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SATURATED FORMATIONS AND SYLOW NORMALISERS

A. D'ANIELLO, C. D E VIVO AND G. GIORDANO

Sufficient conditions are provided in order that some classes of finite soluble groups,
denned by properties of the Sylow normalisers, are saturated formations.

0. INTRODUCTION

Let h : P —¥ {group classes} be a function which associates with each p a (possi-
bly empty) class of groups h(p), contained in some universe B of finite groups. The
operation N on the functions P —> {group classes} is defined as follows:

Nh:— (G € B | NG(GP) G h(p), for every prime p which divides \G\)

where Gv e Sylp (G).
In this paper we provide sufficient conditions in order that N/i is a saturated

formation, we suggest a way to construct a wide class of such saturated formations and
a local definition for them.

It is easy to observe that, if h(p) is Q-closed (closed under epimorphic images), for
every prime p, then Nh is Q-closed, whereas nothing analogous occurs for other fre-
quently used closure operations. For instance, if h(p) is the class T of finite groups with
ordered Sylow tower (for every prime p), T is an S-closed saturated Fitting formation,
instead N T = N / I is neither a formation nor a Fitting class (NT is closed under none
of the operations Ro, No, Sn). The classes N/i can have some interesting properties,
though they do not inherit the closure properties of the classes h(p), an example is
provided by the class NU, where U is the formation of supersoluble groups. The class
nU has been studied in 1988 by Fedri and Serena [5] and in 1991 by the same authors
with Bryce [3].

The operation N was introduced in 1970 by Glaubermann [6], who proved that, if
x is the formation function defined for each p 6 P by x(p) = Sp — class of p-groups,
then Nx = U Sp.

P6P

In 1986 Bianchi, Gillio and Hauck [2], generalising the cited result of Glaubermann,
proved that NM —M, where M is the formation of nilpotent groups. A further gener-
alisation was obtained in 1999 by Ballester-Bolinches and Shemetkov [1], who proved
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that, if y is the formation function which associates with each prime p the formation
y(p) = FpiSv of p-nilpotent groups, then Ny = M

As a concrete example we shall consider a saturated formation function introduced
by Huppert in [7], and as corollaries we get the results of Fedri and Serena on the class
NW and, for soluble groups only, the result of Ballester-Bolinches and Shemetkov [1].
An interesting corollary is also the following one:

The class of soluble groups, in which normalisers of Sylow p -subgroups are
p-super soluble, is a saturated formation (see Theorem B).

Most of our notation is standard and can be found in [4]. "Group" will stand for
"finite soluble group".

1. T H E MAIN RESULT

In this section we prove the following theorem:

THEOREM 1 . 1 . Let g be a formation function and ir a set of primes such that

Sp> f~l Sni C g(p) C Svi, for all primes p. Then Ng is a formation. Moreover, if g is a
saturated formation function, then Ng is a saturated formation.

PROOF: We have already observed that Ng is a homomorph. Now we prove that

Ng is Ro-closed. On the assumption that it is not let G be a group in R0(Ng) \ Ng.

Since G is in R0(Ny), it has two normal subgroups Ki and K2 such that G/Ki £Ng

(i = 1,2), and KiHK2 = l.

On the other hand, since G £ Ng, there exists a prime p dividing |G| such that

NG(GP) £ g{p). If p divides G/Ki (for i = 1,2), we obtain

NG{Gp)/KinNG(Gp)eg(p),

from which the contradiction No(Gp) € g(p) follows, because g(p) is Ro-closed.
Suppose, without loss of generality, G/K\ € Sp>. Since K\ C\ K2 = 1, we get
NG{GP)/K2 n NG(GP) e g(p). If G/Ki & S*>, we have NG{GP)/Ky n NG(GP)

6 Spi r\Sn> C g(p) and so once more we have the contradiction NG(GP) G <?(p). Let
q € n be a prime dividing \G/Ki\. Since G\KX 6 Ng, we have NG(Gq)/Kir\NG(Gq)

€ g(q) Q Sni; it follows, as q £ TT', that q does not divide \NG(Gq)/Ki r\NG(Gq)\ and
therefore Gq C K\, obtaining the contradiction that q does not divide \G/Ki\. Hence
the assumption that Ng is not Ro-closed is false.

Now we are going to prove that, if g(p) is saturated for every prime p, then Ng is
saturated. If not then let G be a group of minimal order in E<t>(Ng)\ Ng. A routine
argument shows that G is monolithic and, if N is the socle of G, we have, for some
prime q, N C $(G) C Oq{G) = Fit(G) and G/N € Ng. On the other hand, since
G $ Ng, there exists a prime p dividing \G\ such that NG(GP) ^ g(p)- Now, since
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G/N G Ng and q divides \G/N\ (because N C $(G)) , we have NG(Gq)/N G </(g)

C Sni and NG(GP)/N (1 Na(Gp) G g(p) C 5W/; consequentely p,q £ n and therefore

NG{GV)/GP e Sp, n $„, C 5 (p) .

If g ^ p , we get NC\GP = 1 and obtain the contradiction No(Gp) & g(p); therefore

g = p . Then, since OP>(G) = 1 and AT C $ (G) , we have Opl(NG(Gp)/N) = 1, which

implies that Op'tP(NG(Gp)/N) - Gp/N; consequently Gp/N is the intersection of the

centralisers of all chief p-factors of NG(GP)/N.

Now a well-known theorem of Lubeseder (see [4, IV, (4.6) Theorem]) shows that

g(p) is locally denned by some formation function T, because, by hypothesis, g(p) is

a saturated formation. Then, setting NG(GP)/N = F , we have Autr (H/K) e T(p)

for all chief p-factors H/K of I \ that is T/CT(H/K) G F(p); it follows r / O p , p ( r )

= T/rp ^ NG(GP)/GP e T(p), from which we obtain that kntNa^ {H/K) 6 T(p),
for all chief p-factors H/K of NG(GP) such that N C K. On the other hand, if H/K
is a chief p-factor of NG(GP) such that if C AT, we have Gp C C^ /G \(H/K) and so
Aut^ /G \ (H/K) e F(p), because it is a homomorphic image of NG(GP)/GP € ^(p);
thus k.\itNa(p^ (H/K) € T(p), for all chief p-factors H/K of NG(GP). Now, since
NG(GP)/N 6 #(p) = LF(J-), it is obvious that, for all primes g different from p the
group of automorphisms induced by NG(GP) on a chief g-factor belongs to F(q). Thus
we obtain the contradiction NG(GP) 6 LF(T) — g(p). D

2. THE SATURATED FORMATIONS N/^.

A function / : P -> {group classes} is called a [saturated] formation function if
f(p) is a [saturated] formation for all p e P. If / is a formation function, it is well
known that the class

LF(f) = (GeS\ AutG (H/K) G f(p), for all chief p-factors H/K of G).

is a saturated formation, called locally denned by / . Moreover every saturated forma-
tion can be locally defined.

If 7T is a subset of the set P of all primes, the class 5X is the class of TT-groups.
If G is a group, Gv denotes a Hall it -subgroup of G; in particular Gp is a Sylow
p-subgroup of G (if p does not divide \G\, Gp — 1).

DEFINITION 2.1: Let / be a function P -» {group classes}. The function /* is
defined as follows

r(p) - (G G S I NG(GP)/GP G f(p)) (pGP).

LEMMA 2 . 2 . Jf / : P —> {group classes} is a formation function, then f* is a

formation function.
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P R O O F : It is easy to observe that /*(p) is a homomorph. It remains to prove that
/*(p) is Ro-closed. Let G be a group with two normal subgroups N\ and N2 such
that G/Ni e f*(p) (» = 1,2) and Ni n N2 = 1. If Gp e Sylp (G) we have

•€/(p) (i = l,2).
) (G/Ni)p

It follows, since /(p) is R0-closed, that No(Gp)/Gp € /(p), observing that

Gp(JVx D NG(GP)) n GP(JV2 n ATG(GP)) = Gp.

Thus Ge f*(p). D

DEFINITIONS 2.3: Let / be a formation function and TT be a (possibly empty) set
of primes. The formation function f/w is defined as follows:

••= I
if p € 7T
., . ( p € P ) .
if p £ 7T

For every prime p the formation function {f/n,p) is defined as follows:

{ 0 if q € n

/(p) if g = p^7r (geP) .
<S if q ^ p and g ^ TT

The saturated formation LF((f/n,p)) locally defined by the formation function

(f/n,p) will be denoted by fn(p). Thus two formation functions are defined:

U •• P € P -> lip) and / ; : p € P - • (//TT)*(P).

If TT = 0, we shall use the following notation:

( / , p ) : = ( / / 0 , p ) a n d / : = / 0 .

The main result is the following theorem.

THEOREM A. Let f be a formation function and w a set of primes. Then:

(i) N /„ is a saturated formation;

(ii) N /„ is locally defined by the formation function f*.

Before we proceed with the proof, let us state some easy consequences of the

definitions.
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PROPOSITION 2 . 4 . Let f be a formation function and ir a set of primes.

Then, for every prime p , we have

and therefore N/ff C <SW/. In particular:

(i) U (p) = Sv,, for every pen;
(ii) if 7T = 0, Sp> C /(p) for every prime p .

PROOF: Let G € /*(?) = LF((f/n,p)) and let g be a prime dividing \G\. Ii H/K
is a chief q-factor of G, we have Auto (H/K) ^ 0 and so (f/n,p)(q) ^ 0; therefore,
by definition, q £ n. Hence G is a TT'-group. Now let G € 5p/ n5 T / . If H/K is a chief
g-factor of G, then q ̂  p and q £ n; therefore, by definition, (f/ft,p){q) = S and so
AutG (H/K) e (f/*,p)(q). Hence G € / .(p). D

The inclusion N/T C 5ff/ is an obvious consequence of the definitions and of the
inclusion fn(p) Q Sni.

PROPOSITION 2 . 5 . Let f be a formation function and n a set of primes.

Then:
f 0 if p € 7T

/ ; ( P ) = < f V , . . . ( p e P ) .
[ f*(p) if Pi It

In particular, if -K = 0, f£ = f*.

PROOF: It follows easily from definitions. D

PROPOSITION 2 . 6 . Let f be a formation function and IT a set of primes.
Then, for every prime p, we have:

fn(p)=Sn,nf(p).

PROOF: It follows easily from the definitions. D

PROPOSITION 2 . 7 . Let f be a formation function and n a set ofprimes. Then

PROOF: Let G € LF(f') and let p be a prime dividing \G\. If H/K is a chief
p-factor of G we have AutG (H/K) ef*(p), that is G/C e f* where C - CG(H/K).
Therefore, by definition of /* = (//TT)* , we obtain that

NG(Gp)/Gp(Cn NG(GP)) e (/

it follows (//TT)(P) ^ 0 and so p g n and AutG (H/K) e f*(p). Thus

GeSw,nLF(f).
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The inclusion Sn/C\LF(f*) C LF(f*) is an easy consequence of the definitions. D

PROPOSITION 2 . 8 . Let f be a formation function and ir a set of primes.
Then:

N/T = S*> n N / .

PROOF: It follows easily from the definitions. D

THEOREM 2 . 9 . (A. 1st part.) Let f be a formation function and n a set of
primes. Then Nfw is a saturated formation.

PROOF: It follows immediately from Theorem 1.1, by recalling Proposition 2.4. D

THEOREM 2 . 1 0 . Let f be a formation function. Then N/ is a saturated for-
mation and is locally defined by the formation function f*.

PROOF: First we prove the inclusion N/ C LF(f*). Let G be a group of minimal
order in N/ \ LF(f*). Since LF(f*) is a saturated formation, G belongs to the
Q-boundary of LF(f*) and so G is primitive. Then we have G =• K N, where
N = Soc(G) = OP(G) (for some prime p) and K € LF(f*). Since G $ LF{}*) we
have

that is NK(Kp)/Kp <£ / (p), where Kp = KC\GV. On the other hand, since G £N/ ,
we have

NG(GP) = NNK(KP) € f{p) = LF((f,p)),

that is NG(Gp)/CNarG\(A/B) e f(p), for all chief p-factors A/B of NG(GP); it fol-

lows that NG(GP)/GP e /(p), because Gp = Op><v(NG{Gp))\ then, since NG(GP)/GP

= NK(KP)/KP, we obtain the contradiction NK(KP)/KP e f(p).

Now we are going to prove the inclusion LF(f*) C N / .

Let G be a group of minimal order in LF(f*)\ N / . Since N/ is a saturated
formation (Theorem 2.9), G belongs to the Q-boundary of N/ and so is primitive.
Then, as above, G = K N, where N = Soc (G) — OP(G) is a minimal normal subgroup
of G and K € N / . Since G $ N / , there exists a prime g dividing |G| such that
NG(Gq) £ f(q) = LF((f,q)). If q jfe p, we may suppose Gg = if, (G, C AT) and
therefore NG(Gq) = CN(Kq)NK{Kq) £ f(q), so there exists a chief g-factor A/B of
NK{Kq) such that NK(Kq)/CNK<K^(A/B) £ f(q) and this contradicts # € N/ .
Thus q — p. Therefore we have

ATG(GP) = NNK(KP) i f(p) = LF((f,p))

(where Kp = tf n G p ) and so NG{GP)/OV>P> (NG(GP)) $ /(p). On the other hand,

since G/N € N/ and Op,iP(NG(Gp)) - Gp, we get

ArG(Gp)/Op>(ATG(Gp)) = ATG(GP)/GP e / ' (p) ,
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from which we obtain the contradiction NQ(GP) 6 / ( p ) . ' D

THEOREM 2 . 1 1 . (A. 2nd part.) Let f be a formation function and n a set of

primes. Then Nf* = LF(f*).

PROOF: It follows immediately from Theorem 2.10, by recalling Propositions 2.7
and 2.8. D

3. SOME APPLICATIONS OF THEOREM A

In this section, by choosing particular formation functions and set of primes in
Theorem A, we obtain some interesting examples of saturated formations, that can
be defined by the operation N and for which therefore it can also be obtained a local
definition.

Moreover we obtain, as corollaries, a result of Fedri and Serena on the class N U

[5] and, for soluble groups only, the result of Ballester-Bolinches and Shemetkov cited
in the introduction [1].

A class of meaningful examples is obtained if we consider the following well-known

saturated formation functions an (n a. positive integer), which have been introduced "

by B. Huppert in [7] (see [8, VI, 8]).

Let n be a positive integer. The formation function an is defined as follows:

where Apn_i is the formation of Abelian groups whose exponent divides pn — 1.

Denote by ir(n) the set of primes which divide n. According to our definitions we
have, for every prime p:

{ 0 if q | n

Apn-i if q=p\n

S if g / p and q \ n

Let an ••— (S^),r(n), that is an(p) = LF((an/n(n),p)), (p e P). It is well known

that
"n(p) = (G &S\ (\G\, n) = 1 and rp(G) either divides n or is o)

where rp(G) is the arithmetic p-rank of G (see [8, VI, 8.3 Hilfsatz]).

We deduce immediately the following result.

THEOREM B. Let n be a positive integer. Then the class Non is a saturated

formation and it is locally defined by the formation function
[ 0 if p\n
1 (G G 5 | NG(GP)/GP € Apn_i) if p\n
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In particular (for n = 1): the class Nai of groups, in which normalisers of Sylow p-
subgroups are p-supersoluble, is a saturated formation and is locally defined by the
formation function

a\ : p G P -> (G € S \ NG{GP)/GP € Ap^).

THEOREM. (Fedri-Serena, [5, Proposition 1.2].) Let p and q be primes. Then

is a saturated formation and is locally defined by the formation function

aL .1 : t G P -> |
0 if t^p,q

{P,Q} ' " c " ^ | (G G 5 | NG(GP)/GP G A - i ) if * = P or g.

PROOF: It is enough to observe that 5{pg}nNW = S^^DNai, therefore the

statement follows immediately from Theorem B. D

The following result is well known.

PROPOSITI ON 3 . 3 . The (saturated) formation locally deGned by the formation

function

c : p € P -> (G 6 S | Sylp (G) = Carter (G))

coincides with the formation Af of nilpotent groups.

THEOREM. (Ballester-Bolinches and Shemetkov, [1, Corollary 3].) If the nor-

malisers of Sylow p -subgroups of a group G are p-nilpotent for every prime p, then G

is nilpotent.

PROOF: Let e be the formation function defined by e(p) — 1, for all primes p. In

our notation we have

• (

. (1) if q =
(e,p)(Q)={ e . t \

S if q^

and so e(p) — SpiSp is the formation of p-nilpotent groups. Then from Theorem 2.3
we deduce that Ne is locally defined by the formation function

e* : p e P -> e'(p) = (G 6 S | NG(Gp)/Gp = l) = (G € 5 | Sylp (G) = Carter (G)).

It follows, by Proposition 3.3, that Ne = N is the formation of nilpotent groups. U
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