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Abstract

We show that any set of distinct homotopy classes of simple closed curves on the torus

that pairwise intersect at most k times has size k + O(
√

k log k). Prior to this work, a lemma
of Agol, together with the state of the art bounds for the size of prime gaps, implied the
error term O(k21/40), and in fact the assumption of the Riemann hypothesis improved this
error term to the one we obtain O(

√
k log k). By contrast, our methods are elementary,

combinatorial, and geometric.

2020 Mathematics Subject Classification: 20F65 (Primary); 57M15, 05D99 (Secondary)

1. Introduction

Let T ≈R2/Z2 be the closed oriented surface of genus one. We indicate the homotopy
class of an embedding of S1 briefly by ‘curve’. By pulling a curve tight and lifting it to the
universal cover, the collection of curves on T is in one-to-one correspondence with slopes
Q∪ {∞}. From this vantage point, the intersection number of a pair of curves on T (that is,
the minimum possible number of intersection points among representatives from the pair of
homotopy classes) can be computed explicitly via

ι

(
p

q
,

a

b

)
= | pb − qa | .

A collection of curves is called a k-system when any pair of curves has intersection number
at most k.

Let ηS(k) equal the maximum size of a k-system on the closed surface S. It was first
shown by [20] that ηS(k) goes to infinity with k. The determination of the growth rate of
ηS(k), as a function of both k and the genus g of S, is a subtle counting problem, about which
much remains unknown [1, 5, 16, 17, 24]. Notably, Greene has used probabilistic methods,
leveraging the hyperbolic geometric bounds of Przytycki, to obtain ηS(k) = O(gk+1 log g),
when k is fixed and g grows [16, Theorem 3].
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For the study of ηS(k) with g fixed, the simplest nontrivial case is evidently S = T . A
simple mod p counting argument, as far as we know first observed by Agol, demonstrates
that ηT (k) is at most one more than the smallest prime greater than k [4]. Together with
the elementary observation ηT (k) � k + 2 and the Prime Number Theorem, this implies
ηT (k)/k → 1 as k → ∞ [3].

More can be said. The size of prime gaps, large and small, is a major field of study.
The currently best upper bound is due to Baker–Harman–Pintz, which, together with Agol’s
observation, implies that ηT (k) = k + O(k21/40) [7]. Cramér showed that a positive resolution
of the Riemann hypothesis would provide ηT (k) = k + O(

√
k log k) [10], and he formulated

a stronger conjecture that would imply ηT (k) = k + O(( log k)2) [11]; although there seems
to be general suspicion in the analytic number theory community that Cramér’s error term
should be replaced by O(( log k)2+ε) [15, 22].

All of these estimates pass through Agol’s remarkable prime number bound, but it is rea-
sonable to be skeptical about whether estimation of ηT (k) should depend on such notoriously
subtle and difficult questions. The purpose of this paper is to sharpen currently available esti-
mates, without reference to fine data about the distribution of the primes. Our methods are
elementary, combinatorial and hyperbolic.

THEOREM 1·1. There is a constant C > 0 so that ηT (k) � k + C
√

k log k.

As for sharpness, it deserves remarking that there is a dearth of nontrivial lower bounds
for ηT (k). In fact, we are unaware of any example of a k-system of size k + 7 on the torus
(cf. [14, p. 116]).

The function ηT (k) admits a dual formulation: let κS(n) indicate the minimum, taken over
collections of n curves on S, of the maximum pairwise intersection. (For clarity, we will
often use ‘n’ to indicate the size of a set of curves and ‘k’ for an intersection number.) It is
not hard to see that

ηS(k) = max{n : κS(n) � k} , and κS(n) = min{k : ηS(k) � n}.
Our path towards Theorem 1·1 will be to first estimate κT (n) from below.

There is a kind of convexity to exploit in the study of κT , originally observed by Agol. As
remarked above, curves on T are in correspondence with slopes Q∪ {∞}. The latter form the
vertices of the Farey complex F , in which a set of slopes form a simplex when they pairwise
intersect once. Any collection of n curves that is maximal with respect to inclusion among
k-systems determines a collection of vertices in F so that the induced simplicial complex is
a triangulated n-gon (see Lemma 2·4 for detail).

Conversely, any triangulation of an n-gon can be realised as a subcomplex of F , in a way
that is unique up to the action of PSL(2, Z) �F by simplicial automorphism. As PSL(2, Z)
preserves the intersection form, the (multi-)set of pairwise intersection numbers is a well-
defined function on the set of triangulations of an n-gon. The set of triangulations of an
n-gon forms the vertex set of a well-studied simplicial complex in combinatorics called
the associahedron An (there is a slight indexing issue; the object we refer to as An is the
(n − 2)-dimensional associahedron). One obtains a ‘max intersection’ function κ : An →N

induced by the intersection form on F , and the above discussion leads to κT (n) = min κ (see
Proposition 2·5).
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Theorem 1·1 follows from the following:

THEOREM 1·2. There is a constant C > 0 so that, for any τ ∈An, we have κ(τ ) � n −
C

√
n log n.

We briefly describe the proof of this theorem. The Farey complex F admits a natural
embedding into a compactification of the hyperbolic plane H2 ∪ ∂∞H2, so that the ver-
tices of F embed naturally as Q∪ {∞} ↪→R∪ {∞} ≈ ∂∞H2, with edges between vertices
mapping to geodesics. The hyperbolic plane H2 admits a maximal PSL(2, Z)-invariant horo-
spherical packing {Hp/q : p/q ∈Q∪ {∞}}, where Hp/q is centered at p/q ∈R∪ {∞}, so
that a set of slopes span a simplex in F precisely when the corresponding horospheres
are pairwise tangent. (The nomenclature for Hp/q is standard in hyperbolic geometry [29,
Chapter 3] – these are also called Ford circles in the literature [8, 12, 13]).

A sketch of our proof of Theorem 1·2 is as follows:

(i) locate a ‘nice horoball’ H for τ , so that ht(τ , H), the height of τ relative to H, is
O

(√
κ(τ )

)
. See Definition 3 and Proposition 5·1;

(ii) use H to construct a convex combination of pairwise intersection numbers for τ whose
sum is at least n − O(h log h), where h = ht(τ , H). It follows that there is a pair of
horoballs of τ with intersection number at least n − O(h log h). See Proposition 4·2.

The proof of Theorem 1·2 is now immediate: if κ(τ ) � n, then κ(τ ) � n − C
√

n log n.
The first step above uses the hyperbolic geometry of H2 in an essential way, in which we

exploit a simple relationship between intersection numbers, hyperbolic geometry, and Ford
circles (see Lemma 2·3).

Organisation. We describe the reduction from κT (n) to κ : An →N in Section 2, analyse
several examples in Section 3, bound κ(τ ) from below in Section 4, locate a good horoball
for τ in Section 5, and prove Theorem 1·1 in Section 6.

2. Preliminaries

We collect here some useful facts about intersection numbers and the Farey graph F . For
more of the beautiful connections between hyperbolic geometry, the Farey graph, continued
fractions, and Diophantine approximation, we suggest the reader consult [18, 25, 26, 27].

2·1. Horoballs in trees, Farey labellings, and intersection numbers

Dual to a triangulation of an n-gon τ ∈An there is a trivalent tree with n leaves embedded
in the plane, which we refer to as τ ∗. Because τ ∗ is embedded in the plane, the three edges
incident to vertices of τ ∗ are cyclically ordered. Hence any non-backtracking path in τ ∗
induces a sequence of left-right turns.

The vertices of τ (that is, the slopes of the k-system) correspond to ‘horoballs’ in τ ∗:

Definition 1 (Horoballs in trees). A horoball is a union of edges in a path of the dual tree
τ ∗ that is composed of uni-directional turns (that is, only left or only right turns), which is
moreover maximal with respect to inclusion among all such uni-directional subsets of τ ∗.

Note that horoballs may be alternately considered as subsets of τ , τ ∗, or H2. We leave the
intended meaning to be implied contextually. See Figure 1 for an illustration.
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(a) (b)

Fig. 1. Horoballs in H2 and horoballs in trees.

A triangulation τ ∈An admits an embedding into F , and any such embedding gives a
map from horoballs of τ to Q∪ {∞} that records the center of the corresponding horoball
in H2.

Definition 2 (Farey labellings and intersection numbers). A Farey labelling of τ is the
map from horoballs to Q∪ {∞} obtained from an embedding of τ in F . The intersection
number ι(H1, H2) of a pair of horoballs H1 and H2 is given by the intersection number of the
slopes corresponding to H1 and H2 in a Farey labelling of τ .

We refer to the introduction for an explanation of why intersection numbers of τ are
well-defined.

Farey labellings are especially pleasant because the vertices spanning a simplex of F
satisfy a remarkably simple relationship. Namely, if p/q and a/b span an edge of F , then
the two other vertices of F that span a triangle with p/q and a/b are (p + a)/(q + b) and
(p − a)/(q − b); this is the ‘Farey addition’ rule. Note that the choice of labels 1/0, 0/1, and
1/1 for three horoballs incident to a non-leaf vertex of τ∗ induces a Farey labelling by using
Farey addition to deduce labels of neighbouring horoballs.

2·2. Monotonicity of intersection numbers and left-right sequences

The intersection number ι(H1, H2) admits a description more intrinsic to the structure of
τ ∗, which we now describe. There is a unique (possibly degenerate) non-backtracking path
σ between the pair of horoballs H1 and H2, and this path determines a sequence of left-right
turns (
1, 
2, . . . , 
s), where σ makes 
1 turns in the same direction, followed by 
2 turns in
the opposite direction, etc. The quantity ι(H1, H2) is given by the numerator of the continued
fraction with coefficients (
1, 
2, . . . , 
s) [14, Theorem 5·3].

Remark. Observe that there is ambiguity in this computation of ι(H1, H2). For one, the non-
backtracking path σ may go either from H1 to H2, or from H2 to H1. Moreover, one must
declare that σ is starting with either ‘left’ or ‘right’ at its origin vertex, so that it can be
observed whether σ is switching directions or not at later vertices. These choices may be
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made arbitrarily and independently, and this ambiguity has no affect on the calculation of
ι(H1, H2). See [14, figure 3, example 1].

This viewpoint suggests a certain monotonicity.

LEMMA 2·1 (‘Monotonicity of intersection numbers’). Suppose that σ and σ ′ are non-
backtracking paths with respective left-right sequences (
1, . . . , 
s) and (
′

1, . . . , 
′
s′). If s′ �

s and 
i
′ � 
i for each i = 1, . . . , s, then the intersection number determined by σ ′ is at least

that determined by σ .

Proof. This lemma is almost exactly [14, lemma 5·5], with the sole difference that we
may have s′ > s. Therefore to prove the claim we may assume that σ ′ contains σ as an initial
subpath.

Choose a Farey labelling with label 1/0 at the horoball forming the origin of σ (and σ ′),
and labels 0/1 and 1/1 at the two neighbouring horoballs that intersect σ . Compare the
denominators of the Farey labels of the horoballs at the terminuses of σ and σ ′; because
these labels are computed using Farey addition, it is evident that the denominator of the
horoball for σ ′ is at least that of σ . The intersection number of any horoball with 1/0 is
given by the denominator of its Farey label, so the claim follows.

2·3. Intersection numbers and hyperbolic distance

The quotient of H2 by PSL(2, Z) is a hyperbolic orbifold with one cusp and two orbifold
points, one of order 2 and one of order 3. The preimage of the maximal horoball neighbor-
hood of the cusp under the covering projection H2 →H2/PSL(2, Z) is H= {Hp/q : p/q ∈
Q∪ {∞}}, a PSL(2, Z)-invariant collection of horoballs centered at the completed rationals.
The following lemma is an exercise in hyperbolic geometry.

LEMMA 2·2. Every point in H2 is within log 2/
√

3 of a horoball in H.

There is a simple well-known fundamental relationship between intersection numbers of
curves on the torus and hyperbolic distance between the corresponding horoballs (see e.g.
[27, proposition 6·2]).

LEMMA 2·3. We have dH2

(
Hp/q, Ha/b

) = 2 log ι

(
p

q
,

a

b

)
for any p/q, a/b ∈F .

Proof. Applying an element of PSL(2, Z), we may assume that p/q = ∞ in the upper half-
plane model for H2 ∪ ∂∞H2. The horosphere Ha/b is given by {z :

∣∣z − (a/b + i/2b2)
∣∣ =

1/2b2} (see e.g. [2]), so

dH2

(
Hp/q, Ha/b

) = dH2

(
a/b + i

b2
, a/b + i

)
= 2 log b = 2 log ι

(
p

q
,

a

b

)
.

2·4. Width and height for horoballs

The interior of each edge of τ ∗ is incident to exactly two horoball regions. Thus, for any
choice of horoball H in τ ∗, there are exactly two other horoball regions, distinct from H,
that are incident to the interiors of the extreme edges of H. Call these H1 and H2.
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Definition 3. The width of τ relative to H is w = ι(H1, H2). The height of τ relative
to H is

ht(τ , H) = max{ ι(H, H′) : H′ is a horoball of τ }.
For the remainder of this article, we will suppress the difference between the triangulation

τ ∈An and its dual tree τ ∗. The translation between them is quite natural, and the difference
can henceforth be understood from context.

2·5. The two kappas

Recall from the introduction the quantity κT (n), which is the minimum, taken over
collections � of n curves on S, of the maximum pairwise intersection number of
curves in �.

Definition 4 (‘Max Intersection Function’). The function κ : An →N is defined by

κ(τ ) = max{ ι(H1, H2) : H1 and H2 are horoballs of τ }.
As noted in the introduction, we claim that κT (n) = min{κ(τ ) : τ ∈An}.
That κT (n) � min κ is easy: for any τ ∈An, choose a Farey labelling. The quantity κ(τ )

is equal to the maximum pairwise intersection number of the n slopes obtained in this Farey
labelling, and κT (n) is the minimum of the maximum pairwise intersection of any n slopes,
so κT (n) � κ(τ ) for each τ ∈An.

The reverse inequality is slightly less obvious, and relies on a certain convexity of
maximal k-systems in ∂∞H2. The following lemma makes this precise.1

LEMMA 2·4. If � is a k-system on T which is maximal with respect to inclusion among
k-systems, then F induces a triangulation of the n-gon which forms the convex hull of � ⊂
∂∞H2.

Proof. Let gab indicate the geodesic in H2 with endpoints a, b ∈ ∂∞H2. Suppose that
α, β ∈ � ⊂F , that � is a Farey triangle intersecting gαβ , and that δ is a vertex of � (and,
hence, of F ). Because the path σ that computes the intersection number ι(α, δ) is a subpath
of the path σ ′ that computes ι(α, β) (and similarly for ι(δ, β)), Lemma 2·1 implies that both
ι(δ, α) and ι(δ, β) are at most k. For any γ ∈ �, either gαγ or gβγ intersect �, so it follows
that ι(γ , δ) � k as well. Maximality of � implies that δ ∈ �, so the convex hull of � is equal
to the union of Farey triangles spanning elements of �.

This demonstrates that κT (n) � min κ , so we may conclude:

PROPOSITION 2·5. We have κT (n) = min
τ∈An

κ .

3. Illustrative examples

There are several natural elements of An that we can use to observe κ : An →N.

Remark. Technically, the vertices of the associahedron correspond to triangulations of a
labelled convex polygon. Notice however that the max intersection function κ : An →N is

1 We are grateful to Ian Agol for sharing an unpublished note with us which contained Lemma 2·4 [3].
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(a) (b) (c)

Fig. 2. Several dual trees of elements in An.

invariant under permutation of labels, so we can safely refer to κ(τ ) for elements τ of An

without reference to a particular ordering of the horoballs of τ .

(i) The element ch(n) ∈An (for ‘chain’) contains a horoball of width n. We have
κ(ch(n)) = n, and the height relative to the horoball of width n is 1.

(ii) The element ach(n) ∈An (for ‘alternating chain’) contains a path of length n − 3 that
switches direction n − 4 times. Here we have κ(ach(n)) = Fn, the nth Fibonacci num-
ber, the largest width horoball of ach(n) is 3, and the height relative to any horoball is
at least F� n

2 .

(iii) The element reg(r) ∈An (for ‘regular’), with n = 3 · 2r−1, is formed by choosing the
subtree of the homogeneous (infinite) trivalent tree that is induced on all vertices at
combinatorial distance at most r from a fixed vertex. The tree reg(r) contains the
alternating chain ach(2r + 1) as a subtree, and in fact we have κ(reg(r)) = κ(ach(2r +
1)) = F2r+1. The largest width of a horoball of reg(r) is given by 2r − 1, and the
height of reg(r) relative to this horoball is Fr+1.

(iv) The element Far(h) ∈An (for the ‘Farey series’), with n = 2 + ∑
k�h φ(k), where φ

is Euler’s totient function, is the subgraph of F induced on fractions in Q∩ [0, 1] that
can be written with denominator � h, together with 1/0. Observe that κ(Far(h)) =
h2 − 2h, the largest width of a horoball of Far(h) is given by h, while the height
relative to this horoball is given by h − 1.

We collect this information in Figure 2 and Table 1.

Remark. Observe the large difference between κ(ach(n)) ≈ ((1 + √
5)/2)n and κ(ch(n)) = n.

Though we have not discussed it, there is a natural simplicial structure on An, with edges
between triangulations of an n-gon that differ by a single diagonal flip. It is not hard to see
that the diameter of An is at most 2n (in fact, this quantity can be determined precisely [23,
28]), so it follows that the change in κ across an edge of An can be arbitrarily large.

4. Estimating kappa using heights

Let τ ∈An. The strategy to obtain a lower bound for κ(τ ) is to find a set of pairwise
intersection functions {Iα} for τ , and estimate the convex combination∑

α

rαIα � n − ε(n), (4·1)
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Table 1. Some data for attractive elements of An. Some entries include
only leading-order terms, ignoring multiplicative constants. Note that � =
1 + √

5/2.

τ κ(τ ) Largest width horoball H ht(τ , H)
ch(n) n n − 2 1
ach(n) �n 3 ��n/2

reg(r) n2 log2 � 2 log2 n nlog2 �

Far(h) π 2

3 n
√

n
√

n

for some set of non-negative weights {rα} with
∑

rα = 1, and error term ε(n). Of course, we
have κ(τ ) � Iα for all α, and by convexity we must have Iα � n − ε(n) for some α.

We will rely on three facts from analytic number theory, which we group together in
a single lemma for convenience. Below we indicate the interval {1, . . . , m} by [m] and the
subset of {1, . . . , m} relatively prime to s by [m]s, e.g. φ(m) = #[m]m. The number of divisors
of n is indicated by d(n).

LEMMA 4·1. We have the following estimates:

#[m]n = m

n
φ(n) + O(d(n)) , (4·2)

∑
k�h

d(k) = h log h + O(h) and (4·3)

∑
k�h

φ(k)

k
= O(h). (4·4)

The estimate (4·2) is a standard application of Möbius inversion [9, lemma 3·4]. The
second estimate (4·3) is a weaker version of a famous theorem of Dirichlet [6, chapter 3],
and a more precise form of (4·4) can be found in [30]. (Note that the error term in (4·2)
is in fact O(ϑ(n)), where ϑ(n) is the number of square-free divisors of n. However, in the
sum

∑
j�h ϑ(j), one finds the same order of growth as

∑
j�h d(j) [21], so in our application,

Lemma 4·3, this improvement is immaterial.)
In this section we will show:

PROPOSITION 4·2. There is a constant C > 0 so that, for any τ ∈An and any horoball H
of τ with h = ht(τ , H), we have κ(τ ) � n − Ch log h.

As in Section 2·4, let H1 and H2 be the two horoballs that are incident to H along its two
extreme edges. By construction, the non-backtracking path σ from H1 to H2 is contained in
H; we indicate the vertices σ passes through in order by p1, . . . , pw. See Figure 3.

For each j, the complement τ \ pj consists of three components, and we indicate (the
closure of) the unique such component that doesn’t intersect H as the jth branch B(j).

Label H with 1/0, label the horoball neighbouring H along the edge pjpj+1 with 0/1, and
label the horoball neighbour of H along pj−1pj with 1/1. Now Farey addition determines
how to fill in labels for the remaining horoballs, and let htH B(j) indicate the maximum
denominator among Farey labels for horoballs intersecting B(j).
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Fig. 3. The horoball H determines branches for τ , and extreme horoballs H1 and H2.

We may count the n horoball regions of τ by filtering them according to their heights on
the branches. That is, for each k ∈N, let X(k) = {j : htH B(j) � k} (that is, the set of indices j
where the jth branch has height at least k), and let xk = #X(k). See Figure 6.

Suppose that k � htH B(j). We now define ‘leftmost’ and ‘rightmost’ horoballs L(j)k and
R(j)k at height at least k on the branch B(j), and corresponding ‘numerator invariants’ 
(j)k

and r(j)k. Consider the subset of horoballs of B(j) whose relative heights to H are � k,
nonempty by assumption. We declare L(j)k and R(j)k to be the elements of this set with
maximal and minimal Farey labels, respectively. (Among horoballs of B(j) at height � k
from H, the horoball L(j)k appears furthest to the left from the viewpoint of H; similarly
R(j)k appears furthest to the right.) Now we define ‘numerator invariants’ 
(j)k and r(j)k for
B(j) as follows: Suppose the Farey labels of L(j)k and R(j)k are al/bl and ar/br respectively.
We let 
(j)k: = �k · (al/bl) and r(j)k: = �k · (ar/br)�. See Figure 4 and Figure 5.

Consider j+k (resp. j−k ), the maximal (resp. minimal) index of X(k). Below, we indicate
λk = 
(j−k )k and ρk = r(j+k )k; roughly speaking, λk (resp. ρk) is the ‘leftmost (resp. rightmost)
height k numerator invariant’. See Figure 7.

LEMMA 4·3. We have

h∑
k=1

φ(k)xk � n +
h∑

k=1

φ(k) +
h∑

k=1

φ(k)

k
(ρk − λk) − O (h log h) .

Proof. Observe that the sum of the number of horoballs of τ at height k relative to H, as
k goes from 1 to h, is exactly n − 1.

The number of horoballs of B(j) at height k relative to H is at most φ(k), so the total
number of horoballs of τ at height k from H is at most φ(k)xk. Observe that we may count
the vertices of B(j−k ) and B(j+k ) with slightly more care: Provided the numerators of horoballs
of B(j) at height k are between 
 and r, the number of horoballs of B(j) at height k relative to
H is at most φ(k) − #[r − 1]k, and at most #[
]k. Therefore the total number of horoballs of
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(a) (b)

Fig. 4. A branch acquires Farey labels.

(a) (b)

Fig. 5. The numerator invariants 
(j)k and r(j)k of B(j).

τ at height k relative to H is at most

φ(k)xk − (φ(k) − #[λk]k︸ ︷︷ ︸
overcount in B(j−k )

) − #[ρk − 1]k︸ ︷︷ ︸
overcount in B(j+k )

.

(The reader is reassured that the overcounts above are distinct when j−k = j+k ; in that case
xk = 1 and the expression simplifies to #[λk]k − #[ρk − 1]k.) By (4·2), the count above is at
most

φ(k)xk − φ(k) + λk

k
φ(k) − ρk − 1

k
φ(k) + O(d(k)).
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Fig. 6. The horoballs of τ may be filtered according to heights from H.

Fig. 7. The leftmost horoball at height � k and rightmost horoball at height � k′ are used to
build intersection number Ikk′ .

The sum of this expression as k goes from 1 to h is n − 1, so rearranging we find that

h∑
k=1

φ(k)xk � n +
h∑

k=1

φ(k) +
h∑

k=1

φ(k)

k
(ρk − λk) − 1 −

h∑
k=1

φ(k)

k
− C

h∑
k=1

d(k).

By (4·3) and (4·4), the last three terms can be replaced by O(h log h).
The reader may observe how Lemma 4·3 is somewhat suggestive of (4·1).
Given a choice of two heights k and k′, consider the intersection number Ikk′ between

L(j−k )k and R(j+k′ )k′ . See Figure 7. It is straightforward to compute

Ikk′ � kk′|j+k′ − j−k | + k′λk − kρk′ .

Notice that
∣∣j+k′ − j−k

∣∣ + ∣∣j+k − j−k′
∣∣� xk + xk′ − 2, so upon dividing by kk′ we find

1

kk′ (Ikk′ + Ik′k)� xk + xk′ − 2 +
(

λk

k
− ρk

k

)
+

(
λk′

k′ − ρk′

k′
)

. (4·5)

With Lemma 4·3 in mind, we would like to choose pairs {k, k′} ⊂ [h] so that the sum over
the choices made of the terms ‘xk + xk′’ on the right-hand side of (4·5) is equal to

∑
φ(k)xk;
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Fig. 8. The graph �6 as described in Proposition 4·4. Edge weights sum to 1.

meanwhile, the sum of coefficients on the left-hand side should be equal to 1. The following
proposition makes this idea feasible.

PROPOSITION 4·4. For each h ∈N, there is a graph �h satisfying:

(i) the vertex set of �h is given by {1, . . . , h};
(ii) the valence of vertex k is φ(k);

(iii) the sum
∑
k∼k′

2

kk′ over the edges of �h is equal to 1.

See Figure 8 for a picture of �6.

Proof. Declare k ∼ k′ when gcd(k, k′) = 1 and k + k′ > h.

For property (ii), choose a vertex k. Each integer i relatively prime to k can be shifted by
k to i + k, another integer relatively prime to k. For 1 � i � k, we may choose the maximum
n so that i + nk � h. The result is a bijection of [k]k, the integers in [k] relatively prime to k,
with the set of integers k′, relatively prime to k, less than h, and so that k + k′ > h. Therefore
the valence of k is #[k]k = φ(k).

For property (iii), observe that, to transform �h into �h+1, the edges k ∼ k′ with k + k′ =
h + 1 are deleted and replaced by edges k ∼ (h + 1) and k′ ∼ (h + 1). Because k + k′ =
h + 1, the edge weight 2/kk′ in �h is equal to the sum of edge weights 2/k(h + 1) +
2/k′(h + 1) in �h+1, so the sum

∑
k∼k′ 2/kk′ is independent of h. For the base case h = 2,

observe that 2/1 · 2 = 1.
Let E indicate the set of edges of �h. Now Proposition 4·4 and (4·5) imply:
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(k,k′)∈E

1

kk′ (Ikk′ + Ik′k)�
∑

(k,k′)∈E

[
xk + xk′ − 2 +

(
λk

k
− ρk

k

)
+

(
λk′

k′ − ρk′

k′
)]

=
∑

k

φ(k)xk −
∑

k

φ(k) +
∑

k

φ(k)

k
(λk − ρk)

Applying Lemma 4·3, we find that

∑
(k,k′)∈E

1

kk′ (Ikk′ + Ik′k)� n − O(h log h) . (4·6)

Because
∑

E 2/kk′ = 1 by Proposition 4·4, the left-hand side of (4·6) is a convex combina-
tion of intersection numbers for τ . Therefore inequality (4·6) implies that there is a pair of
horoballs whose intersection number is at least the right-hand side, proving Proposition 4·2.

5. Finding a horoball of controlled relative height

For many τ ∈An, there exist H so that the ht(τ , H) is O(1), so Proposition 4·2 with
height demonstrates that κ(τ ) = n − O(1). However, such a horoball need not exist, e.g.
every horoball of ach(n) has height at least ≈ ((1 + √

5)/2)n/2. Nonetheless, κ(ach(n)) is
quite large (on the order (1 + √

5)/2)n), so one might hope that it is always possible to find
horoballs of small height relative to κ(τ ). We show:

PROPOSITION 5·1. There exists a constant C > 0 so that, for any τ ∈An, there exists a
horoball H of τ so that the height of τ relative to H is controlled as ht(τ , H) � C

√
κ(τ ).

Remark. The reader can observe that the conclusion above fits the data in Table 1. It is
tempting to hope for an improvement of Proposition 5·1 along the following lines: as κ(τ )
gets closer to min κ (e.g. if κ(τ ) � n), one should be able to find horoballs of τ with relative
heights � √

n.
On the other hand, the row containing τ = Far(h), with n ≈ 3/π2h2, makes this hope seem

quite remote. Indeed, κ(Far(h)) is greater than n only by the innocuous looking linear factor
π2

3 ≈ 3.3, yet every horoball has relative height � h ≈ √
n.

Proof. Let K1, K2 be horoballs of τ so that ι(K1, K2) = κ(τ ), and let r = log κ(τ ). By
Lemma 2·3, we have dH2 (K1, K2) = 2r.

Let x ∈H2 be the midpoint of the geodesic from K1 to K2. By Lemma 2·2 there is a
horoball H ∈H so that dH2(H, x) � log (2/

√
3). The horoball H corresponds to a horoball

in the dual tree to F which is, by construction, incident to the geodesic between K1 and
K2. By Lemma 2·4, H is a horoball in τ as well. (Strictly speaking, one could distinguish
notationally between Farey horoballs in H, horoballs in the dual tree to F , and horoballs
in τ ; because we feel it only obscures the relevant choices, we leave this distinction to be
implied by the reader.)

We claim that H satisfies the requisite bound. Let K be any other horoball of τ . Because
H2 is δ-hyperbolic, the point x is within δ of the geodesic segment between K and Ki for
i equal to either 1 or 2. A standard application of the triangle inequality (see Figure 9)
then yields

dH2 (K, Ki) � dH2(K, x) + dH2 (x, Ki) − 2δ = dH2(K, x) + r − 2δ.
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Fig. 9. A horoball K not far from the Ki is not far from H as well.

Because dH2 (K, Ki) � 2r, we conclude that dH2 (K, x) � r + 2δ, and

dH2(H, K) � dH2(H, x) + dH2 (x, K) � log
2√
3

+ r + 2δ.

By Lemma 2·3 we conclude that

ι(H, K) = e
1
2 d

H2 (H,K) � 2√
3

e2δ
√

κ(τ ).

Remark. Ian Agol has suggested a slightly different version of the above proof: choose
Farey labels for the horoballs in τ , and enlarge the horoballs by log κ(τ ) + log (2/

√
3). A

variation on Lemma 2·2 together with Lemma 2·3 implies that every trio of these horoballs
mutually intersect, so by Helly’s theorem there is a point x in their common intersection
[19], and one may finish as above.

6. From kappa to eta

As stated in the introduction, it is an exercise to show that

ηT (k) = max{n : κT (n) � k}.
By Theorem 1·2, we may conclude ηT (k) � max{n : n − C

√
n log n � k}.

Theorem 1·1 now follows from the following lemma:

LEMMA 6·1. Suppose that C > 0 is a constant, and that f : R→R is an increasing,
sublinear function, with f (x) = o(x). There is a D > 0 so that for any k � 1 we have
max{x : x − Cf (x) � k}� k + Df (k).
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Proof. Because f (x) = o(x), there is a C1 > 0 large enough so that C1 − 1 > Cf (C1).
Because f is sublinear, for any k � 1 we have

(C1 − 1)k > Ck f (C1) � Cf (C1k).

Adding k to both sides and rearranging we find

C1k − Cf (C1k) > k. (6·1)

Let F(k) = max{x : x − Cf (x) � k}. By (6·1) we have F(k) < C1k. Of course, by definition
of F(k) we have F(k) − Cf (F(k)) � k. Because f is increasing and sublinear, we find

F(k) � k + Cf (F(k)) � k + Cf (C1k) � k + CC1f (k),

as claimed.
Because

√
x log x is increasing and sublinear, this completes the proof of Theorem 1·1.

Remark. The conclusion of Lemma 6·1 holds under much weaker assumptions. For
instance, sublinearity of f can be replaced by the assumption that there is some C2 > 0
so that f (x + y) is at most C2f (x) + C2f (y).
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