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Spherical stellar systems show during their secular evolution the 
development of velocity anisotropy in their halo (cf. e.g. Henon, 1971). 
The present study examines the general reasons for generation of aniso­
tropy in stellar systems by means of a gaseous star cluster model 
including anisotropy. Moment equations of the Boltzmann equation are 
considered for spherical symmetry in coordinate space but not in velo­
city space closed in third order by a heat flux equation. The coefficient 
of heat conductivity is tailored to describe the flux of energy due to 
the cumulative effect of distant gravitative encounters and generalized 
to include effects of anisotropy and external gravitation by a massive 
central object (Bettwieser et al. , 1984). 

Anisotropy in velocity space leads to additional! equations and 
terms compared to a usual gasdynamical approach (Heggie, 1984). Thus 
for example anisotropic hydrostatic equilibrium has the form 

dp/dr = -pg - 2p /r . (1) 
a 

Here the stellar mass density, gravitational acceleration and 
radius are denoted with;p, g, r, resp. and the definitions p=pc? , 

2 2 2 2 
pa=p(Or-Ot) are used, where O and Gt denote the one-dimensional mean 
squared radial and tangential velocity dispersions. pa=0 means isotropy. 
Note that in hydrostatics the anisotropy is another degree of freedom 
which is not a priori physically determined. The development of aniso­
tropy is described by an anisotropy balance equation yielded from 
second order moment equations. It is given here in a simplified form 
for nearly isotropic systems (pa<<p): 

|Ea = _ 2po^ U±) _ i !_<£) (2) 
dt r dr r 5 dr r . 
u and F are the mean radial velocity and the energy flux, resp. 

Due to hydrostatic equilibrium in homogeneous cores of self-gravitating 
systems it is in first order Va^r and the coefficient of heat conducti­
vity is constant, hence Far. A similar argument can be given for u. So 
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there is no anisotropy generation. In general non-linear velocity or 
flux are a source of anisotropy according to equation (2) even for an 
initially isotropic configuration. The anisotropy is limited by a colli­
sion term proportional to p a over stellardynamical relaxation time, 
which describes the isotropization of the velocity distribution by dis­
tant encounters. The general form of eq. (2) for appreciable degree of 
anisotropy (p^*p) is more complex and does not allow for a simple dis­
cussion as in the special case of small anisotropy above. 

We also considered the problem of anisotropy generation from the 
following point of view. The Boltzmann entropy is extremized by statio­
nary solutions of the hydrostatic equilibrium. But, allowing for the 
anisotropy degree of freedom, is it in fact a local maximum? We know that 
it is not if the stationary configuration is a bound isothermal sphere 
with a density contrast above the critical value of 709. Besides this 
normal gravothermal runaway there exist different perturbations, which 
increase the total entropy. The present stage of our results is the 
following: we considered for a singular isothermal sphere (SIS, p^r" ) 
perturbations in anisotropy 6pa but did not allow for redistribution 
of heat. Assuming 6pa(r=0)=0 as a boundary condition yields an increa­
sing specific entropy for anisotropy perturbations 6pa>0. Thus even a 
perturbation which suppresses the gravothermal effects makes the hydro­
static solution unstable. We guess that if one considers the more rea­
listic problem including the thermal perturbation effects of the aniso-
tropic catastrophe will be enhanced. 

Numerical simulations were carried out by using a fully implicit 
code solving the set of discretized time-dependent moment equations in 
a Eulerian grid. Effects of a massive central black hole, which is assu­
med to sit fixed at the very centre and accretes stars by tidal disrup­
tion, are included. Without central object and a regular Plummer's model 
as initial model we find that during the secular core collapse the halo 
develops more and more anisotropy, whereas the shrinking core remains 
strictly isotropic. The halo anisotropy increases outwards. SIS taken 
as another initial model developed in contrast to the regular one 
extreme anisotropy {Or»0^) in the post-collapse phase, which has a 
spatial maximum in the central region and decreases outwards. Note that 
the gravothermal instability of SIS (cf. Bettwieser and Sugimoto, 1984) 
is here accompanied by an anisotropy instability as it is proposed by 
the entropy considerations above. For simulations of the star cluster 
with star-accreting central black hole the accretion of bound stars in 
its vicinity and the related energy release are taken into account. The 
loss cone process was neglected (cf. for details Frank and Rees, 1976) . 
After 16.1 Spitzer-Hart reference times the core contraction was halted 
due to the enhanced energy release by the star accretion and turned into 
reexpansion. The figure next page refers to a post-collapse model with 
an age of 71.4 reference times. Plotted are the r.m.s. radial (solid 
line) and tangential (dashed line) one-dimensional velocity dispersions 
in km/s versus radius in pc. There is appreciable anisotropy not only 
in the halo but also in the central velocity cusp surrounding the black 
hole. The radius inside which the hole's gravity dominates is marked. 
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The onset of an-
isotropy genera­
tion in the cen­
tral region be­
comes evident 
from the aniso-
tropy balance 
eq. (2): for an 
isotropic steady 
state under ex­
ternal gravita­
tion the fluxes 
of energy and 
stars are source 

2 free Far 
uar ). Hence -5 -4 -3 - 2 - 1 0 1 

LOG RADIUS [PC 3 the right hand 
side of eq. (2) 
causes the gene 

ration of anisotropy. Thus an external gravitational field makes aniso-
tropy by non-linearity of fluxes. Under this viewpoint the anisotropy 
generation in the halo is explainable, too, because the core's gravity 
acts on it like an external gravitational field. 

Conclusions: we have outlined the essential reasons for anisotropy to 
develop in stellar systems. External gravity causes non-linear odd-order 
moments. Hence e.g. the core region around a massive central black hole 
and the halo of a star cluster become anisotropic in the course of evo­
lution. Anisotropy generation is considered to be a secular instability 
of such systems. Isotropy is unstable, too, for the singular isothermal 
sphere which even suffers from an anisotropic catastrophe. Not that also 
in this case there is a singular gravitational acceleration (g^l/r) 
simulating the 'external' gravitational field. For real stellar systems 
containing a massive central black hole however, the loss-cone accretion 
has to be included and it will influence the anisotropy, too (cf. Cohn 
and Kulsrud, 1978). 
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