater than
1 make the computational overhead at the elimination stageconsiderablygreater inA- and
K-‘type’ calculations, compared toR-‘type’ calculations. This exploitation of symmetry
means that many significant calculations remain feasible.

3.3.4. Normal spaces, complete transversals and nilpotent filtrations
It is an easy matter to extend the basis forL ·f to one of full rank inJ k(n, p), thus providing
a basisC for the normal space. If the basis forL ·f is given in coordinate form by the rows
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of the echelon matrix(aij ) with pivotal elementsa1j1, a2j2, . . . , arjr (so these are non-zero
elements and 16 j1 < j2 < · · · < jr 6 q = dimJ k(n, p), wherer = dimL · f ), then
the canonical vectors

{e1, . . . , êj1, . . . , ˆej2, . . . , êjr , . . . , eq}
(whereêj denotes the exclusion ofej from this set of vectors) form the basisC. Of course,
we calculateC as the set of monomial vectors which correspond to these coordinate vectors
ei . The algorithm to deriveC from (aij ) also takes the opportunity to pick off all of the
non-numeric pivots (discussed above) and store them for global access.

Calculating complete transversals requires a little more subtlety. Provided that the columns
corresponding to the monomial jets of degreek appear as a block at the end of the column,
the above procedure will provide a basis for a degreek complete transversal associated
with the standard filtration by degree (see Example2.3). This basis simply consists of those
elements inC of degreek. For this to work for the general complete transversal Theorem2.1
we must order the degreek monomial jets according to the nilpotent filtration, starting with
those of degree(k, 1), then those of degree(k, 2), and so on. In most situations that arise in
practice, this can be achieved via a system of weights. In what followsα = (α1, . . . , αn)

andβ = (β1, . . . , βp) will denote the source and target weights respectively. We recall the
following; see [4, Section 2.3] for a full discussion on weighted filtrations. The monomial
vectorxk1

1 . . . x
kn
n ei is assigned a weightk1α1 + · · · + knαn − βi . TheEn-submodule of

MnE(n, p) generated by such monomial vectors of weight> k is denotedFk
α,βE(n, p).

We consider the case ofA-classification, though the method extends to other subgroups
of K. Let(x1, . . . , xn) denote coordinates on(Fn, 0) and(y1, . . . , yp) those on(Fp, 0). Let
G be a subgroup ofA such thatL(J 1G) acts nilpotently onFn+p. For ‘large enoughG’ (we
make this precise below) we can assign source and target weights such that the partition of
the monomial vectors of (standard) degreek via their weight corresponds to their partition
into the(k, s)-jet-levels using the nilpotent filtration. The following proposition was proved
in [4].

Proposition 3.1. Suppose thatLG contains the following vectors and assign source and
target weights according to the case in question.

Vectors Weight
xi∂/∂xi+1 ∈ LR or α = (n, . . . , 2, 1)

xi+1∂/∂xi ∈ LR α = (1,2, . . . , n)

yj ∂/∂yj+1 ∈ LL or β = (0, −1, . . . ,−p + 1)

yj+1∂/∂yj ∈ LL β = (−p + 1, . . . ,−1,0)

for i = 1, . . . , n− 1 andj = 1, . . . , p − 1. Then∑
i>s

(LG)i · (Mk
nE(n, p)) + Mk+1

n E(n, p) =
(
Fk+s

α,β E(n, p) ∩ Mk
nE(n, p)

)
+ Mk+1

n E(n, p).

So for fixedk, theMk,s(G) filtration can be replaced by the weighted filtration mod-
ulo Mk+1

n E(n, p); that is, the filtration on the right-hand side of the above expression. In
particular, the homogeneous monomial vectors of degree(k, s) (to be precise, those that
span the space given by the image ofMk,s−1(G) in the jet-spaceJ k,s(n, p)) are just the
homogeneous monomial vectors of (standard) degreek with weightk + s − 1.
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The vectors referred to in Proposition3.1are the ‘extra’ vectors present inLA \ LA1.
For classification purposes one would prefer to use some unipotent groupG such that the
nilpotent Lie algebraLG ⊂ LA contains as many of these ‘extra’ vectors as possible. There
are four natural cases to consider:

LG = LA1 ⊕ F{xi∂/∂xj } ⊕ F{yk∂/∂yl}
for all i < j (or alternatively alli > j ) and similarly fork andl. Such cases are used in
practical applications (such as the examples in Section4), and Proposition3.1applies.

4. Examples and comments

We will demonstrate the utility of our package via several examples. Only the results
are described; a detailed tutorial on how to use the package to perform such calculations,
giving a summary of user input and corresponding computer output, is described in the
Transversal User Manual [16].

Firstly, we concentrate on theA-classification of corank-1 map-germsF2, 0 → F2, 0
havingA-codimension less than or equal to 6 (‘codimension’ refers to that of a stratum
when moduli feature). Such germs represent the (corank 1) singularities which occur in
versal 4-parameter families and have geometrical applications in areas such as computer
vision, representing the profiles (apparent contours) of smooth surfaces. The classification
is due to Rieger, though the cases of lower codimension should rightly be accredited to
several people, beginning with Whitney; see [23].

The A-classification of map-germsF3, 0 → F4, 0 found in [14] represents the most
extensive application of our package to date. A complete classification of the corank-1
simples, and those ofA-codimension less than or equal to 7 (equivalently, for the non-
stables,Ae-codimension6 4), is given, and we describe some of these results below. The
motivation for this work was to provide more examples for the topological study ofA-finite
map-germs. Mond’sA-classification of map-germs from surfaces to 3-space proved to be
valuable in developing much of this theory. However, more examples were needed to test
generalisations and conjectures of the theory, and map-germsF3, 0 → F4, 0 were the clear
candidates.

Finally, we discuss the performance of our package. We will concentrate on some of the
more computationally demanding calculations, labelling these C1, C2,. . . , C5 as they are
encountered in the examples.

4.1. A-classification of map-germsF2, 0 → F2, 0

We cannot describe all of the classification in this small section; rather, we will concen-
trate on the more difficult branches, beginning with the 2-jet(x, 0). The results apply to
both the real and complex cases, apart from a few minor differences which are described
as necessary. (From now ona andb will denote real or complex numbers, and be used as
parameters for the affine spaces given by the complete transversal theorem. We will recycle
this notation from case to case to save space.) All determinacy and CT calculations will use
the unipotent subgroupG of A defined in Example2.2.

A (3,1)-CT for(x, 0) is (x, ay3). Apply scaling coordinate changes to reduce this family
to the two cases(x, y3) and(x, 0), depending on whethera 6= 0 ora = 0. In the first case the
only non-empty higher(3, s)-CT is at the(3,3) level; this gives the family(x, y3 + ax2y)

which again reduces to two cases via scaling. Returning to the(3,1)-jet (x, 0), a (3,2)-
CT is (x, axy2) and scaling reduces this to the two cases(x, xy2) and(x, 0). For the first
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of these all of the higher(3, s)-CTs are found to be empty, while in the second case the
only non-empty CT is the(3,3)-CT giving(x, ax2y). After further scaling we arrive at the
complete list of 3-jets over(x, 0), namely

(x, y3 + x2y), (x, y3), (x, xy2), (x, x2y), (x, 0).

A simple computer calculation shows that these haveJ 3A-codimension 3, 4, 4, 5 and 6,
respectively. (These codimension calculations are very quick and easy using our computer
package. They provide useful invariants which automatically distinguish manyJ kA-types
and help one to recognise theA-type of a given map-germ by following the appropriate
branches up the classification tree.) We remark that the above classification of 3-jets over
(x, 0) may be obtained via other methods, but this generally requires many ad-hoc tech-
niques. The above example demonstrates the practicality of our classification techniques,
which apply in the same straightforward manner in different situations.

We continue the classification, taking the 3-jet(x, x2y) as our example. Using similar
arguments to those given, we find that a(4, 1)-CT reduces to give the two cases(x, x2y+y4)

and(x, x2y). For the first, the higher(4, s)-CTs are empty, while for the second the(4, 2)-
CT reduces to give the two cases(x, x2y + xy3) and(x, x2y). The complete list of 4-jets
over(x, x2y) is therefore

(x, x2y + y4), (x, x2y + xy3), (x, x2y),

havingJ 4A-codimension 5, 6 and 7, respectively.
The only non-empty 5-CT for(x, x2y + y4) produces the family(x, x2y + y4 + ay5).

With a little linear algebra one can show that scaling coordinate changes may reduce the
above family to the three orbits(x, x2y + y4 ± y5) and(x, x2y + y4). However, it is far
more straightforward to apply Mather’s lemma using the computer. A very quick calculation
with fa = (x, x2y + y4 + ay5) verifies that(0, y5) ∈ L(J 5A) · fa andL(J 5A) · fa has
codimension 5 inJ 5(2, 2) provided thata 6= 0. (That is, the matrix reduction required the
use of a symbolic pivotal element havinga as a factor and this was noted by the package;
see Section3.3.) Repeating the calculation fora = 0 we find that the codimension increases
to 6 (and the inclusion condition fails). Thus, by Mather’s lemma, we obtain the three orbits
listed above and note that the first two haveJ 5A-codimension 5, the latter 6. The± sign
appears due to the ‘connectedness’ condition in Mather’s lemma. Of course, overC this
does not feature, and the first two orbits areA-equivalent. Distinguishing the± orbits
over R is a problem. One usually hopes to find invariants that will do this, but generally
such questions cannot be answered using the techniques discussed here. Continuing the
classification, we find that in all cases the CTs of degree 6 to degree 9 are empty. This
implies thatM6

2E(2, 2) ⊂ LG · f + M10
2 E(2, 2) wheref denotes any of the above jets.

Sincef ∗(M2)E(2, 2) ⊃ M4
2E(2, 2) Theorem2.5shows that these jets are all 5-determined.

We will discuss the computational aspects of theJ 9(2, 2) calculation for(x, x2y +y4+y5)

(that is, the verification that the largest degree CT is empty), and denote this calculation by
C1 for future reference.

We return to the 4-jet(x, x2y + xy3). A 5-CT isfa = (x, x2y + xy3 + ay5). Scaling
coordinate changes cannot simplify this family but this does notprovethata is a modulus.
For this we apply Lemma2.8, and computer calculation verifies that(0, y5) 6∈ L(J 5A) ·fa

for all a. In addition, the computer shows that any representative of the stratum formed
by this unimodular family hasJ 5A-codimension 7. (Although we are working up toA-
codimension 6, the stratum as a whole has codimension 6.) Continuing, a 6-CT isfa,b =
(x, x2y + xy3 + ay5 + by6). We apply Mather’s lemma to try and simplify this family.
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Computer calculation shows that(0, y6) ∈ L(J 6A) · fa,b, the orbit having codimension 7,
for all a and forb 6= 0. Forb = 0 (and alla) the codimension jumps to 8. We therefore
obtain the two orbits

(x, x2y + xy3 + ay5 + y6), (x, x2y + xy3 + ay5),

a representative of these unimodular families havingJ 6A-codimension 7 and 8, respec-
tively. The latter exceeds the codimension bounds, so we just consider the former. (Note
that in the real case, the former contains a±y6 term, but this can be reduced to+y6 using
a simple coordinate change.)

A 7-CT is fa,b = (x, x2y + xy3 + ay5 + y6 + by7) (for all a excepta = 3/2 where
the CT is empty). Computer calculation shows that the vectors(0, y5) and(0, y7) span an
independent set toL(J 7A) · fa,b for generic(a, b), so by Lemma2.8fa,b is abimodular
family. A generic representative of this family hasJ 7A-codimension 8. By ‘generic’ we
mean that(a, b) does not lie on a finite set of proper algebraic varieties inF2. These
varieties can be determined by computer; in this case they are given by simple conditions
such asa = 3/2 (where the family simplifies as shown already by the CT calculation) or
(a, b) = (9/5,−4/3) where theJ 7A-codimension of the jet jumps to 9. A full analysis of
the exceptional values of the moduli requires extra investigation but is fairly straightforward
using the computer. Note that any non-generic strata will be of too high a codimension.

Continuing, we find that the 8-CT is empty for generic(a, b); the exceptional condi-
tions includea = 0 (where another modulus appears) and we assume thata 6= 0 from
now on. Further calculations show that all CTs from degree 8 to degree 12 are empty for
generic(a, b). Thus,M8

2E(2, 2) ⊂ LG · fa,b + M13
2 E(2, 2), and sincea 6= 0 we have

f ∗
a,b(M2)E(2, 2) ⊃ M5

2E(2, 2) so by Theorem2.5fa,b is 7-determined for generic(a, b).

We will discuss the computational aspects of theJ 12(2, 2) calculation forfa,b later, and
denote this calculation by C2.

Returning to the final 4-jet(x, x2y), we note that its codimension exceeds the bounds,
thus completing this branch of the classification. Although a simple example, our main aim
in discussing this classification is to demonstrate how a tedious calculation may be carried
out very quickly usingTransversal. The above results can be achieved within a matter
of minutes, and provide independent verification of Rieger’s results. Far more complicated
classifications can be achieved usingTransversal, but the style of the approach is
identical to that just described, as we will now demonstrate.

4.2. A-classification of map-germsF3, 0 → F4, 0

We will only discuss a few specific calculations; for a concise summary of the classifi-
cation see [14].

Let (x, y, z) denote coordinates in the source, and(u1, u2, u3, u4) those in the target.
Let G be the unipotent subgroup ofA having nilpotent Lie algebra

LA1 ⊕ F{x∂/∂y, x∂/∂z, y∂/∂z} ⊕ F{ui∂/∂uj for i > j}.
This group will be used in all of the CT and determinacy calculations. Consider the jet-
spacesJ r,s(3,4) induced by the nilpotent filtration. The monomial vectors of (standard)
degreer are partitioned into their(r, s)-levels as described in Section3.3using the weights
α = (3,2, 1) andβ = (−3,−2, −1,0).

As our first example we consider(x, y, yz, xz), which occurs as one of the five corank-1
2-jets. A(3,1)-CT is(x, y, yz, xz+az3) and applying scaling coordinate changes reduces
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this family to the two cases(x, y, yz, xz + z3) and(x, y, yz, xz). In both cases the only
higher non-empty(3, s)-CT is the(3,2)-CT, and we obtain the 3-jets(x, y, yz+az3, xz+z3)

and(x, y, yz + az3, xz). In the first case it is tempting to scalea to 0 or 1. However, the
resulting 3-jets have the sameJ 3A-codimension; indeed, the codimension is found to be
constant for alla, suggesting that the family isA-trivial. A simple application of Mather’s
lemma shows that this is so. We therefore have the one normal form:(x, y, yz, xz + z3).
Returning to the second jet(x, y, yz + az3, xz), here we apply scaling coordinate changes
and reduce this to the 3-jets(x, y, yz + z3, xz) (equivalent to(x, y, yz, xz + z3) obtained
earlier) and(x, y, yz, xz). The complete list of 3-jets over(x, y, yz, xz) is therefore

(x, y, yz, xz + z3), (x, y, yz, xz),

havingJ 3A-codimension 4 and 6, respectively. As an instructive example we consider the
same calculation using, instead, the groupA1. In this case a 3-CT over(x, y, yz, xz) is

(x, y, yz + a1z
3 + a2xz2, xz + a3z

3 + a4xz2 + a5yz2) for ai ∈ F.

Of course, one may reduce these to the two cases above, but this would involve a lot of
(ad-hoc) work. To classify the 3-jets over(x, y, yz, xz) without the use of techniques such
as CTs would be a very unenviable task!

Continuing the classification over the first of the above 3-jets gives the series(x, y, yz+
zk, xz+z3), k-determined fork > 4, k not a multiple of 3. (Note that this is not the complete
classification of all jets over this 3-jet. Further branching occurs at the 6-level and 7-level.
This is an important example in theoretical singularity theory, in that the 3-jet gives rise to
a series but is not a stem.) We take the determinacy calculations of the first two members of
this series as our example. Using Theorem2.5and noting thatf ∗(M3)E(3,4) ⊃ M3

3E(3,4)

in both cases, we establish 4-determinacy fork = 4 by showing that the CTs from degree
5 to degree 7 are empty. Similarly, 5-determinacy is established fork = 5 by showing that
the CTs from degree 6 to degree 8 are empty. We will denote theJ 7(3,4) calculation for
k = 4 by C3, and theJ 8(3,4) calculation fork = 5 by C4.

As our final example we consider the second of the above 3-jets. Classification over this
jet becomes complicated; a lot of branching occurs, with the highest branch that we must
consider arising at the 9-jet-level in the form of the trimodular family(x, y, yz + xz3 +
az6 +z7 +bz8 + cz9, xz+z4). (A generic representative of this family hasA-codimension
10, the whole stratum having codimension 7.) We can establish 9-determinacy of this family
using Theorem2.5 if we can show that the CTs of degree 10 to degree 13 are all empty.
This calculation represents one of the most intensive determinacy calculations carried out,
and will be discussed next, denoted by C5.

4.3. Comments

The ultimate test for our program is its ability to solve classification problems such
as those described above, whether these involve simple calculations which may be done
by hand, or intensive calculations which eventually require the use of a computer in some
capacity anyway. The majority of the calculations described above were dealt with in seconds
using our package. Even though many calculations may be performed by hand, our computer
package still acts as a valuable tool, giving quick answers to the repetitive and tedious
calculations one faces in this area of singularity theory. We will now discuss some of the
more computationally demanding problems. We state these results only as an indication of
how the package performs on the sort of machines commonly available at the present time;
they are not intended as benchmarks for such calculations.
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Table 2: CPU time (hours/mins/secs) and matrix dimensions for calculations.

Calc 486 PEN IPX SPC ULT Matrix Dim
C1 31s 12s 20s 09s 03s 87,110
C2 02m06s 52s 01m32s 41s 15s 153,182
C3 08m59s 03m32s 06m02s 02m55s 59s 321,480
C4 17m06s 06m43s 11m35s 05m40s 01m56s 447,660
C5 — — — 06h34m01s 02h29m39s 1572,2240

Calculations C1 and C2 were described in Section4.1; calculations C3, C4 and C5
in Section4.2. The calculations were carried out on the following machines. We give the
symbol used to identify the machine, followed by its specification (machine name, processor
type, processor speed, total RAM):

486(PC, 486DX, 50 MHz, 8 MB);
PEN (PC, Pentium, 75MHz, 16 MB);
IPX (Sun IPX workstation, Sparc, 40 MHz, 32 MB);
SPC(Sun SPARCcenter 2000, Sparc (×18), 50 MHz, 276 MB);
ULT (Sun Ultra 2, Sparc (×2), 168 MHz, 256 MB).

The calculations were done using a standardMaple V Release 3 ‘terminal session’ (as
opposed to an X11 or Windows interface) running under DOS 6.2 (PCs) and SunOS 5.5
(Sun workstations).

Table2 shows the CPU time and coefficient matrix dimensions (for the fullA-tangent
space) for each of the calculations. The matrix dimensions give an indication of the com-
plexity of the problem, and how this increases withn,p and the jet-space degreek. A natural
theoretical measure of the complexity is given by the dimension of the jet-spaceJ k(n, p).
This is the column dimension of the coefficient matrix, and can be shown to equalp

(
n+k
k

)
.

Thus, although linear inp, this grows rapidly withn andk. The need for techniques to
reduce the computational overhead, as discussed in Section3.3, is clear.

As calculations become more intensive they are best carried out on larger Unix machines
(such as ‘SPC’) where more resources are available. However, most of the calculations
performed to date did not require such hardware. All of the above machines handled the
calculations C1 – C4 within an acceptable time (the amount of real time required being
little more than the stated CPU time, though this may not be the case on heavily loaded
multiuser systems). The calculation C5 was attempted on a powerful Silicon Graphics
Challenge machine but failed, and represents a limit to our package. The problem is due
to the high modality of the family and the complexity of the equations, which determine
the exceptional values of the moduli. These equations are unlikely to be of use even if the
calculation is completed. We therefore attempt to show that the family is finitely determined
for generic(a, b, c). If we find that for a fixed value of the moduli the CTs of degree 10 to 13
are all empty then the corresponding germ is 9-determined. Since finite-determinacy is an
open condition, we can conclude that the family is finitely determined for generic values of
(a, b, c). In addition, should we need to consider a specific example in applications, then we
have a member of the family whose exact determinacy degree (9) is known. The calculation
using fixed moduli is computationallyfar less intensive. Based on previous calculations,
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we avoid values of the moduli which may be exceptional and try a suitable choice. (After
all, if the family is generically determined then we are quite likely to choose correctly!) The
case(a, b, c) = (5,3,4) is found to be 9-determined. Calculation C5 in Table2 represents
theJ 13(3,4) calculation for these values of the moduli; it was carried out only on the two
large Unix machines.

In summary, the package performs well in most situations. The computational complex-
ity of the problems increases significantly with the dimensionsn andp and the jet-space
degreek, but remains within practical limits for many problems. The largest obstruction
to calculations appears to come from the presence of moduli. Examples suggest that cal-
culations for families with 3 or more moduli become infeasible in jet-spaces of degree in
the region of 10 to 20 (depending onn andp). This is an inherent problem caused by
the creation of symbolic expressions during the elimination process which rapidly become
large, often too large forMaple to handle. When this happensMaple will terminate the
process with an ‘object too large’ error, and throwing more CPU time or memory at such
problems is unlikely to solve them.
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Appendix A. Additional documentation

This appendix contains a README file (text), which gives detailed installation instruc-
tions for the package, and a comprehensive user manual (PDF). Note that these files are
also available within the tar archives that contain the complete package. The material is is
to be found at

http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-a/.

Appendix B. Transversal 3.1

This appendix contains version 3.1 of the package, provided as a tar archive. It runs
underMaple V Releases 1–4, and is to be found at

http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-b/.

Appendix C. Transversal 3.2

This appendix contains version 3.2 of the package, provided as a tar archive. It runs
underMaple V Release 5. Other than the changes required for compatibility with Release
5, this version provides the same functionality as version 3.1. The package is to be found at

http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-c/.
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