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SATURATED FORMATIONS AND SYLOW NORMALISERS

A. D’AnNiELLO, C. DE Vivo AND G. GIORDANO

Sufficient conditions are provided in order that some classes of finite soluble groups,
defined by properties of the Sylow normalisers, are saturated formations.

0. INTRODUCTION

Let h: P — {group classes} be a function which associates with each p a (possi-
bly empty) class of groups h(p), contained in some universe B of finite groups. The
operation N on the functions P — {group classes} is defined as follows:

Nh:= (G € B| Ng(Gp) € h(p), for every prime p which divides IG])

where G, € Syl, (G).

In this paper we provide sufficient conditions in order that NA is a saturated
formation, we suggest a way to construct a wide class of such saturated formations and
a local definition for them. '

It is easy to observe that, if h(p) is Q-closed (closed under epimorphic images), for
every prime p, then Nk is Q-closed, whereas nothing analogous occurs for other fre-
quently used closure operations. For instance, if h(p) is the class T of finite groups with
ordered Sylow tower (for every prime p), T is an S-closed saturated Fitting formation,
instead N7 =Nh is neither a formation nor a Fitting class (N7 is closed under none
of the operations R,, Ng, S, ). The classes Nh can have some interesting properties,
though they do not inherit the closure properties of the classes h(p), an example is
provided by the class N, where U is the formation of supersoluble groups. The class
NU has been studied in 1988 by Fedri and Serena [5] and in 1991 by the same authors
with Bryce [3].

The operation N was introduced in 1970 by Glaubermann [6], who proved that, if
z is the formation function defined for each p € P by z(p) = S, =class of p-groups,

then Nz = |J S,.
peP
In 1986 Bianchi, Gillio and Hauck [2], generalising the cited result of Glaubermann,

proved that NA° =N, where N is the formation of nilpotent groups. A further gener-
alisation was obtained in 1999 by Ballester-Bolinches and Shemetkov {1], who proved
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that, if y is the formation function which associates with each prime p the formation
y(p) = FpSp of p-nilpotent groups, then Ny = N

As a concrete example we shall consider a saturated formation function introduced
by Huppert in [7], and as corollaries we get the results of Fedri and Serena on the class
NU and, for soluble groups only, the result of Ballester-Bolinches and Shemetkov [1].
An interesting corollary is also the following one:

The class of soluble groups, in which normalisers of Sylow p-subgroups are
p -supersoluble, is a saturated formation (see Theorem B). .

. Most of our notation is standard and can be found in [4]. “Group” will stand for

“finite soluble group”.

1. THE MAIN RESULT
In this section we prove the following theorem:

~ THEOREM 1.1. Let g be a formation function and © a set of primes such that
Spr NSyt C g(p) € Syr, for all primes p. Then Ng is a formation. Moreover, if g is a
saturated formation function, then Ng is a saturated formation.

~ PROOF: We have already observed that Ng is a homomorph. Now we prove that
Ng is Ro-closed. On the assumption that it is not let G be a group in Rg(Ng) \ Ng.
Since G is in Rg(Ng), it has two normal subgroups K; and K, such that G/K; €Ng
(i=1,2),and K;NK, =1.

On the other hand, since G ¢ Ng, there exists a prime p dividing |G| such that
Nc(Gp) ¢ g(p). If p divides G/K; (for i =1,2), we obtain

N (Gp)/KiN Ne(Gy) € g(p),

from which the contradiction Ng(Gp) € g(p) follows, because g(p) is Ro-closed.
Suppose, without loss of generality, G/K, € S,. Since K; N K, = 1, we get
Ne(Gp)/K2 N Ng(Gy) € g(p). If G/K, € S,/, we have Ng(Gp)/K1 N Ng(Gp)
€ Sy NSy C g(p) and so once more we have the contradiction Ng(Gp) € g(p). Let
g € 7 be a prime dividing |G/K,|. Since G/K; € Ng, we have Ng(G,)/K1 N Ng(Gy)
€ g(q) C S, it follows, as ¢ € 7', that ¢ does not divide |[Ng(Gq)/K1 N Ng(G,)| and
therefore G, C K, obtaining the contradiction that ¢ does not divide |G/K;|. Hence
the assumption that Ng is not Rp-closed is false.

Now we are going to prove that, if g(p) is saturated for every prime p, then Ng is
saturated. If not then let G be a group of minimal order in E5(Ng)\ Ng. A routine
argument shows that G is monolithic and, if N is the socle of G, we have, for some
prime g, N C ®(G) C O4(G) = Fit(G) and G/N € Ng. On the other hand, since
G ¢ Ng, there exists a prime p dividing |G| such that Ng(Gp) ¢ g(p). Now, since
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G/N € Ng and g divides |G/N| (because N C ®(G)), we have Ng(G,)/N € g(q)
C S,/ and Ng(G,)/N N Ng(Gp) € g(p) C Syr; consequentely p,q ¢ m and therefore
NG(GP)/GP € Sp’ n 811" - g(p)

If ¢ # p, we get NNGp, = 1 and obtain the contradiction Ng(Gp) € g(p); therefore
g = p. Then, since Op(G) =1 and N C ®(G), we have O (NG(G,,)/N) =1, which
implies that O ,(Ng(Gp)/N) = Gp/N ; consequently G,/N is the intersection of the
centralisers of all chief p-factors of Ng(Gp)/N .

Now a well-known theorem of Lubeseder (see [4, IV, (4.6) Theorem]) shows that
g(p) is locally defined by some formation function F, because, by hypothesis, g(p) is
a saturated formatjon. Then, setting Ng(Gp)/N =T, we have Autr (H/K) € F(p)
for all chief p-factors H/K of T, that is I'/Cr(H/K) € F(p); it follows I'/Op ,(T)
=T/Tp = Ng(Gp)/Gp € F(p), from which we obtain that Auth(Gp) (H/K) € F(p),
for all chief p-factors H/K of Ng(Gp) such that N C K. On the other hand, if H/K
is a chief p-factor of Ng(G,) such that H C N, we have G, C CNG(G,,)(H/K) and so
Auth(Gp) (H/K) € F(p), because it is a homomorphic image of Ng(G,)/Gp € F(p);
thus A“tNG(G,,) (H/K) € F(p), for all chief p-factors H/K of Ng(G,). Now, since
Ng(Gp)/N € g(p) = LF(F), it is obvious that, for all primes ¢ different from p the
group of automorphisms induced by Ng(G,) on a chief g-factor belongs to F(g). Thus
we obtain the contradiction Ng(G,) € LF(F) = g(p). 0

2. THE SATURATED FORMATIONS N f,

A function f : P — {group classes} is called a [saturated] formation function if
f(p) is a [saturated] formation for all p € P. If f is a formation function, it is well
known that the class

LF(f) = (G € S | Autg (H/K) € f(p), for all chief p-factors H/K of G).

is a saturated formation, called locally defined by f. Moreover every saturated forma-
tion can be locally defined. .

If = is a subset of the set P of all primes, the class S, is the class of w-groups.
If G is a group, G, denotes a Hall w-subgroup of G; in particular G, is a Sylow
p-subgroup of G (if p does not divide |G|, G, =1).

DEFINITION 2.1: Let f be a function P — {group classes}. The function f* is
defined as follows

f*(p) = (G € S| Nc(Gp)/Gp € f(p)) (pEP).

LEMMA 2.2. If f : P — {group classes} is a formation function, then f* is a
formation function.
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PRroOF: It is easy to observe that f*(p) is a homomorph. It remaiﬁs to prove that
f*(p) is Ro-closed. Let G be a group with two normal subgroups N; and N, such
that G/N; € f*(p) (i=1,2) and NiNN; = 1. If G, € Syl, (G) we have

Ng(G,) ~ Ne/n((G/N3),)
Gp(N:NNg(Gy))  (G/Ny),

€flp (E=12).

It follows, since f(p) is Ro-closed, that Ng(G,)/Gp € f(p), observing that
Gp(N1N Ng(Gp)) N Gp(N2 N Ng(Gy)) = Gp.

Thus G € f*(p). a

DEFINITIONS 2.3: Let f be a formation function and 7 be a (possibly empty) set
of primes. The formation function f/m is defined as follows:

(Nﬂ@%={0 fpem  Lep.
flp) if pgnm
For every prime p the formation function (f/m,p) is defined as follows:
] if gen
(f/mp)g) =4 f(p) if q=p¢nm (geP).

S if g#pandqé¢

The saturated formation LF((f/m,p)) locally defined by the formation function
(f/m,p) will be denoted by f;,(p). Thus two formation functions are defined:

fr:p€P— fa(p) and f7:p€P~ (f/7)" ().
If # = @, we shall use the following notation:

(f,p) = (f/0,p) and f := fp.

The main result is the following theorem.
THEOREM A. Let f be a formation function and w a set of primes. Then:
(i) N f. is a saturated formation;

(ii) Nf,, is locally defined by the formation function f; .

Before we proceed with the proof, let us state some easy consequences of the

definitions.
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PROPOSITION 2.4. Let f be a formation function and © a set of primes.
Then, for every prime p, we have

Sp NSyt C frlp) C S

and therefore Nf,, C S,+. In particular:
(G) fr(D) = Su, foreverypen;
(i) ifm=0, Sy C f(p) for every prime p.

Proor: Let G € f;,(p) = LF((f/m,p)) and let ¢ be a prime dividing |G|. If H/K
is a chief g-factor of G, we have Autg (H/K) # 0 and so (f/x,p)(q) # @; therefore,
by definition, ¢ ¢ w. Hence G is a n’'-group. Now let G € S,y NS,. If H/K is a chief
g-factor of G, then g # p and ¢ ¢ =; therefore, by definition, (f/7,p)(g) = S and so

Autg (H/K) € (f/,p)(q). Hence G € Jr(p).

The inclusion Nf~,r C S, is an obvious consequence of the definitions and of the
inclusion fr(p) C Sp/.
PROPOSITION 2.5. Let f be a formation function and m a set of primes.

Then:
0 if pexw

fx(p) = { , (p € P).
f*lo) fpé¢nm

In particular, if 7 =0, f5 = f*.

ProoF: It follows easily from definitions. 0

PROPOSITION 2.6. Let f be a formation function and w a set of primes.
Then, for every prime p, we have:

f=(®) = 8 0 f(p).

ProoF: It follows easily from the definitions. 0

PROPOSITION 2.7. Let f bea formation function and © a set of primes. Then
LF(f}) = Sy N LF(f*).

PROOF: Let G € LF(f) and let p be a prime dividing |G|. If H/K is a chief
p-factor of G we have Autg (H/K) € f2(p), that is G/C € f: where C = Cg(H/K).
Therefore, by definition of f} = (f/7)*, we obtain that

Ng(Gp)/Gp(C N NG(Gp)) € (£/7)(p);
it follows (f/7)(p) # @ and so p ¢ 7 and Autg (H/K) € f*(p). Thus

G € S, N LF(f*).
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The inclusion S, NLF(f*) C LF(f}) is an easy consequence of the definitions. 0
PROPOSITION 2.8. Let f be a formation function and m a set of primes.
Then:
Nfr =8N Nf.
PRrOOF: It follows easily from the definitions. 1|

THEOREM 2.9. (A. 1st part.) Let f be a formation function and 7 a set of
primes. Then N f, is a saturated formation.

PROOF: It follows immediately from Theorem 1.1, by recalling Proposition 2.4.

THEOREM 2.10. Let f be a formation function. Then Nf is a saturated for-
mation and is locally defined by the formation function f*.

ProoF: First we prove the inclusion Nfg LF(f*). Let G be a group of minimal
order in Nf \ LF(f*). Since LF(f*) is a saturated formation, G belongs to the
Q-boundary of LF(f*) and so G is primitive. Then we have G = K N, where
N = Soc(G) = Op(G) (for some prime p) and K € LF(f*). Since G ¢ LF(f*) we
have

Autg (NY 2 G/N =K ¢ f*(p),
that is Nx(Kp)/Kp € f(p), where K, = K NGp. On the other hand, since G ENS,
we have
Ne(Gp) = NNk (Ky) € f(p) = LF((£,p)),
that is NG(Gp)/CNG(Gp) (A/B) € f(p), for all chief p-factors A/B of Ng(G,); it fol-
lows that Ng(G,)/Gp € f(p), because G, = Oy ,(Ne(Gp)); then, since Ng(G,)/Gyp
>~ Nk (Kp)/Kp, we obtain the contradiction Nk (K,)/Kp € f(p).

Now we are going to prove the inclusion LF(f*) C Nf.

Let G be a group of minimal order in LF(f*)\ Nf. Since Nf is a saturated
formation (Theorem 2.9), G belongs to the Q-boundary of N f and so is primitive.
Then, as above, G = K N, where N = Soc (G) = Op(G) is a minimal normal subgroup
of G and K € Nf. Since G ¢ N f, there exists a prime g dividing |G| such that
Ng(G,) ¢ flg) = LF((f,q)). If ¢ # p, we may suppose Gy = K, (G, C K) and
therefore Ng(G,) = Cn{Kq)Nk(K,q) ¢ F(q), so there exists a chief g-factor A/B of
Nk (Kg) such that NK(Kq)/CNK(Kq)(A/B) ¢ f(g) and this contradicts K € Nf.
Thus g = p. Therefore we have

Ng(Gp) = NNk(K,) ¢ f(p) = LF((£,p))
(where K, = K NGp) and so Ng(Gp)/0,(Ng(G,)) ¢ f(p). On the other hand,
since G/N € Nf and Oy »(Nc(Gp)) = Gp, we get

N6(Gp)/Op »(Nc(Gp)) = Ne(Gy) /Gy € f*(p),
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from which we obtain the contradiction Ng(Gp) € flo). ]

THEOREM 2.11. (A. 2nd part.) Let f be a formation function and = a set of
primes. Then N f, = LF(f%).

Proor: It follows immediately from Theorem 2.10, by recalling Propositions 2.7
and 2.8. 1|

3. SOME APPLICATIONS OF THEOREM A

In this section, by choosing particular formation functions and set of primes in
Theorem A, we obtain some interesting examples of saturated formations, that can
be defined by the operation N and for which therefore it can also be obtained a local
definition.

Moreover we obtain, as corollaries, a result of Fedri and Serena on the class N U
[5] and, for soluble groups only, the result of Ballester-Bolinches and Shemetkov cited
in the introduction [1].

A class of meaningful examples is obtained if we consider the following well-known
saturated formation functions a, (n a positive integer), which have been introduced -
by B. Huppert in [7] (see [8, VI, 8]).

Let » be a positive integer. The formation function a,, is defined as follows:

an:pEP - Apn_;

where Apn_; is the formation of Abelian groups whose exponent divides p™ — 1.
Denote by 7(n) the set of primes which divide n. According to our definitions we
have, for every prime p:

0 if g|n
(an/w(n),p):qe‘ﬂ’—-) Apmn_y if g=pin
S if ¢g#p and gtn

Let @p := (@n)y(n). that is @n(p) = LF((an/w(n),p)), (p € P). It is well known

that
an(p) = (G € S| (|Gl,n) =1 and 7,(G) either divides n or is O)

where 7,(G) is the arithmetic p-rank of G (see (8, VI, 8.3 Hilfsatz]).

We deduce immediately the following result.

THEOREM B. Let n be a positive integer. Then the class Na,, is a saturated
formation and it is locally defined by the formation function

if pln

(G € S| NG(Gp)/Gp € Apn_y) i ptn’

*

a, peEP—o
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In particular (for n = 1): the class Na; of groups, in which normalisers of Sylow p-
subgroups are p-supersoluble, is a saturated formation and is locally defined by the
formation function

aj:p€P = (G € S|Ng(Gp)/Gp € Ap_1).

THEOREM. (Fedri-Serena, {5, Proposition 1.2).) Let p and q be primes. Then
S(p.qy\NU is a saturated formation and is locally defined by the formation function

if t ,
azp q} :t e IP—) ! ¢p 1
' (GeS|Ng(Gp)/Gp€ Aiy) if t=p or q.

PROOF: It is enough to observe that Sy, sNNU = S, ;3NNG;, therefore the
statement follows immediately from Theorem B. 1]

The following result is well known.

PrROPOSITION 3.3. The (saturated) formation locally defined by the formation
function

c:p€P— (G e S|Syl, (G) = Carter (G))
coincides with the formation N of nilpotent groups.

THEOREM. (Ballester-Bolinches and Shemetkov, [1, Corollary 3).) If the nor-
malisers of Sylow p-subgroups of a group G are p-nilpotent for every prime p, then G
is nilpotent.

PROOF: Let e be the formation function defined by e(p) = 1, for all primes p. In
our notation we have

@ if g=p
(e,p)(Q)—{S it g#p (geP)

and so €(p) = SyS, is the formation of p-nilpotent groups. Then from Theorem 2.3
we deduce that N is locally defined by the formation function

e*:peP—e*(p) = (G eS| Na(Gp)/Gp=1) = (G € §|Syl, (G) = Carter (G)).
It follows, by Proposition 3.3, that N& = A is the formation of nilpotent groups. 1]
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