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On the relativistic large-angle electron collision
operator for runaway avalanches in plasmas
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Large-angle Coulomb collisions lead to an avalanching generation of runaway
electrons in a plasma. We present the first fully conservative large-angle collision
operator, derived from the relativistic Boltzmann operator. The relation to previous
models for large-angle collisions is investigated, and their validity assessed. We
present a form of the generalized collision operator which is suitable for
implementation in a numerical kinetic equation solver, and demonstrate the effect
on the runaway-electron growth rate. Finally we consider the reverse avalanche effect,
where runaways are slowed down by large-angle collisions, and show that the choice
of operator is important if the electric field is close to the avalanche threshold.
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1. Introduction
Large-angle collisions are associated with large momentum transfers, but their

influence can often be ignored in plasma physics, as the cumulative effect of
many small-angle deflections are larger by a factor of the Coulomb logarithm,
ln Λ (Rosenbluth, MacDonald & Judd 1957; Trubnikov 1965). In many plasmas,
e.g. magnetic fusion plasmas and astrophysical plasmas, ln Λ is typically of the
order of 10–30. This allows collisions to be accurately accounted for using a
Fokker–Planck equation, originally derived for Coulomb interactions by Landau
as the small-momentum-transfer limit of the Boltzmann equation (Landau 1965).

A unique situation occurs in runaway acceleration of electrons, where large-angle
collisions can play a dominant role even for large lnΛ, as they cause an exponential
growth of the runaway density – a runaway avalanche (Sokolov 1979). Runaway is the
acceleration of particles in the presence of an electric field which exceeds the critical
field Ec = ne ln Λe3(4πε2

0mec2)−1 (Connor & Hastie 1975), where ne is the electron
density, e is the elementary charge, ε0 is the vacuum permittivity, me is the electron
rest mass and c is the speed of light. Since the collisional drag for superthermal
electrons is given by Fc = eEc(v/c)−2, any electrons with speed greater than the
critical speed vc = c

√
Ec/E will be accelerated indefinitely, and are hence referred

to as runaway electrons (Wilson 1925). Electron runaway occurs in a wide range of
plasmas, e.g. in atmospheric discharges (Gurevich, Milikh & Roussel-Dupre 1992),
in solar flares (Holman 1985) and in tokamak disruptions when the plasma current
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changes quickly and a strong electric field is induced (Gill 1993; Jaspers 1993). Due
to the large plasma current they would carry, reactor-scale tokamaks such as ITER
will be particularly susceptible to the conversion of plasma current to relativistic
runaway-electron current by large-angle collisions during disruptions (Rosenbluth &
Putvinski 1997). The subsequent uncontrolled loss of a runaway-electron beam could
damage plasma-facing components, and the runaways therefore pose a critical threat
to the viability of nuclear fusion for energy production (Hollmann et al. 2015).

In a plasma, runaways are mainly generated by two separate mechanisms. When
the electrons in the runaway region v > vc are being accelerated, collisional velocity-
space diffusion will feed thermal electrons into the runaway region at a steady rate.
This primary runaway generation, or Dreicer mechanism (Dreicer 1960), generates new
runaways at a rate which is exponentially sensitive to the electric field. The runaway
population growth rate was derived in Connor & Hastie (1975), Cohen (1976) and is(

dnRE

dt

)
prim

≈ κ ne

τc

(
E
ED

)−(3/16)(1+Zeff)h

exp

[
−λED

4E
−
√
η
(1+ Zeff)ED

E

]
, (1.1)

where the undetermined constant factor κ is of order unity. Here nRE is the number
density of runaways, τc = 4πε2

0m2
ec3/(nee4 ln Λ) is the relativistic-electron collision

time, ED = m2
ec3/(eτcTe) is the so-called Dreicer field and Zeff =

∑
i niZ2

i /
∑

i niZi is
the effective ion charge (with the sum taken over all ion species i). The parameters h,
λ and η (not given here) depend on E/Ec and approach unity as E/Ec becomes large
(in the non-relativistic limit), and ensure that the growth rate vanishes as E→ Ec.

A secondary runaway generation mechanism is provided by large-angle collisions,
whereby an electron with kinetic energy ε = (γ − 1)mec2 > 2εc can send a stationary
target electron into the runaway region in a single collision event while remaining
a runaway itself, where εc is the kinetic energy corresponding to the critical speed.
Secondary generation, also referred to as avalanche generation due to the resulting
exponential growth of the runaway population, generates new runaways at a rate
calculated by Rosenbluth & Putvinski (1997) to be approximately(

dnRE

dt

)
ava

≈C
nRE

2 lnΛτc

(
E
Ec
− 1
)
. (1.2)

The function C = C(E, Zeff) was shown to be C = 1 when collisional diffusion is
neglected (formally by setting Zeff =−1).

While the avalanche growth rate is formally of order 1/lnΛ smaller than the
primary generation rate, the more favourable scaling with electric field makes it the
dominant source of new runaways for sufficiently large runaway populations nRE
or sufficiently small E/ED, i.e. at low temperature. In the presence of a constant
electric field E, with no initial runaway population (apart from a small primary seed),
the secondary generation rate will exceed the primary one after approximately one
avalanche e-folding time tava ≈ 2 lnΛmec/[Ce(E − Ec)]. This corresponds to the time
for an initially slow electron to be accelerated to a kinetic energy Ek ≈ ln Λ/C
MeV (Jayakumar, Fleischmann & Zweben 1993) (neglecting the weak electric-field
dependence of C). Numerically, tava ≈ 3.4 ln Λ/[C(E − Ec)] ms, with E and Ec in
V m−1. If the electric field decreases in magnitude with time, avalanche will become
important even earlier. In many practical runaway scenarios, the runaway process will
last for multiple tava (Gurevich, Milikh & Roussel-Dupre 1994; Gurevich & Zybin
2001; Helander, Eriksson & Andersson 2002), and secondary generation will therefore
be the dominant runaway mechanism.
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In this work we derive a conservative large-angle (also known as ‘close’ or
‘knock-on’) collision model from the high-energy limit of the linearized relativistic
Boltzmann collision integral. We will show how the operators used to model
large-angle collisions in previous studies are obtained through various approximations
of the Boltzmann collision operator, and how our more general operator resolves
issues with previous models and allows the study of new physical effects. In particular,
we resolve the issue of double counting of large-angle and small-angle collisions, and
show that this development is essential to accurately capture the dynamics. We
find that the change to the runaway growth rate due to the new operator is largest
during the early stages of the runaway acceleration process, and the likelihood of a
given runaway seed transforming into a serious runaway beam can thus potentially
be affected. Furthermore, we consider the effect of the inverse knock-on process,
where a runaway is slowed down in a single large-angle collision. This effect was
recently shown by Aleynikov & Breizman (2015) to be significant for runaway in a
near-threshold electric field.

The rest of the paper is organized as follows. In § 2 we introduce the theoretical
models describing the large-angle collisions. After giving an overview of the existing
models, we present a derivation of the new conservative operator. In § 3 we investigate
the effect of the new operator on the runaway growth rate numerically, using the
kinetic equation solver CODE (Landreman, Stahl & Fülöp 2014; Stahl et al. 2016).
Finally, we summarize our conclusions in § 4.

2. Theoretical models for runaway generation due to large-angle collisions
One of the earliest models for avalanche runaway generation was introduced

by Rosenbluth & Putvinski (1997). Due to its simple form, suitable for analytical
development, it has been widely used to study the dynamics of an avalanching
runaway population (Eriksson & Helander 2003; Smith et al. 2005; Fülöp et al.
2006; Nilsson et al. 2015). Rosenbluth and Putvinski proposed a kinetic equation for
the electron distribution of the form

dfe

dt
=CFP( fe)+ S( fe), (2.1)

where dfe/dt represents the advective part of the motion, CFP is the Fokker–Planck
collision operator and S a source term representing ‘secondary high-energy electrons
knocked out of their orbits by close collisions of a primary relativistic electron with
low-energy electrons from the background plasma’ (Rosenbluth & Putvinski 1997).
Assuming all existing runaways to be infinitely energetic and having zero pitch angle,
they obtained (here adapting their more general result to a homogeneous plasma)

SRP(p, ξ , ϕ)= nRE

4πτc lnΛ
δ(ξ − ξ0)

m3
ec3

p2

∂

∂p

(
1

1− γ
)
, (2.2)

where ξ = cos θ = p‖/p is the pitch-angle cosine, γ =√1+ (p/mec)2 is the Lorentz
factor, ξ0=√(γ − 1)/(γ + 1) and the momentum-space volume element is p2 dp dξ dϕ,
with ϕ the azimuthal angle of the momentum (the gyroangle). The delta function
ensures that secondary electrons are only born on the parabola p2

⊥ = 2p‖mec in
momentum space. In the non-relativistic limit, p � mec, secondaries are born at
perpendicular angles, p‖≈ 0, and are prone to trapping in an inhomogeneous magnetic
field (Rosenbluth & Putvinski 1997). Away from the magnetic axis of a tokamak,
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this can lead to a strong reduction in the avalanche growth rate, as recently also
demonstrated in detailed numerical simulations by Nilsson et al. (2015).

A more general model was later described by Chiu et al. (1998) (from now on
referred to as the Chiu–Harvey operator), which has also been used in runaway studies
(Chiu et al. 1998; Harvey et al. 2000; Stahl et al. 2016). Allowing runaway-electron
energies to be finite but assuming the runaway pitch angle to be zero, they obtained
a knock-on source term

SCH(p, ξ , ϕ)= 1
4πτc lnΛ

p2
1

mecpγ ξ
F(p1, t)Σ(γ , γ ′1), (2.3)

Σ(γ , γ1) = γ 2
1

(γ 2
1 − 1)(γ − 1)2(γ1 − γ )2

(
(γ1 − 1)2 − (γ − 1)(γ1 − γ )

γ 2
1

×[2γ 2
1 + 2γ1 − 1− (γ − 1)(γ1 − γ )]

)
, (2.4)

where Σ = (2πr2
0)
−1 dσ/dγ is the normalized Møller differential cross-section for free–

free electron–electron scattering (Møller 1932), r0 = e2/(4πε0mec2) is the classical
electron radius and γ1 is connected to p and ξ by the relation

ξ ≡ ξ ∗(γ , γ1)=
√
γ1 + 1
γ1 − 1

γ − 1
γ + 1

⇔ p1 = 2pξ
1+ ξ 2 − γ (1− ξ 2)

, (2.5)

where a misprint in the original paper incorrectly replaced the γ − 1 factor with
γ1. Since the authors work under the assumption that the runaway pitch angles are
negligible, the distribution only appears in the angle-averaged form

F(p1, t)=
∫

dξ1 dϕ1 p2
1fe(p1, ξ1, t). (2.6)

Both models for large-angle collisions presented above suffer from several defects.
In particular, they do not conserve particle number, energy or momentum. In addition,
the Rosenbluth–Putvinski model assumes that the incoming particle momentum is
infinite, which has the consequence that particles can be created with an energy
higher than any of the existing runaways. This assumption is not made in the model
derived by Chiu et al. (1998), where the electron energy distribution is properly taken
into account, but all incident runaways are still assumed to have zero pitch angle. The
magnitudes of both sources (SRP and SCH) increase rapidly with decreasing momenta
and the sources are thus sensitive to the choice of cutoff momentum (introduced to
avoid double counting of small-angle collisions).

In the following we will derive a knock-on collision model from the Boltzmann
collision integral. As we will show, the model takes into account the full momentum
dependence of the primary distribution, and conserves particle number, momentum
and energy, while also consistently distinguishing between small- and large-angle
collisions, therefore avoiding double counting.

2.1. The Boltzmann collision integral and the Fokker–Planck limit
The Boltzmann collision operator gives the time rate of change of the distribution
function due to binary collisions, described by an arbitrary differential cross-section.
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It can be derived with the following heuristic argument (Montgomery & Tidman
1964; Cercignani & Kremer 2002). The collision operator can be defined as
Cab( fa) = (dna)c,ab/dt dp, where (dna)c,ab is the differential change in the density
of a species a due to collisions with species b, and is defined in terms of the
differential cross-section dσ by Lifshitz & Pitaevski (1981) and Cercignani & Kremer
(2002)

(dna)c,ab = fa( p1)fb( p2)ḡø dσ̄ab d p1 d p2 dt− fa( p)fb( p′)gø dσab d p d p′ dt. (2.7)

The first term on the right-hand side, the gain term, describes the rate at which
particles a of momentum p1 will scatter to momentum p. The second term, the
loss term, is the rate at which particles a scatter away from momentum p. Here, we
introduced the Møller relative speed gø=

√
(v − v′)2 − (v× v′)2/c2 and the differential

cross-section dσab for scattering events p, p′→p1, p2. The barred quantities are defined
likewise, but with p exchanged for p1 and p′ for p2. Since the interactions are viewed
as instantaneous, the time labels of the distribution functions have been suppressed
for clarity of notation.

The elastic differential cross-section satisfies the symmetry property ḡø dσ̄ab d p1 d p2
= gø dσab d p d p′ (known as the principle of detailed balance (Weinberg 2005)),
allowing the collision operator to be cast in the commonly adopted symmetric form

CB
ab =

∫
d p′ dσabgø[fa( p1)fb( p2)− fa( p)fb( p′)], (2.8)

where p1 and p2 (six degrees of freedom) are uniquely determined in terms of p and
p′ by two scattering angles and four constraints by the conservation of momentum and
energy,

p1 + p2 = p+ p′, (2.9)
maγ1 +mbγ2 =maγ +mbγ

′. (2.10)

From this collision operator, the Fokker–Planck operator, which is often used in
plasma physics, can be obtained by a Taylor expansion to second order in the
momentum transfer 1p = p1 − p (Landau 1936; Akama 1970), motivated by the
fact that the cross-section for Coulomb collisions is singular for small deflections.
It is then seen that the contribution of small-angle collisions is larger than those of
large-angle collisions by a factor of the Coulomb logarithm,

lnΛ=
∫ cot(θmin/2)

cot(θmax/2)

dλ
λ
= ln

(
cot

θmin

2

)
, (2.11)

where the maximum centre-of-mass deflection angle for self-collisions is θmax = π/2
(not π as it is for unlike-species collisions, or collisions would be double counted) and
θmin is a cutoff required to regularize the expression, typically chosen as the scattering
angle corresponding to impact parameters of order the Debye length,1 beyond which
particles will not interact because of Debye screening.

1In the quantum mechanical treatment, it is rather the de-Broglie wavelength of the centre-of-mass momentum
transfer λ= h̄/|p∗1 − p∗| that cuts off at the Debye length.
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Note that by using a total collision operator CFP + CBoltz as prescribed by
(2.1), the Boltzmann operator has effectively been added twice, although different
approximations are used to evaluate the two terms. A subset of collisions will
therefore be double counted. One way to resolve this issue is to apply the
Fokker–Planck operator only to collision angles smaller than some θm, and the
knock-on (Boltzmann) operator for θ > θm. The Coulomb logarithm used in the
Fokker–Planck operator then ought to be changed from (2.11) to

lnΛ= lnΛ− ln
(

cot
θm

2

)
. (2.12)

When an incident electron of momentum p knocks a stationary electron to momentum
pm, the corresponding centre-of-mass scattering angle θm is given by

cot
θm

2
=
√
γ − γm

γm − 1
. (2.13)

By using this energy-dependent modification to the Coulomb logarithm, no collisions
will be double counted. Indeed, by taking the energy moment of the test-particle
collision operator (the sum of Fokker–Planck and Boltzmann), it can be verified that
with this choice, the average energy loss rate experienced by a test particle becomes
independent of the cutoff pm, when pm�mec.

The number of collisions that are double counted can often be significant when this
effect is unaccounted for. Assuming vm/c∼√Ec/E to be located at a non-relativistic
energy (that is, we assume E � Ec), the modification to the Coulomb logarithm
is approximately given by ln

√
2(E/Ec)(γ − 1). For highly energetic electrons with

γ ∼ 50 and E/Ec ∼ 100, this corresponds to a change of approximately 5, which
– depending on plasma parameters – typically constitutes a relative change to the
Coulomb logarithm of 25–50 %.

In principle, as θm approaches the cutoff imposed by Debye screening (or the
binding energy of atoms in the case of electrons in neutral media), the Boltzmann
operator will account for all collisions and lnΛ= 0. However, this corresponds to a
cutoff momentum smaller than thermal, pm � pTe, and the assumption of stationary
targets is violated when evaluating the operator in the bulk region. In addition, to
numerically resolve the Boltzmann operator in a finite-difference scheme, the grid
spacing in momentum must be much smaller than pm, and it is therefore desirable
to choose pm as large as allowed while having a well converged description of
the secondary generation rate. The sensitivity of the result to the choice of pm is
investigated in the next section.

In the following we will find it more useful not to work with the symmetric form
of the Boltzmann operator given by (2.8), but instead use the alternative given directly
from (2.7),

Cab{fa, fb}( p) =
∫

d p1

∫
d p2

∂σ̄ab

∂p
ḡøfa( p1)fb( p2)

− fa( p)
∫

d p′ gøfb( p′)σab( p, p′), (2.14)

where σab( p, p′)= ∫ d p1∂σab/∂p1 is the total cross-section.
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2.2. Derivation of a conservative knock-on operator
For the avalanche problem, one is concerned with the electron–electron Boltzmann
operator. We consider the scenario where a small runaway population has been
accelerated by an electric field (or other mechanism), leaving a largely intact thermal
bulk population. We may then write our electron distribution as fe( p)= fMe( p)+ δfe( p),
where the runaway distribution δfe is much smaller than the bulk distribution fMe,
‖δfe‖ � ‖fMe‖ (for example in terms of number densities nRE � ne). We may then
linearize the bilinear Boltzmann operator by ignoring terms quadratic in δfe, obtaining

CB
ee{fe, fe} ≈CB

ee{fe, fMe} +CB
ee{fMe, fe} ≡Cboltz( p), (2.15)

where terms Cee{fMe, fMe} vanish since fMe is chosen as an equilibrium distribution. The
first term, the test-particle term, describes the effect of large-angle collisions on the
runaway electrons as they collide with the thermal population. The second term, the
field-particle term, describes the reaction of the bulk electrons as they are being struck
by the runaways. Intuitively, one could expect this field-particle term to constitute the
avalanche knock-on source. We shall show below that this is indeed the case.

Before giving the explicit forms of the collision operator, we will make one final
approximation. We assume that both the incident and outgoing electrons in the large-
angle collisions are significantly faster than the thermal speed vTe=√2Te/me, so that
we may approximate the bulk population with a Dirac delta function: fMe( p)≈ neδ( p).
The collision operator then takes the form

CB
ee{fe, fMe} = ne

∫
q∗>p1>q0

d p1v1
∂σ̄ee

∂p
fe( p1)− nevσee( p)fe( p), (2.16)

CB
ee{fMe, fe} = ne

∫
p1>q∗

dp1v1
∂σ̄ee

∂p
fe( p1)− neδ( p)

∫
p1>q0

d p1v1σee( p1)fe( p). (2.17)

The total cross-section σee( p) is given in (A 9) in appendix A. The limiting momenta
q∗ and q0 are determined from constraints imposed by conservation laws. For the gain
term, i.e. the first term in each equation, energy conservation in each collision reads
γ1= γ + γ ′− 1, where γ and γ ′ are the Lorentz factors of the two electrons after the
collision. The conditions γ ′ > γ or γ ′ < γ determines whether γ refers to the bulk
particle or runaway particle after the collision, respectively (note that the electrons
are in fact indistinguishable, but an artificial distinction like this must be performed
in order to avoid double counting). We therefore obtain q∗ from setting γ ′= γ in the
conservation law, giving γ ∗ = 2γ − 1, which corresponds to q∗ =mec

√
γ ∗2 − 1.

Similarly, we cannot account for all collisions, since we have assumed the bulk
particles to be much slower than the outgoing particles. We therefore choose
to account only for those collisions where incident and outgoing particles have
momenta larger than some p= pm� pTe. Setting γ ′ = γm then yields the lower limit
γ0 = γ + γm − 1, corresponding to q0 =mec

√
γ 2

0 − 1. Note that for the total operator
CBoltz, the two gain terms in (2.16) and (2.17) combine into one integral, taken over
all momenta p1 > q0. The full expression is thus independent of the parameter q∗
which distinguishes the two outgoing particles (as is expected, since the distinction
is not physically relevant for scattering of identical particles).

We can now derive explicit expressions for the collision operator. Since there are
only two degrees of freedom in the scattering process (for example two independent
scattering angles), the differential cross-section ∂σ̄ee/∂p will invariably contain a
delta function. In Møller scattering (relativistic electron–electron scattering), the
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cross-section is azimuthally symmetric (assuming the electrons to be spin unpolarized)
and takes the form

∂σ̄ee

∂p
= r2

0

(mec)2pγ
δ(cos θs − ξ ∗)Σ(γ , γ1), (2.18)

cos θs = p1 · p
p1p
≡ ξs, (2.19)

where θs is the deflection angle, Σ is defined in (2.4) and ξ ∗ is defined in (2.5). The
delta function enforces the relation between scattering angle and energy transfer that
follows from the conservation of 4-momentum. The gain term then takes the form

ne

∫
d p1 v1

∂σ̄ee

∂p
fe( p1) =

1
4πτc lnΛ

1
pγ

∫
dp1

p3
1

γ1
Σ(γ , γ1)

×
∫

dξ1 dϕ1δ(ξs − ξ ∗)fe( p1). (2.20)

This expression (when choosing integration limits appropriate for the field-particle
term) is the generalized ‘knock-on source term’ S, which reduces to the expressions
given by Rosenbluth & Putvinski (1997) and Chiu et al. (1998) – (2.2) and (2.3),
respectively – using appropriate approximations, as shown in appendix B. This
connection has not been acknowledged in previous studies, to the degree that Chiu
et al. (1998) incorrectly ascribe the discrepancy between their result and that of
Besedin & Pankratov (1986) by the fact that ‘The present expressions are simply
a statement of the total rate at which electrons in different velocity-space elements
of primary electrons knock a collection of cold bulk electrons into velocity-space
elements of the secondary electrons. The expression in (Besedin & Pankratov 1986)
uses a Boltzmann-like integral operator’. In fact, as we show in appendix B, the
approaches are completely equivalent, and the discrepancy is the result of an error in
the calculation of Besedin & Pankratov (1986).

There are multiple ways of carrying out the integration over the delta function; if
we assume a distribution function independent of gyroangle, fe( p1)= fe(p1, cos θ1), a
few convenient expressions are given by∫ 1

−1
dξ1

∫ 2π

0
dϕ1 δ(ξs − ξ ∗)fe(p1, ξ1) =

∫ 2π

0
dϕs fe(p1, ξ1)

= 2
∫ cos(θ−θ∗)

cos(θ+θ∗)
dξ1

fe(p1, ξ1)√
1− ξ ∗2 − ξ 2

1 − ξ 2 + 2ξ ∗ξ1ξ

= 2π
∑

L

fL(p1)PL(ξ)PL(ξ
∗), (2.21)

where we have introduced the quantities

cos ϕs = ξ1 − ξ ∗ξ√
1− ξ ∗2√1− ξ 2

,

fL(p)= 2L+ 1
2

∫ 1

−1
dξ fe(p, ξ)PL(ξ).

 (2.22)
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In particular the form involving Legendre polynomials PL is a powerful result, as it
demonstrates that the linearized Boltzmann operator is diagonal in L, in the sense
that if CBoltz( p) =∑L CL(p)PL(cos θ), then CL depends only on fL (and not other
fl with l 6= L). This behaviour exhibits the spherical symmetry inherent in scattering
on stationary targets. Utilizing this property leads to significant practical gains in
terms of numerical computation times. Analogous expressions in terms of Legendre
polynomials and the integration over ϕs were also found by Gurevich & Zybin (2001)
for the so-called ionization integral in neutral gases. The form of the integral taken
over ξ1 was obtained by Helander, Lisak & Ryutov (1993) in the analogous problem
of elastic nucleon–nucleon scattering, and equivalent formulations were also recently
given by Aleynikov et al. (2014) and Boozer (2015).

The Legendre modes of the collision operator are explicitly given by

CL{fe, fMe} = (mec)−3

2τc lnΛ
1
γ p

∫ q∗

q0

dp1
p3

1

γ1
fL(p1)PL(ξ

∗)Σ(γ , γ1)

− 1
4τc lnΛ

v

c
fL(p)

∫ γ+1−γm

γm

dγ1Σ(γ1, γ ), (2.23)

CL{fMe, fe} = (mec)−3

2τc lnΛ
1
γ p

∫ ∞
q∗

dp1
p3

1

γ1
fL(p1)PL(ξ

∗)Σ(γ , γ1)

− (mec)−1

4τc lnΛ
δL,0

δ(p)
p2

∫ ∞
q0(pm)

dp′
p′3

γ ′
f0(p′)

∫ γ ′+1−γm

γm

dγ1Σ(γ1, γ
′). (2.24)

Note further that since we only consider those collisions where both the incident and
outgoing particles have momenta p > pm, the gain terms must only be applied for
γ > γm, while the test-particle loss term is applied for γ > 2γm − 1. In appendix A
it is explicitly demonstrated that this collision operator conserves density, momentum
and energy.

A qualitative illustration of the large-angle collision operators discussed here is
shown in figure 1. A test runaway distribution (figure 1a) was generated by applying
a constant electric field E = 15Ec for a short time t ≈ 0.5τc with Zeff = 5, and the
large-angle collision operators were evaluated in the final time step. The figures
show a snapshot of where large-angle collisions between runaways and bulk particles
create or remove electrons in phase space; comparing 1(c) and 1(d) shows that the
Chiu–Harvey operator creates secondary runaways in a significantly smaller region
in momentum space than the full field-particle operator, however the total number
of secondary runaways created is equal between the models. Figure 1(b) shows
the Boltzmann test-particle operator, illustrating the reaction of the already present
runaways: they are removed at small pitch angles where the runaway distribution is
largest, and placed at larger pitch angles and lower energy. The sum of figure 1(b,d)
is the full Boltzmann operator which conserves particle number, momentum and
energy.

Note finally that all of the knock-on models described in this paper share the
assumption of a stationary bulk, which means that the operators can only be evaluated
at speeds much larger than the thermal speed vTe. Since the sources must be applied
for speeds smaller than the critical speed vc in order to accurately capture the
runaway rate, the condition vTe� vc limits the electric-field values to

√
E�√ED/2

(effectively forming a lower limit in density and an upper limit in temperature for a
given E). As a consequence, avalanche generation in electric fields large enough for
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(a)

(b)

(c)

(d )

FIGURE 1. Illustration of the large-angle collision operators investigated in this study.
Darker colours represent larger amplitudes (in arbitrary units), where white and black
are separated by 3 orders of magnitude. (a) The distribution function log fe with which
we evaluate the large-angle collision operator; (c) the Chiu–Harvey operator log CCH;
(d) the full field-particle operator log C(fp)

boltz (dashed: the line ξ = √(γ − 1)/(γ + 1),
where the Rosenbluth–Putvinski operator creates knock-ons); (b) the magnitude of the full
test-particle operator log |C(tp)

boltz|, where the dotted line separates the region of negative
contributions (to the right) from the positive contributions (to the left).

Dreicer generation to be significant is not accessible by the models used here. This
limitation would be resolved by accounting for the velocity distribution of the target
population in (2.7), resulting in a significantly more complicated operator. However,
in many scenarios of interest this is not an issue; the critical velocity tends to be
significantly larger than thermal, or is comparable only for a relatively short period
of time during which a runaway seed is generated, which then proceeds to grow
primarily by avalanche generation.

3. Numerical study of the effect of large-angle collisions
We use the kinetic equation solver CODE (Landreman et al. 2014; Stahl et al. 2016)

to compare the various models for the knock-on collision operator. We use CODE to
solve the relativistic 0D+2P kinetic equation for the electron distribution

∂fe

∂t
+
〈
∂

∂p
· [(FL +FS)fe]

〉
=Cei +Cee +Cboltz, (3.1)

where FL is the Lorentz force, and FS is the radiation reaction force associated
with synchrotron radiation and the brackets denote averaging over the azimuthal
(gyro) angle. Cei and Cee are the gyroaveraged Fokker–Planck collision operators for
electron–ion and electron–electron collisions, respectively. The thermal bulk population
is resolved in the simulations, as well as the relativistic runaway tail. The collision
operator Cei + Cee and the numerical scheme used are described in Landreman et al.
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FIGURE 2. Runaway growth rate as function of momentum cutoff parameter pm for two
different electric fields, normalized to the field-particle pm = 0 value. Lines correspond
to (dotted blue) the field-particle Boltzmann operator, equation (2.24) and (solid) the
full operator including the test-particle operator when (red) ln Λ is held fixed or
(black) modified according to (2.12), which is the physically most correct model. Plasma
parameters: thermal electron density ne = 1020 m−3; temperature Te = 100 eV.

(2014). In the numerical solutions of (3.1) a Dirichlet boundary condition fe = 0 is
imposed at the upper boundary pmax in momentum. The boundary is chosen large
enough for the results to be insensitive to variations in pmax or details of the boundary
condition; the value of the distribution is naturally negligibly small near the boundary,
since it asymptotically tends to decrease exponentially with energy.

First, we will study the sensitivity of the avalanche dynamics to the arbitrary cutoff
parameter pm and investigate the effects of adding the test-particle Boltzmann operator,
which restores conservation laws in the knock-on collisions. We then focus on two
scenarios: (i) we revisit the classical calculation of the steady-state avalanche growth
rate in a constant electric field, (ii) we calculate the runaway growth rate in the near-
critical field, accounting for synchrotron energy loss.

3.1. Sensitivity to the cutoff parameter pm

We will now demonstrate that our complete knock-on model satisfies the essential
property that the solutions to the kinetic equation are independent of the arbitrary
cutoff momentum pm, as long as it is chosen small enough. To determine the
sensitivity of the solutions to pm, we will consider the instantaneous runaway growth
rate when the primary runaway population is described by a shifted Maxwellian
runaway distribution fRE ∝ exp[−( p − p0)

2/q2]. For this test we have chosen
the momentum p0 ≈ 6mec in the parallel direction, with width q ≈ 0.6mec. Two
electric-field strengths are investigated, a low-field case where E=3Ec and a high-field
case E= 100Ec. The resulting growth rates are shown in figure 2, as a function of the
cutoff pm after a short time 0.03τc. The growth rate obtained using the field-particle
operator alone is nearly independent of pm as long as it is smaller than pc, indicating
that secondary particles created with momentum p< pc are unlikely to run away. For
the Rosenbluth–Putvinski operator, this behaviour was also observed by Nilsson et al.
(2015).

When the test-particle operator is added, but the Coulomb logarithm ln Λ is left
unmodified, the growth rate is decreased. This can be understood from the fact
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that the test-particle operator represents a source of energy loss for the runaways,
which diverges logarithmically as pm → 0. When ln Λ is modified (black line in
figure 2, representing the most physically accurate model), the mean energy loss rate
of a runaway becomes independent of pm. The growth rate, however, is found to
increase with decreasing pm, settling to a constant value in the limit pm → 0. The
underlying mechanism for this behaviour is that a fraction of all collisions are now
accounted for with a Boltzmann operator rather than with a Fokker–Planck operator.
This leads to an increase in the runaway probability for particles with p < pc, since
the Boltzmann operator fully captures the stochastic nature of the collisions; instead
of continuously experiencing the average energy loss, an electron is accelerated freely
until it undergoes a collision, by which point it may have gained enough energy to
enter the runaway region (p > pc). Note that this effect only appears to modify the
growth rate with a few per cent, the effect being weaker for smaller electric fields.
The effect is, however, directly proportional to 1/ lnΛ, as it depends on the relative
importance of small- and large-angle collisions. This implies that for higher-density
or lower-temperature plasmas, the effect can be expected to be more pronounced.

It should be remarked that the field-particle knock-on operator uses a constant
Coulomb logarithm in the Fokker–Planck operator, yet is still well behaved when
pm becomes small. We have pointed out that the field-particle knock-on operators,
like those used in previous runaway avalanche studies, double count collisions
with the Fokker–Planck operator. However, they do so only with the field-particle
Fokker–Planck operator, and not the test-particle operator which describes the friction
on runaways. Therefore, only the Coulomb logarithm in the field-particle operator
should be modified when using such models. The field-particle Fokker–Planck operator
is essential when considering the dynamics of the bulk population, however it does
not significantly affect the avalanche growth rate, thereby explaining the insensitivity
to pm for pm . pc.

3.2. Steady-state avalanche growth rate at moderate electric fields
The steady-state avalanche growth rate in a constant electric field is a classical
result; Rosenbluth and Putvinski derived the growth rate formula (1.2) in 1997.
After an initial transient, the distribution function tends to approach the asymptotic
quasi-steady-state behaviour f (t, p, ξ) ∼ nRE(t)f̄ (p, ξ), where

∫
f̄ d p = 1. The kinetic

equation, being linear in the runaway distribution, then prescribes that the runaway
population will grow with a constant growth rate

Γ = 1
nRE

dnRE

d(t/τc)
. (3.2)

In figure 3 we show the growth rate Γ obtained from numerical solutions of the
kinetic equation using various models for the knock-on operator, for moderate electric
fields ranging from E = 1.5Ec to E = 30Ec and Zeff = 1. We see that using the
Rosenbluth–Putvinski knock-on operator leads to a significant error compared to the
more accurate models when the electric field is near the critical – of order 30 %
at 1.5Ec. At larger electric fields the error is insignificant. Interestingly, the full
Boltzmann operator (solid black line) yields a correction of only a few per cent
compared to the field-particle operator alone. This means that the test-particle part
of the operator does not influence the growth rate significantly. This result is robust;
it is not affected by changes in thermal electron density and temperature, and only
slightly modified by changes in the effective charge. Note that a significant error
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FIGURE 3. Steady-state runaway growth rate normalized to the diffusion-free result Γ0 =
(E/Ec − 1)/2 lnΛ, equation (1.2), in the presence of a constant electric field, neglecting
radiation losses. The red dot-dashed line represents the theoretical prediction, Rosenbluth
& Putvinski (1997, equation (18)). Plasma parameters: thermal electron density ne =
1020 m−3; temperature Te = 100 eV; effective charge Zeff = 1.

is obtained if one fails to account for the double counting of small-angle collisions
– the size of this error is sensitive to the cutoff pm, diverging logarithmically as it
approaches zero, and the result is included primarily for illustrative purposes.

3.3. Avalanche generation in a near-threshold electric field with synchrotron
radiation losses

In tokamaks, the runaway dynamics in electric fields near the runaway generation
threshold is of particular interest. Due to the large self-inductance of tokamaks, after
a transient phase during which the ohmic current of the background is dissipated, the
electric field will tend towards that value Ea – the threshold field – for which the
runaway growth rate vanishes, Γ (Ea)= 0 (Breizman 2014).

At these low electric fields, radiation losses have a large impact, and cannot be
ignored in the calculation of the runaway growth rate. In this section, we will include
the effect of synchrotron radiation losses and investigate runaway generation when
E ∼ Ea. A model for this was recently presented by Aleynikov & Breizman (2015)
(referred to as A&B), using a simplified kinetic equation following a method used
by Lehtinen, Bell & Inan (1999). An interesting prediction by the A&B model was
that reverse knock-on can have a significant effect on the growth rate, where for
electric fields E . Ea, existing runaways will be slowed down to v < vc in single
large-angle collision events. This leads to a negative avalanche growth rate, which
previous large-angle collision models are incapable of describing, as this process is
inherently a large-angle test-particle effect. Using the knock-on operator presented in
this work, we will now assess the magnitude of the reverse knock-on effect, as well
as determine the threshold field Ea and the growth rate when E∼ Ea, accounting for
radiation losses.

In figure 4 we show how the quasi-steady-state growth rate Γ depends on
the electric-field strength, similar to figure 4 of A&B. We use the same plasma
parameters Zeff = 5 and τr = 3mene ln Λ/(2ε0B2) = 70 (corresponding to B ≈ 1.81 T
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(a) (b)

FIGURE 4. Steady-state runaway growth rate in the presence of a constant electric field,
accounting for synchrotron radiation losses and using various models for the large-angle
collision operator: the Rosenbluth–Putvinski operator, equation (2.2) (green, dashed); the
Boltzmann operator equations (2.23)–(2.24) (black, solid) and without any large-angle
collision operator (black, dash-dotted). For comparison we have included equation (11)
of Aleynikov & Breizman (2015) (blue, dotted). In (b), the avalanche-free growth rate
(black, dotted line in (a)) has been subtracted to yield a pure ‘avalanche growth rate’
Γava. Plasma parameters: thermal electron density ne = 1020 m−3; temperature Te = 1 keV;
effective charge Zeff = 5, B= 1.81 T.

at ne = 1020 m−3), although a slight discrepancy occurs due to our ln Λ = 14.9 –
consistent with the background parameters chosen – compared to their lnΛ= 18. In
this scenario, the A&B threshold electric field is Ea≈ 1.71Ec. Several models for the
knock-on operator are included in the comparison, in addition to the no-avalanche
case since we are now interested in the sub-threshold dynamics. The simulations are
run for approximately 300 relativistic collision times τc, upon which the growth rates
have settled to the asymptotic steady-state value, corresponding to approximately 6 s
with the plasma parameters given above.

It is interesting to observe that the test-particle operator, which allows runaways
to be thermalized in a single large-angle collision, does not significantly modify the
dynamics, in contrast to the theoretical prediction by Aleynikov & Breizman (2015).
Unlike the A&B model, which predicts a significant negative growth rate due to
this effect when E . Ea, we find that the large-angle collision operator always adds
a positive contribution to the total growth rate compared to the no-avalanche case
(see figure 4(b) where the no-avalanche growth rate has been subtracted). It can
be concluded that the negative growth rates in the sub-threshold regime is a result
primarily of the Fokker–Planck dynamics, rather than of large-angle collisions. The
reason for this discrepancy to the A&B model can be understood by considering the
behaviour of the distribution shape functions f̄ = f /n, defined before (3.2), which are
illustrated in figures 5 and 6. A&B predicted the distribution to be a delta function
in momentum, located at the point of force balance, pmax. When this occurs near
the critical speed vc, runaways cannot produce knock-ons with sufficient energy to
become runaway. Large-angle collisions then act only to slow down the existing
population. In numerical solutions of the full kinetic equation, conversely, it is found
that the runaway population takes on a wide energy spectrum, and there will always
be sufficiently many runaways with the energy required to produce new runaways to
counter the reverse knock-on effect.
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FIGURE 5. Steady-state runaway momentum distributions
∫

p2 f̄ dΩ (defined to have unit
area under the shown curves). Included in the panels is the maximum runaway momentum
pmax predicted by Aleynikov & Breizman (2015). Plasma parameters: background electron
density ne = 1020 m−3; temperature Te = 1 keV; effective charge Zeff = 5, B= 1.81 T.

FIGURE 6. Steady-state normalized runaway momentum distributions log10 f̄ from the
E= Ea case of figure 5.

A notable difference between the A&B model and full solutions of the kinetic
equation considered here, which can play an important role when considering the
decay of the runaway current in tokamaks, is that the growth rate is not as sensitive
to variations in electric field close to (but below) the effective critical field Ea as
predicted by A&B. It is known that the decay rate is determined primarily by the
value of the effective critical field Ea when the self-inductance can be considered large
(roughly when the total runaway current is much larger than ∼200 kA) (Breizman
2014). Since the threshold field Ea given by the A&B model is reasonably accurate
in many cases, it is likely that it may be used to describe runaway current decay
in large-current scenarios. However, for moderate runaway currents in the range
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FIGURE 7. Threshold electric field determined numerically from solutions of the kinetic
equation, as a function of normalized magnetic-field strength τr for various values of the
effective charge. Predictions by the theoretical model of Aleynikov & Breizman (2015)
are included for comparison.

of hundreds of kA, the overall shape of Γ (E) will determine its evolution, which
previous theoretical models fail to describe – particularly for electric fields E . Ea.

Finally, we show the effective critical field Ea calculated numerically by CODE for
a wide range of Zeff and magnetic-field strength parameters τr=6πε2

0m2
ec3/e4B2τc. This

is shown in figure 7, along with the values given by the A&B model by determining
the roots of their equation (11). It is seen that the predictions of Aleynikov &
Breizman (2015) are typically accurate unless the effective charge is very large, and
are most accurate for sufficiently small or large B. The observed trend in the accuracy
of their model is unexpected, since they have utilized fast pitch-angle equilibration
time (large Zeff) and weak magnetic field (large τr) in order to reduce the kinetic
equation to a tractable form.

4. Conclusions

Predictions indicate that a major part of the initial plasma current in large tokamaks
can be converted to runaway-electron current. This is partly due to the large plasma
size limiting the loss of runaway-electron seeds, but more importantly, it is due
to the avalanche mechanism which leads to an exponential growth of runaways.
The runaway-electron growth rate due to avalanching is exponentially sensitive to the
plasma current, and avalanche runaway generation is therefore expected to be a serious
issue in ITER and other high-current reactor-scale tokamaks. As the plasma current
in present devices cannot be increased above a few megaamperes, full experimental
simulation of high-current tokamak disruptions is not possible. Therefore it is very
important to develop accurate theoretical models from first principles, to test the
validity of approximative models.

In this paper we have developed a fully conservative knock-on collision operator
derived from the relativistic Boltzmann operator, and compared it to existing models.
Close to the critical electric field, the new model leads to behaviour significantly
different from that of the widely used Rosenbluth & Putvinski (1997) avalanche
model. This influences the predictions for the transformation of a runaway seed to
an avalanching population; fortunately the new operator predicts a lower growth rate
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than Rosenbluth & Putvinski (1997) and therefore the implications for ITER should
be positive, although the difference between models is marginal for high electric
fields. We have also described how to resolve the issue of double counting the small-
and large-angle collisions, and have illustrated the importance of this issue. The new
operator includes both the test-particle and field-particle parts of the collision operator,
however we have shown that the test-particle part does not influence the growth rate
significantly.

Using kinetic simulations we have performed a careful study of the runaway growth
rate in the presence of synchrotron radiation losses and several different avalanche
operators. Again, we find a significant difference in runaway rates close to the critical
field, however, the effective critical field appears to be well reproduced by simplified
models unless the effective charge is very large.
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Appendix A. Density, momentum and energy conservation

The full electron–electron Boltzmann operator C is known to satisfy conservation
of density, momentum and energy, expressed by the relations∫

d p C( fe)= 0,∫
d p pC( fe)= 0,∫

d p mec2(γ − 1)C( fe)= 0,


(A 1)

or in our case of a cylindrically symmetric plasma, in terms of the Legendre modes
of the collision operator, ∫

dp p2C0(p)= 0,∫
dp p3C1(p)= 0,∫

dp p2(γ − 1)C0(p)= 0.


(A 2)
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We will show that our explicit form of the knock-on operator, accounting only for
collisions involving electrons with momenta p > pm, satisfies the same conservation
laws. Taking the full operator CL =CL{fe, fMe} +CL{fMe, fe} from (2.23)–(2.24), noting
that the gain term only applies for γ >γm and the loss term for γ > 2γm− 1, we find
upon integration (changing momentum integrals to energy integrals by v dp=mec2 dγ)

ΓL{h} =
∫ ∞

0
dp p2h(p)CL(p)

= mec
2τc lnΛ

∫ ∞
γm

dγ h(p)
∫ ∞
γ+γm−1

dγ1 p2
1Σ(γ , γ1)PL(ξ

∗)fL(p1)

− mec
4τc lnΛ

∫ ∞
2γm−1

dγ p2h(p)fL(p)
∫ γ+1−γm

γm

dγ1Σ(γ1, γ )

−mech(0)
4τc lnΛ

δL,0

∫ ∞
2γm−1

dγ p2f0(p)
∫ γ+1−γm

γm

dγ1Σ(γ1, γ ). (A 3)

In the first term, the integration order can be interchanged by using∫ ∞
γm

dγ
∫ ∞
γ+γm−1

dγ1 =
∫ ∞

2γm−1
dγ1

∫ γ1+1−γm

γm

dγ . (A 4)

Exchanging the names of the dummy variables γ1 and γ in this term then yields

2τc lnΛ
mec

ΓL{h} =
∫ ∞

2γm−1
dγ p2fL(p)

×
∫ γ+1−γm

γm

dγ1

[
h(p1)PL

(
γ + 1
γ1 + 1

p1

p

)
− h(p)+ δL,0h(0)

2

]
Σ(γ1, γ ).

(A 5)

The conservation of density, momentum and energy correspond to the conditions 0=
Γ0{1} = Γ1{p} = Γ0{γ − 1}, respectively. With L = 0 and h = 1, the bracket term
in the γ1-integral vanishes identically; therefore the knock-on operator will conserve
density independently of the differential cross-section Σ(γ1, γ )= (2πr2

0)
−1∂σ/∂γ . For

the other two conditions, one finds

2τc lnΛΓ1{p} = (mec)2
∫ ∞

2γm−1
dγ p(γ + 1)f1(p)

×
∫ γ+1−γm

γm

dγ1

[
γ1 − 1− γ − 1

2

]
Σ(γ1, γ ), (A 6)

2τc lnΛΓ0{γ − 1} = mec
∫ ∞

2γm−1
dγ p2f0(p)

×
∫ γ+1−γm

γm

dγ1

[
γ1 − 1− γ − 1

2

]
Σ(γ1, γ ). (A 7)

The integrals over γ1 will vanish for all cross-sections that respect the
indistinguishability of the electrons, i.e. for which Σ(γ1, γ ) = Σ(γ2, γ ) where
γ2 = γ + 1− γ1. This follows directly from the observation that[

γ1 − 1− γ − 1
2

]
=−

[
γ2 − 1− γ − 1

2

]
, (A 8)

confirming that our operator indeed satisfies the conservation laws.
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A.1. Total cross-section
For our case of the Møller cross-section, the differential cross-section of (2.4) can be
integrated analytically to produce the total cross-section. One obtains

σ(p) =
∫ γ+1−γm

γm

dγ1 2πr2
0Σ(γ1, γ )

= 2πr2
0

γ 2 − 1

[(
γ + 1

2
− γm

)(
1+ 2γ 2

(γ − γm)(γm − 1)

)
− 2γ − 1
γ − 1

ln
γ − γm

γm − 1

]
.

(A 9)

Appendix B. The Chiu–Harvey and Rosenbluth–Putvinski models

We derive the Chiu–Harvey source by assuming runaways to have a negligible
perpendicular velocity component, i.e. that fe is well described by a delta function in
pitch angle, fe(p1, cos θ1)=F(p1)δ(cos θ1− 1)/(2πp2

1) with F(p1)= 2π
∫ 1
−1 d cos θ1p2

1 fe

(p1, cos θ1). From (2.20) we then find

SCH = 1
4πτc lnΛ

1
pγ

∫ ∞
q∗

dp1
p1

γ1
F(p1)Σ(γ , γ1)

∫ 1

−1
dξ1 δ(ξs − ξ ∗)δ(ξ1 − 1)

= 1
4πτc lnΛ

1
pγ

∫ ∞
q∗

dp1
p1

γ1
F(p1)Σ(γ , γ1)δ(ξ − ξ ∗)

= 1
4πτc lnΛ

p2
1

pγ ξ
F(p1)Σ(γ , γ1)H(p1 − q∗), (B 1)

where H(x) denotes the Heaviside step function, and we used

dp1

dξ ∗

∣∣∣∣
ξ∗=ξ
= γ1p1

ξ
. (B 2)

We also utilized cos θs = cos θ when cos θ1 = 1, and kinematics constrain the
incident momentum p1 according to (2.5). This result agrees exactly with the
Chiu–Harvey source SCH of (2.3). In terms of an expansion in Legendre polynomials,
the Chiu–Harvey avalanche source is obtained from the general field-particle operator
in (2.24) simply by replacing fL(p) by (2L + 1)f0(p), corresponding to the delta
function approximation. In this representation, however, the approximation holds
limited appeal as it does not provide a significant simplification of the collision
operator; indeed, compared to the full operator it requires a larger number of Legendre
polynomials to be retained since the true fL decreases rapidly with L for sufficiently
large L.

By the addition of the sink terms in (2.23) and (2.24), and extending the integration
limit down from q∗ to q0, the Chiu–Harvey operator can be made conservative.
However, the delta function assumption in pitch angle causes incorrect momentum
dynamics, and the total momentum of the distribution will not be conserved in this
treatment. This can be corrected by treating the L = 1 mode exactly, corresponding
to a total conservative knock-on operator in the Chiu–Harvey approximation of the
form
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C(cons)
CH = S̄CH − 1

4τc lnΛ
vfe( p)σ (p)− δ( p)

4τc lnΛ

∫
p′>q0(pm)

d p′v′fe( p′)σ (p′)

− 3(mec)−3

8πτc lnΛ
ξ

γ (γ + 1)

∫
p1>q0

d p1
γ1 + 1
γ1

Σ(γ , γ1)(1− ξ1)fe( p1)

+ 3
8τc lnΛ

ξvσ(p)
∫ 1

−1
dξ1(1− ξ1)fe(p, ξ1), (B 3)

where S̄CH equals (B 1) with q∗ changed to q0, and the last two momentum-correcting
terms are small when the runaway population consists predominantly of electrons with
small pitch-angle, 1− ξ1� 1. Unlike the Chiu–Harvey model, this operator depends
not only on the angle-averaged distribution

∫
fe dξ , but also on

∫
(1− ξ)fe dξ .

Note that the issue of double counting is important only in the test-particle part of
the operator. In the Chiu–Harvey approach, when the test-particle part is neglected,
only field-particle collisions would be double counted, and for those the small-angle
collisions have negligible impact on runaway generation.

The Rosenbluth–Putvinski result is obtained under the assumptions that the primary
electrons not only have small pitch angle, but also large energy. Therefore, in the
second line of (B 1), (p1/γ1)Σ(γ , γ1)δ(ξ − ξ ∗) can be replaced by mecΣ(γ , ∞)δ
(ξ − ξ0) with an error of order 1/γ1, where ξ0 = limγ1→∞ ξ

∗ = √(γ − 1)/(γ + 1).
Under this assumption, the source term reduces to

SRP = mec
4πτc lnΛ

δ(ξ − ξ0)

pγ
Σ(γ ,∞)

∫ ∞
q∗

dp1 F(p1)+O(1/γ1) (B 4)

≈ nRE

4πτc lnΛ
δ(ξ − ξ0)

m3
ec3

p2

d
dp

1
1− γ , (B 5)

where the last step follows by replacing the integral over F by the runaway number
density nRE, valid when γ ∗ =√(q∗/mec)2 + 1= 2γ − 1 is small compared to typical
runaway energies. This result agrees exactly with SRP in (2.2). Note that this final
approximation allows secondary electrons to be created with momentum and energy
larger than that of any present primary electron. In fact, when integrated over
all momenta the Rosenbluth–Putvinski source term is found to create energy and
momentum at an infinite rate.
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