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Introduction

In a series of papers ((1967), (1967a) and (1967b)) Magill has considered
the semigroups &~(X, Y;6) (definition below), a natural, but extensive, generali-
zation of the usual transformation semigroup &~{X). They have also been studied
in Sullivan (to appear). Under the assumption that 8 be onto Magill described their
automorphisms and determined when one $~(X, Y;9) is isomorphic to another.

It is the purpose of this paper to generalize these results to arbitrary 0.

The work is facilitated by the introduction in §1 of certain congruences. These
congruences which bear some striking resemblances to Green's relations on an
arbitrary semigroup shed light on the algebraic structure of 3~(X, Y; 8) and appear
to be a powerful tool for such considerations.

1. Some structure results for ̂ (X, Y; 6)

Our notation is that of Clifford and Preston (1967) with some additions and
departures. Let X and Y be sets and 6 : Y -> X. We shall write f{X, Y; 0) (T for
short) for the semigroup consisting of the set of all mappings from X into Y, &~
(X, Y), together with the operation

a*P = a6p (oc,PeT)

If Y = X we shall put T = $~{X;8); and if 9 = i we write T = ^{X).
Clearly &~{X) is the usual full transformation semigroup. For a, /? e T we define
<xdp(aip,urP) to mean 9a9 = 0j?0 (6a = 9$,*9 = $8). (Note Juxtaposition of
functions will always mean composition in the usual sense.) Clearly d 2 /, r. We
put h = I n r and prove

LEMMA 1.1. The relations d,l, and r are congruences on 3~(X, Y;9).
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48 J. S. V. Symons [2]

PROOF. It is evident that /, r, and d are equivalences so we need only demon-
strate the compatibility property. If a dp then 0 a0 = dp 6. Hence for all y e T ,
y0a0 = y0J?0. It follows that 0(y*a)0 = 0y0a0 = 0y0)?0 = 0(y*P)6 which
means y * xdy * p. Similarly a * ydp * y, and this gives the result for d. The
proofs for / and r are similar.

The relations / and r have a simple interpretation. Let a,jSeT; then a//?
means that a and /? have the same action on Y0, while a r /? is equivalent to the
statement: "a and fi map each element of X into the same partition class of 0". In
the same vein a. dp means that a and P map each element of YQ into the same parti-
tion class of 0. It follows that each d-class is determined by a mapping
Y6 -> Y/0O0"1. Since\YI9o6~l\ = \Y6 , Thas | Yd\ |y0|d-classes.Inthesame
way the number of /-and r-classes of T are Y |'*"*' and | 701 '*' respectively.

THEOREM 1.2. 77ie congruences 1 and r commute and we have

d - lo r = r o / = / V r.

PROOF. We show d = lo r. Let a, fie T be such that a(/o r)/?. Then there
exists yeT such that 0a = By and )?0 = yd. Now (0y)0 = 6(yO) so (0a)0 = 0(j?0)
and it follows that ad p. Conversely if a d p then 0 a 0 = 0 )5 0. Define y : Z -» Y by

xy = xjS when x e Y 0

= xa otherwise.

Evidently Oy = OP: we complete the proof by showing that y0 = <x0. If x ^ Y.0
then xy = xa so that x y 0 = x a 0. Otherwise x = yd for some y e Y. Hence

xy0 = xpe = yOpjd = ydaQ = xa0

Thus a(/o r)P and it follows that d — lo r.
Now d = d~1= ( / o r ) " 1 = r~1ol~x = ro I, and it only remains to show

that / o r = / V r. But this is immediate, since / and r commute. (See Clifford and
Preston (1967), Lemma 1.4).

Many of the simpler results concerning Green's relations follow from their
congruence properties and the formula 2s = 3? o &. Thus we may reinterpret such
theorems in our context.(However the analogy is only formal as will be verified
by examining the table set out in Example A, below.) Thus in the same way as
Clifford and Preston (1967), page 48, we have

THEOREM 1.3. / / R is an r-class, L an l-class then R meets L if and only if
they are contained in the same d-class. Similarly (c.f. Clifford and Preston (1967),
page 49),

THEOREM 1.4. The set product (with respect to *) of any l-class and any
r-class of S~(X, Y;0) is always contained in a single d-class.
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The former result shows that /, r, and d break up 3~{X, 7;0) in a manner
analogous to Greens relations, £C, 3%, and 3), on an arbitrary semigroup. In par-
ticular we have the familiar "egg-box" picture. We also have a partial analogue of
Green's Lemma (Clifford and Preston (1967), page 49). For oteT, let Lx denote
the /-class of T containing a and define, for p e T, G(a, P) :La -> Lfi by demanding

yG(x,P)\Y9 = p\Y0

yG(«,P)\X\Y6 = y\X\Y6 (yeLx)

Since La = {yeT; 0y = 0a} = {ye T; y | Yd = <x| Y0} it is clear that G(oc,P) is
a bijection. Moreover G(a, /?) and G(P, a) are mutually inverse, and it follows that
all the /-classes of T have the same cardinality.

Further, if ar/? then G(a,P) is r-class preserving. For, letyeLa and put
y' = yG(a,)3). Then if x e 70,

xy'O = xfiO (by definition of G(a,#))

= xa0 (since ar/?)

= x y 9 (since x e 70 and a | y0 = y \ 70)

— while if x £ 70, x y' = xy. Hence y'O = yO so that y'77. Dually, G(/?, a) preserves
r-classes, and it follows easily that 17fa | = | Hfi | . To summarize:

THEOREM 1.5. The l-classes of 3~(X, 7;0) all have the same cardinality,
and any two h-classes contained in a single r-class have the same cardinality.

EXAMPLE A. We take X = 7 = {1,2,3} and write (i,j,k) for the mapping
/ -> j,2 -> j,3 -> /c. We shall calculate the /-, r-, and d-classes for y{X,X;6)
= y{X;G) with 0 = (1,2,2). From the above discussion there are \XQ\|OT| = 22

= 4 d-classes of T. Each d-class is determined by a mapping

where adp if and only if xa. and x/? belong to xA, x e X0.
Below is written out the class structure of T: the four large blocks represent

the ^-classes and within each rf-class the rows represent the r-classes and the
columns the /-classes. The cells formed by the conjunction of an /-class and an
r-class are the fc-classes of T. Under each d-class we have written the particular
mapping which determined the class.

We have imitated the format of Clifford and Preston (1967), pages 55 and 56,
to underline the formal duality between our relations and Green's. However the
example points out a distinction: in the latter case all J?-classes within a single
^-class have the same cardinality. This is evidently not so here.
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Total
2 - { 2 , 3 }

If S is a semigroup then we may hope to obtain a semigroup with reductive
properties (see Clifford and Preston (1967)) by identifying those elements of S
which multiply identically. More precisely, define A(p) on S by putting aXb(apb)
when xa = x b(ax = bx) for all x e S. If 5 is the congruence generated by A U p
then S/A is left reductive, Sip is right reductive, and S/d is both left and right
reductive.

In the case of ^{X, Y; 9) it is elementary to show X = I, p = r, and 5 = d.
It follows that the /-(r-)classes of T consist of those mappings which multiply
identically from the right (left), and the /i-classes of those mappings which multiply
identically from either side.

We have

THEOREM 1.6. The following statements are equivalent:

(1) T is weakly reductive
(2) Each h-class contains one element
(3) 9 is either injective or surjective

PROOF. The foregoing discussion shows the equivalence of (1) and (2). If 9 is
one to one or onto X, then oc0 = 00 and da = Op together imply that a = p. It
follows that (3) implies (2). Finally if 0 is neither one to one nor onto we may
select yu y2 e Y, yt J= y2, with yt0 = y20; and anxeX such that x $ Y9. Choose
two mappings in T,OLX and oc2, which agree on X\x, with the additional property:
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x<*n = y« (« = i ,2 )

Since x$ Y9,9oc1 = 9cc2. However it is clear that o f̂l = a20 so we have oc1ha2,
with at # a2. Hence (2) implies (3), which completes the proof.

NOTE. One may also prove :
T is left (right) reductive if and only if the cardinality of each /-(r-)class is

one, if and only if 9 is onto (one to one). It follows that no F{X, Y;9) is
"properly" weakly reductive: that is, weakly reductive and neither left nor right
reductive.

The following theorem indicates the result of identifying the elements of T
which multiply identically from any one side.

THEOREM 1.7. ^(X,Y;9)/d s

PROOF. Let dx be a d-class of T containing a e T.
Define dx : Y9 -> Y9 by

xdx = XOL9 (xeY9)

Now dx is well defined, for if a' e dx then

x6<x.'9 = X9<x9 (xeY)

from which follows xoc'9 - xa.9 for all x e Y9. To check that dx -> dx is one to
one we merely reverse this argument. For surjectivity, let /? :Y9 -> Y9. Define
a ' : Y9 -* Y by taking xx' as any element of xfi9~l, and extend a' to a mapping
in T. Then for all x e Y9,

xdx. = xcc'9 = xp

Finally we verify that dt -> dx is a homomorphism. If the semigroup operation on
T\d is denoted by o we have

dxodfi = dx.f = dx$0 (ccJeT)

Hence for all x e Y9

xdxodfi = f

The following example will illustrate (1.7).

EXAMPLE B. Take X = U and define xO to be x correct to four decimal places.
Then 9 :R -> R. We consider ^{X;9). Multiplication in ^{X;6), a * )S = a ^ ,
may be thought of as a method of composing functions where one approximates
at the intermediate stage. Call 9<x9 the table of a. In-fact, if a is the sine function,
say, X9OL9 is what is actually computed if one evaluates sin x by standard mathe-
matical tables. In practical problems it is convenient to regard functions as the
same if their tables are the same. Thus (1.7) asserts that if we identify functions in
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this way, the resulting structure is <^"(R4), where R4 = R0 is the set of numbers of
the form n x 10"4, neZ.

Observe that 92 = 9. In general, if this is the case, we shall call 3~(X;9)
an approximation system on X.

It will be of value later — and is of independent interest — to know, given
a e T, whether we can find a' # a such that a and a' multiply identically in T.
That is to say, when is | Ha | > 1 ?*. The following theorem provides a useful
crvtetiotv.

THEOREM 1.9. / / a e J ( I , Y;9) with \X<x\>\Y0\ where Xa is infinite

then \HX\ > 1. Moreover there exists a'eHa, a' ^ a, such that X<x = \Xa'\.

PROOF. If |Hx| > 1 then we may find a ' e T and aeX such that a| Y9
= a' | Y9, aa ^ aa', and aa.9 = aa'9. It follows that \HX\ > 1 implies there
exists aeX\Y9 with | (aix)99~1 | > 1. On the other hand, if we assume the latter
statement then there exists bs(aa)99~1 with b # aa. Define a':X -* Y by

XOL' = xa (x / a)

aa' = b

Then 0a = 0a' since a $ Y9; and <x9 = a'0, since aa'0 = b9 = aa0. We have
shown:

| if. | > 1 if and only if | {au)99~11 > 1 for some a e X\Y9.

Now assume | Xa. | > | Y91 where | Xa. | is infinite. We have

\X*\ ^ \(X\Y9)a\ ^ \Xa\Y9a\ = \x<x\,

where the last deduction follows from | Xa | > | Y91 ^ | Y0a |. Hence IXa I
= |(A"\y0)a( and it is clearly impossible for 9\(X\Y9)a to be one to one. The
result is now evident from the first part of the proof.

COROLLARY. If | Y91 ^ Ko then every /i-class of T containing an element whose
rank (cardinality of range) is greater than rank 9, contains more than one element.

NOTE. In Example A |H(321)| = 1. However |*(321)| = 3 > \X9\ = 2.
Hence the supposition that | Xa | is infinite may not be removed.

2. Isomorphisms of ^{X, Y; 9)

In this section we characterize 3~(X, Y;9) in terms of certain cardinals as-
sociated with 9. Magill (1967) has proved the same result, but with the restriction
that 9 maps Y onto X.

The next result indicates why the congruences we have introduced in section 1

* H ,L , etc., will always be with respect to h, I, etc., and not Green's relations.
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are relevant to a discussion of isomorphisms and automorphisms of T. The proof
is a simple consequence of some relationships established immediately before (1.6).

THEOREM 2.1. / / 0 :3~(X, Yjflj) -> F(X, Y;02) is an isomorphism then <j>
maps each l-(r-, d-, h-)class of &~(X, F ^ ) onto a corresponding l-(r-, d-, h-)
class of 3T{X,Y;82).

We shall denote the operations in F{X, Y-,9^ and ^(X, Y;62) by * and x
respectively. The following theorem is vital since it enables us to obtain informa-
tion about isomorphisms by considering more tractable semigroups than

THEOREM 2.2. Let §:3~(X,Y\Qd -* 2T(x,Y;Q2) be an isomorphism and
define

p : (tT(X, Y)0u o ) - (f(X, Y)62, o ) and

X : (e^(X, Y), o ) - (023T(X, Y), o ) by

(ixO^p = o«t>82 and

Then p and X are isomorphisms.

NoTE.The symbol " o " means composition of functions and it is with respect
to this operation that X and p are isomorphisms. Also, to facilitate the notation,
we shall assume henceforth that the symbol <f> is evaluated immediately to its left.
For example, a$0 will mean (ouj>)6 and 6P4> will mean

", 7) then, by (2.1), «61 = j?0t if and only if a<£02 =
This shows at once that p is well denned and one to one, and the result for X
follows dually. Since <j> itself is onto, X and p are onto, and it only remains to
demonstrate the morphism property. We prove the result for p:

= \_(a*P)4>~\02 = (oi(j) x p<f>)62

If an element of ^{X, Y) has range {a} we shall denote it by K0. If S is a
transformation semigroup under composition, S ^ ^~(X), then we write K(S)
= {a e X; Ka e S}. We have from Symons (to appear)

LEMMA 2.3. If S and T are transformation semigroups, S,T Z

with K(S), K{T) ¥= • , and <f>: S -> T is an isomorphism then

xz<f> = xg-^g (xeK(T))

where g :K(S) -> K(T) is a bijection defined by the equality Ka(j> = Kag.
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We require one further result from Symons (to appear). It is an immedi-
ate corollary of Theorem (5.1) of that paper.

LEMMA 2.4. / / Yt and Y2 are subsets of Xt and X2 respectively, and both
contain more than two elements then (&~(XU Y{),o ) s (3~(X2, Y2),o ) if and

lX^Y^ = \X2\Y2 \ and \ Yt \ = \Y2\.
We now state the principal result of this section.

THEOREM 2.5. T(X, Y;0,) ^ F{X, Y;62) if and only if9th = g92, where
ge<g(Y)andhe<g(X).

PROOF. Assume 0,/i = g92 for ge&(Y), he&(X). For a.eJ'iX, Y), define
ouf> = h~1<xg. Clearly <f> is a permutation of J~{X,Y). Moreover for all

ai<f> x

Conversely let <j> :^{X, Y; 9,) -» ^"(A", Y;02) be an isomorphism. We recall
(2.2) and apply (2.3) to X and p. (This is permissible since OJ'iX, Y) ^ ^{Y) and
^"(AT, Y)0 ^ ^ (A) ) . Since both QXF(X, Y) and flz^Z, Y) contain all the con-
stant functions of .^"(Y) we have

(0l(x)A = 0 - ^ ^ ^ ( a e ^ ( X , Y ) )

for some ge&(Y). On the other hand K(F(X, Y)6n) = YQn(n = 1,2) and it
follows that

x(a0i)p = xh-iaOth (xeY62, ae^"(X,Y))

where h : Y0t ^ Y02 is a bijection. Now Q2{a.9l)p = O2a<t>02 = (0ja)A02. If we
substitute the determinations of p and A obtained above we have 02 ' l~ l a^i ' 1

= g~l0la.gd2. Putting a = Ka, where a e Y, this equation yields a0x/j = ag02.
Hence 6xh = #02.

To complete the proof we show that h may be regarded as the restriction of a
function in <&(X), that is, | A:\Y0j | = | X\ Y021.

If X is finite, the result follows since | Y0X | = | Y021, while if | X | is infinite
and | Y0j | = | Y02 | is 1 or 2 the result is clear. Hence we may assume that | X | is
infinite and | Y0n | > 2. Now ^{X, Y)9n = F{X, Y0n) (this requires little proof)
and from (2.2), F{X, Y9X) = F(X, Y02). An application of (2.4) completes the
demonstration.

REMARKS (i). It is natural to ask for the conditions under which (A) the semi-
groups Tt = y(Xi, Yi;0i) and T2 = ^{X2, Y2; 02) are isomorphic. It is easy
to see that if (B) 0 ^ = #02 where h is now a bijection from Xx to X2 and g a
bijection from Yl to Y2, then (A) follows. In fact, h~l.g is an isomorphism from
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T1 to T2. (Henceforth we shall call such isomorphims formula-expressed, and
denote h~l • g by ̂ /(h,g)). On the other hand, if (A) holds, it follows from a trivial
extension of (2.2) and (2.3) that \Y^\ = | Y2 | and | Y611 = | Y62 \. If | Yn0n | > 2
then (2.4) gives | A"1\i^1011 = |A"2\Y202| in a manner analogous to that of the
text. Hence | Xt | = | X2 | and there is a formula-expressed isomorphism from T2

to f(Xu Yt; 03) for a certain 03. A little manipulation and (2.5) suffice to give (B).
If | Yn0n | = 2 then we are denied (2.4) and the questions hinges on the following
cardinal-theoretic proposition:

(C) 2 s = 2N implies K = K, for K and X infinite cardinals. (Note that (C) may
be deduced from the Generalized Continuum Hypothesis. It is unknown whether it
follows without such an assumption). If (C) is assumed then it can be shown that
(B) follows, while if it is denied, one can exhibit a counterexample (see (5.1) of
Symons (to appear). Finally, (A) together with | YnQn | = 1 by no means implies
(B): trivially 3T(XU Y^OJ is isomorphic to &~(X2, Y2;02) if | Yt | = \Y2\ = 1.
This affords a counterexample to (B) by choosing \Xt\ # | X2 | .

(ii) Translated into our (more restricted) context, (2.3) of Magill (1967) yields
the result: If ^(Xu Y^ej s &~(X2, Y2;02) then gO2 = 9th where ge&(Y)
and h : Y9t -> Y62 is a bijection.
Hence we could have deduced (2.5) from this result and the last paragraph of the
proof of (2.5).

If we write 0j ~ 02 when 9~{X, Y\Q^ £ F(X, Y;02) then ~ determines an
equivalence on 3~{Y,X). One expects that 0t ~ 92 when 6X and 02 are the same
"sort" of mapping. The following theorem makes precise what we mean by this.

THEOREM 2.6. The following statements are equivalent
(i) 0, ~ 02

(ii) The defect of 0X (that is \X\Y0i\) equals the defect of 62, and there
exists a bijection f:Y/01oOl~

1^ YI92o02~
i such that \Af\ = \A\,

1

PROOF.If 9t ~ 92 then by (2.5) 0rh = g92, where ge<$(Y) and he&(X).
Hence |X\Y0, | = \x\Yg02h~l\ = \X\YO2h~1\. But X = Xh'1 and since h is
one to one, \Xh-l\Y92h'l\ = \{X\Y02)h~l\ = \X\Y02\. In the notation of
Clifford and Preston (1967) put

••-£)-••-£)
Then

(?) * -
so that

yj
(x'\ =
\Xih)
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Defining XJ = Yj when Xt = Yjg~l, we see tha t / : y / ^ o 0fx -* Y/02o 0J1

satisfies the latter assertion of (ii).
Conversely if 0t and 02

 a r e related as in (ii), with

* •£) •
then we may take the indexing of 02 so that XJ = Yt. Choose g e &(Y), demanding
that g | Xt: Xt -> 7, is a bijection. Further, if we define xth = yt for all i then
h : 70! -> 702 is a bijection. Since | X\70X | = | X\702 | we may extend ft to a
permutation of X. We have

as required.

Hence, up to isomorphism, 3~(X, Y; 0) is determined by a (cardinal) number
of cardinals, to wit, the defect of 0 and the cardinalities of the partition classes of
0. If \X | is finite then Rank0t = Rank02 implies Defect 0t = Defect 02. Hence

given 0x = I ' I , we may take 02 to be any mapping of the form I ' I and have

0j ~ 02. In the particular case X = Y we may demand that each yt e Xt so that
Q\ = 02. Thus we have a

COROLLARY. If \ X | is finite then 3~(X;&) is isomorphic to an approximation
system on X.

This argument fails in general. For example, take X = N, the natural num-
bers, and define 0 : N ->• N by x9 = [x/2] (= integral part of x/2). If 0 ~ s where
e2 = s then • = Defect 0 = Defects. Hence e is onto and we have e = i. How-
ever the partition classes of 0 all have cardinality 2 and the bijection/of (2.6) can-
not be constructed.

REMARKS (i). There is a natural extension of this result along the lines in-
dicated by the remarks following (2.5) — provided we assume | Yn0n | > 2,
(n = 0,1).

(ii) Theorem (3.1) of Magill (1967) gives (2.6) for 6X and 02 surjections.

3. Automorphisms of 3~(X, Y; 0)

In this section we shall describe the automorphism group of 3~(X,Y; 0). We
shall demand that | Y6 j > 2 so that we may use the following result from Symons
(to appear).

THEOREM 3.1. Let X 2 Y and assume | Y | > 2. Then any automorphism
ofZT(X, Y) (the operation of composition is understood) is of the form a -> /i^a/t,
a e ST{X, Y), where h e 9{X) and h j Y e 9{Y).
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If <p is an automorphism of T = ^{X, Y;9) then the mappings X and p in-
troduced in the last section are automorphisms of the semigroups (8T, o ) and
(TO, o ). As in the proof of (2.5) we have, for some

(3.1.1) 9a<t> = (9a)X = g~l9ag (<xeT)

while from (3.1) and the observation that TO = &~(X, Y9) we have for some

(3.1.2) tx<j>6 = (tx0)p = h~xa.9h (aeT)

Moreover in the same way as in the proof of (2.5) we can derive

(3.1.3) Oh = g0

If we apply this last formula to (3.1.1) and (3.1.2) we obtain

(3.1.4) <xcj)9 = h'^gO = oa//(h,g)O

a n d OOK/) = 9h~1ocg = 9^{h,g) (cteT)

If (3.1.3) is satisfied by bijections h and g then *J/(h,g) is an automorphism of
&~(X, Y;9). Automorphisms of this nature will be called formula-expressed
automorphisms and the group of all such byFEA(T).

Continuing with 0 an arbitrary automorphism, let \// = \{/(h, g) e FEA(T).
Then 6 • a.\j/~l(j) = O-aip'1^ = 0a so that(a^~1(j>)lx. Since a similar result holds
for r we have (u.\\i~l<$>)\ia., and it follows that ^~ V maps each /i-class of T onto
itself. Denoting the totality of such automorphisms by HCA(T) (A-class automor-
phisms) we summarize the foregoing in

THEOREM 3.2. IfT = ST(X, Y;0) where \ Yd\ > 2 then

(3.2.1) AutT = FEA(T) • HCA(T).

REMARKS, (i) BothFEA(T) and HCA(T) are subgroups of AutT. Moreover
HCA(T) is a normal subgroup. To see this let \\i = \j/{h,g)e¥Eh(T). Then
i/r"1 = \jj(h~l,g~x). If <f)eHCA(T) and Hx is an h-class containing a then it is
easy to see that a e / / , ^ " 1 ^ Since /i-classes are preserved by automorphisms we
must have H^'1^ = Hx. Thus ijj~ V"A eHCA(T). We also have that HCA(T)
OFEA(T) is trivial (this follows readily from (3.3) below) and hence (3.2.1)
expresses Aut T as a semi-direct product of FEA(T) and HCA(T).

(ii) We are also able to exhibit in a similar fashion all isomorphisms between
Tj = J-(XU YitOt) and T2 = f(X2, Y2; B2), | Y9n | > 2. If 4> is such a mapping
then by the remarks following (2.5), there exists a formula-expressed isomorphism
^ = [j/(l,m):T1 -+ T2. If follows that 0 ~ V e A u t r 2 = FEA(r2)HCA(T2). A
simple calculation gives cj> — \j/(l, m)\J/ (h, g)C where ij/(h,g) e FEA(T2) and
;eHCA(T2). Now \j/{l,m)xj/{h,g) = ty{lh,mg) and 9Jh = m02h = mg92. It
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follows that \l/(lh, mg) is a formula-expressed isomorphism from Tt to T2. Hence
we state :

If (f>: 7 \ -> T2 where | Yn9n | > 2 then <j> is an isomorphism if and only if (ft is
the product of a formula-expressed isomorphism from T, to T2 and an h-class
automorphism of T2.

Hij/e HCA(T) and ixJsT then (aOpW = (a * $)\}i = a i / ^ = aOptp = a0)3,
where the last two deductions are derived from on]/ • 6 = <x6 and 0 • flty = 0/J. It is
easy to see that f(X, Y)d3T{X, Y) is the set {y e 3~{X, Y); | Xy | ^ | YO \}, and the
above shows that i// fixes all elements of rank ^ rank 9. This property together
with the invariance of fc-classes characterizes HCA(T).

THEOREM 3.3. If T = $~{X, Y;0) where \ Y0\ > 2, and ij/:T-+T then

tAeHCA(T) if and only if

(i) ouj/ = a for alloteT with | Xoc | ^ | Yd | and

(ii) i/' | H is a permutation of H for all h-ciasses, H.

PROOF. Necessity was established prior to the statement of the theorem. On
the other hand if i]/ : T -* T satisfies (i) and (ii) it is clear that {// is a permutation.
Moreover, we have (a.6p)\j/ = «0j3 = (a9)p = (#0)j3 = # ( 0 $ ) = ai/̂ 0j?iA •

Let / denote the set of mappings in T whose rank does not exceed | 70 and
if H is an h-class of T write H* = H\I. All we may say about the action of
i/' e HCA(T) upon H* is that it is a permutation. Hence we have a

COROLLARY

HCA(T) £ Yl ^(w*)
HeT/h

(Note : we interpret ^ (D) as the trivial group).
We now state our main result

THEOREM 3.4. / / \Y9\ > 2 the automorphisms of f(X,Y;6) are of the
form a -• ouf>, where, for some g e @(Y) and h s @(X) such that g9 = Oh,

Ha<j> = h-'Hj = Hh-lag (H.eT/h)

and <j> | Ha is one to one; and for | Xa | g | Y9 \

a0 = h~lag.

Moreover any mapping of this form is an automorphism.

PROOF. The first part of the theorem follows directly from (2.1), (3.2), (3.3),
and the observation that formula-expressed automorphisms preserve rank. To see
the converse it suffices to assume <j> has the form set out in the statement of the
theorem and to show a -> houpg'* is an h-class automorphism. We omit the
details.
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Let Jt be a partition of Y.FollowingMagill(1967)we put G{Jf) = {ge<S(Y);
Mg e J( for all M e Jf\. Observe that M -> Mgr is a permutation of the elements
of J( and that G(Jf) is a subgroup of &(Y). We have

THEOREM 3.5. FEA(T) ^ 3?(X\70) x G(7 /0o0- 1 ) .

PROOF. Let ifr = \l/(h,g)eFEA(T). The required isomorphism is \//(h,g)
-»(/i|X\y0,gf). This map is well defined; for if h~ltxg = h^1<xgl for all a e T,
letting a range through the constant functions, we have immediately g = gY. We
cancel # and it is sufficient to observe that we may separate any pair of elements of
.Y with a mapping in T (since | Y | ^ | Yd\ > 2) to deduce ft"1 = h~l. Moreover

our mapping is into the required group. To see this let 8 = I ' I . The formula

0 = g~18h may be written I 'I = I f), and an examination of this equality
\xi ' \xi" I

gives the result. The homomorphism property is clear and if g = iY and h\X\Y6
= tX\Yg then Oh = gO becomes Gh = d so that h = ix. It only remains to demon-
strate that i//(h, g) -• (h\X\Y6, g) is onto to complete the proof. Let g e G(Y/6 oB'1)
and h e G(X\Y6). Extend h to <$(X) by defining xfft = xs when X,g = Xj. Then

sothat^(/ i ,g)eFEA(T).

REMARK. By the remarks following (3.2) we may regard Aut T as the cartesian
product FEA(T) x HCA(T) with multiplication given by

Putting together (3.5) and the Corollary to (3.3) we have that up to isomorphism
Aut Tis &(X\Y0) x G ( y / 0 o r ' ) x UHeT/h^(H*) as set, with product given by

• (/, m, [ IJ H ]) = (hi, gm, [vH]/J(/, m)[ijH])

where R(l, m) is an automorphism of T\<&(H*). Explicitly, the Hth component of
[vH]/?(/, m) is (j>~lvH<t>-i <j) where <j> = <t>(l,m) is the formula-expressed automor-
phism corresponding to

(!,m)e&(X\Y0) x G(Yjdo 0'1)

Aut T has an exceedingly simple structure when AutT = FEA(T), or equi-
valently, when HCA(T) is trivial. By the Corollary to (3.3) this is so if and only if
| H* | fg 1 for all /i-classes, H. This fact will be used* in the proof of the following

THEOREM 3.6. If \Y0\ > 2 then Aut T = FEA(T) if and only if at least one
of the following hold
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(i)
(ii)
(iii)

Y
X
X

=
=
=
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Y6\
Yd\
Y\ = | Y6\ + 1 < Ko.

PROOF. If either (i) or (ii) hold then every element of T has rank less than or
equal to the rank of 9 and the result follows from (3.4). In case (iii) assume that
yx and y2 belong to H* for some /i-class, H. Since \Xy,\ > | Yd\ we must have
Xyt = Y for i = 1,2. It follows that yx and y2 are bijections. By the relation
yjyz, they agree at all points of X except (possibly) one and it is immediate that

7 l = y2. Thus \H*\ g 1.
To complete the proof let Aut T = FEA(T) and assume that (i) and (ii) fail,

that is, | 701 < | Y | and | Y6| < | X \. Let a e X\Y6 and bu b2 eY,bt ^ b2, with
b{9 = b2Q. Select a :X\a -v Y with the property

|(X\a)a| = min(|X\a | , | Y \) ^ \Y0\

For i = 1,2 define xa; = xa, x # a, and aa; = b; . As in the proof of (1.6),
a1ha2. By assumption, at least one of the | Xca, | does not exceed | Yd | , for other-
wise | H* | > 1. However for both i = 1 and 2

|Xa, | ^ |(x\a)a| = min( |Z\a |, | Y|) ^ | 701

It follows that min( | X\a \, \ Y |) = | Yd \ and since | Y \ > | Yd \ we have

| y | ^ | x | = 170 | + i

where both | X \ and | Y91 are finite. (For otherwise | X \ = \Y6\.) Assume by way
of contradiction that | Y | > | X | , and take Pl : X ^ Y\b2 with | X^x \
= min( | X |, | Y\fo2 |) = | X | . Clearly we may require ajSx = ft1. Define p2 to be
identical to /?! except at a where aft^ — bv Then Pihp2, so for at least one i

REMARKS (i). Example A of Section 1 is an instance of the situation that arises
in case (iii). An examination of the fc-class structure shows that each /i-class contains
at most one mapping with rank 3. If an automorphism of T fixes all elements of
rank < 3, then since such mappings merely permute /?-classes, it must be trivial.

(ii) If 9 is onto then \Y0\ = \x\ so that by (3.6), AutT = FEA(T)
S @(X\Y0) x C ( y / 0 o r ' ) . Since X\Y9 = • , FEA(T) ^ G{Yj9oe~l). This
is Theorem (3.3) of Magill (1967).

To conclude we discuss some examples.

EXAMPLE C. Consider the semigroup F{X, Y), where X 2 Y, under the opera-
tion of composition. If iY is the canonical imbedding of Y in X then (^(X, Y), o )
= &~{X, Y;iY). Now Y/iyOiy1 is the identity partition of Y so G(Y/iYo ty1)

= 9(Y). Moreover I YiY I = I YI so Aut T = FEA(T) = 9{X\Y) x 9(Y). Since
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all automorphisms of T are formula-expressed they are of the form \j/(h,g) where
he&(X\ ge&(Y) and iYh = giY = g. It follows that h\ Y = g and \p{h • g) is
the map h~l • h. Hence the automorphisms of T are the mappings of the form

where h e &(X, Y) = {g e &(X);g \ Y e &(Y)}. This is (3.1), derived from Symons
(to appear). We have used this result extensively in developing our theory.

EXAMPLE D. In case (iii) of (3.6), \X\Y6\ = lsothatAutT s G(y/0o0'1).
Clearly the partition classes of 6 all contain one element except one class which
contains 2. Hence G(Y/6o 9'1) s Z2 x <&{\X\ - 2), the direct product of the
group of integers modulo two and the full symmetric group on | X | — 2 objects.

EXAMPLE E. We consider Example B of Section 1. Let Jf be the partition
of R realized by all left-closed right-open intervals of length 10~4. Clearly
J?=Rieo6~1. There are | R01|R| = Xc

0 = 2C r-classes of T and since | T | = cc

= 2C, there must be 2C /i-classes. If Hx is an /j-class of Tthen fieHa if and only if
/? | R4 = a [ R4 and a and p map each x e R\R4 to the same set in Jf. It is easy to
see that Hx contains at least 2C elements with rank c, so that |H* | = 2C. Hence
HCA(T) s n ^ ^ f l ^ ^ ' ) 2 ' . Moreover |K\R4| = C and thus FEA(T)
S ^(c) x G{Jt). It follows that Aut T is isomorphic to a semidirect product of
the group ^(c) x G{Jf) with the group S?(2C )2!
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