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Introduction. W. A. Bogley and M. A. Gutierrez [2] have recently obtained an
eight-term exact homology sequence that relates the integral homology of a quotient
group T/MN, where M and N are normal subgroups of the group F, to the integral
homology of the free product T/M * T/N in dimensions ^3 by means of connecting terms
constructed from commutator subgroups of F, M, N and M C\ N. In this paper we use the
methods of [4] to recover this exact sequence under weaker hypotheses and for
coefficients in Z/qZ for any non-negative integer q. Further, for q = 0 we extend the
sequence by three terms in order to capture the relation between the fourth homology
groups.

Our principal application of the Mayer-Vietoris sequence is to relation modules. If
1-*R—*F—*G-*1 is a free presentation of a group G, then the relation module is Rab

endowed with the G-action obtained from the conjugation action of the free group F on
the normal subgroup R. There exists an extensive theory of relation modules for finite
groups G (see [10]) and interesting results for classes of infinite groups, such as for
polycyclic groups in [17]. A central theme of the theory has been the study of
indecomposable relation modules. In the present paper we address the complementary
issue: we give conditions that guarantee the decomposition of a relation module as a
direct sum of submodules. In particular, as a simple consequence of the Mayer-Vietoris
sequence, we see that the relation module of a presentation expressed as the union of two
subpresentations is a direct sum of submodules induced from the relation modules of the
subpresentations, provided that the relation subgroups of the two subpresentations are
independent in the ambient free group.

In Section 2 we discuss independence of normal subgroups of free groups in more
detail, and prove the equivalence between a relation module decomposition as a direct
sum of submodules induced from the relation modules of subpresentations and indepen-
dence of the relation subgroups. Whilst our methods here are essentially elementary, the
main theorem applies to interesting classes of presentations, and some applications are
explored in Section 3. In favourable cases the connecting terms can be precisely
described, and are often trivial, indicating that independence of relation subgroups is
reflected in higher-order independence conditions.

For a survey of matters closely related to the theme of this paper, the reader is
referred to [3]. The authors are grateful to W. A. Bogley and to J. Howie for
conversations and helpful comments.
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1. A Mayer-Vietoris sequence in group homology. Let q be a fixed non-negative
integer. For any group F we denote by Hn(T, Zq) the homology of F with coefficients in
the trivial F-module Zq = Z/qZ. If N is a normal subgroup of F then F#qN denotes the
subgroup of F generated by the commutators [g, n] and the elements nq, where g e F and
n E N. Note that F #q N is normal in F, and that when q = 0 we have F# q N ' = [F, TV].

THEOREM 1.1. Let T be a group and let M and N be normal subgroups of F. Then
there is a natural exact sequence of groups:

H4(T/M, Z,)©H4(T/N, Zq)^H4(T/MN, Zq)^ V3^H3(r/M, Zq) ® H3(T/N, Zq)

^H3(r/MN,Zq)^V2->H2(r/M,Zq)®H2(r/N,Zq)->H

^V^ H^T/M, Zq)® H.iT/N, l^^H^T/MN, Zq) ̂  0
such that

(i) there is an isomorphism Vj -^ T/(M n jV)(r # , F),
(ii) there is a surjection V2^(M ON n(T#q T))/[M, N](T#q (M DN)) which is an

isomorphism if H2(T, Zq) = 0,
(iii) for q = 0 there is a surjection V3—»ker(/\(F;M,N)-^> /\(T;r, F)) which is an

isomorphism if H3(T, Z) = 0.

Parts (i) and (ii) of Theorem 1.1 for q = 0 are a slight generalisation of Theorem 5.2
of [2]. Part (iii), and parts (i) and (ii) for q T^O, are new.

In the following discussion, up to and including Corollary 1.2, we fix q = 0, and write
Hn(T) for the homology of a group F with integral coefficients.

The group /\(F; M, N) in part (iii) of the theorem has a presentation with generators
XAy, where (x,y) e (MxN)U (NxM) U (F XMHJV)U (AfnNX F), subject to the
relations

xx' Ay = {xx'x~l Axyx~l)(x Ay),

x Ayy' = (x Ay)(yxy~l Ayy'y'1),

Z AZ = 1, if z e M C\N.

The homomorphism /\(F; M, N)-+ / \(F; F, F) in (iii) is the canonical one. The group
f\(T; F, F) is isomorphic to the group (F, F) introduced by C. Miller [18] to give an
interpretation of H2(T), and to the group F A F of [5]. As in [5,18], we have

Hence if H2(T) = 0 = H3(T) then V3 s ker(A(r; M, N)-> F).
If MflJV = l then f\(T;M,N) is isomorphic to the tensor product Mab®Nat> of
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abelian groups. If further H2(T) = 0 = H3(T) then we obtain from Theorem 1.1 the two
exact sequences:

H4(r/M) © H4(F/N) -+ H4(T/MN) -^ Mab <g> Nab -* H3(T/M) © H3(T/N) -+ H3(T/MN) -* 0,

0 -H> H2(T/M) © H2(T/N) - • H2(T/MN) -^ H, (F) -> H, (T/M) © Hj (F//V) -* H^ (V/MN) -* 0.

Following [11], we say that two normal subgroups M, N of a group F are independent if
M C\N = [M, N]. This notion is the main concern of Section 2. If M and N are
independent, and if H2(T) = 0 = //3(F), then V2 = 0 and Vj = //,(r). If further F = MN then
we deduce from the Mayer-Vietoris sequence that

H3(T/M) © H3(T/N) = ker(A(r; M, N) -»F),

//2(F/M) = 0 = //2(r/JV),

These observations pertain to relation modules. Given free presentations

l _ » / ? . ^ / r - * G , ^ l

for i = 1,2, with i?i and 7?2 independent, we take F = R}R2 and note that

H,{R,R2IR2)^ HX{RJ[RU R2])zsR?®R>Z = R?®aiZG (1)

where G = F/T. We deduce the following result.

COROLLARY 1.2. / / Rx and R2 are independent normal subgroups of a free group F,
with G, = F/Ri and G = FIRXR2, then

{R^Y" s (Rf ®Gi ZG) © (Rf ®G2ZG).

In Section 2 we shall generalise this corollary to an independent family of normal
subgroups of F, and establish the converse.

Proof of Theorem 1.1. Let B(T) denote the classifying space of a group F. The exact
sequence given in the theorem is the low-dimensional part of the exact homology
sequence of the cofibration sequence

B(T/M)wB(T/N)^B(T/MN)^D (2)

and to prove the theorem we need to identify HtD for i = 2,3,4. We shall exhibit a space
C and a cofibration sequence

(3)

(where 22 denotes the double suspension) and compute //,(C) for i = 2,3,4. The
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statements of the theorem then follow from the exact homblogy sequence of the
cofibration sequence (3). We shall first prove the theorem for q = 0.

Suppose that q = 0. Let B(T;M) denote, as in [4], the mapping cone of B(V)—*
B(T/M). The space C is the space B(T; M, N) of [4], constructed as the mapping cone of
B(T;M)^B(T/N;MN/N) (or as the mapping cone of B(T;N)-+B(r/M,MN/M),
which gives the same result). It follows that C is 2-connected (as it is a mapping cone of
1-connected spaces), so that H2C = 0, and that C fits into a commutative diagram in which
every row and column is a cofibration sequence:

B(T) B( r/M) B( T;M)

B( r/N) -»• B( I7MN) B( r/N;MN/N)

B( T;N) • B( r/M;MN/M)

Figure 1.1

Now D in (2) is the mapping cone of B(T/N)^B(T/M; MN/M), and so there exists
a map of cofibration sequences

B( r/N) -»• B( r/M;MN/M) -*- D

B( T;N) • B( r/M;MN/M)

Figure 1.2

and the mapping cones of the vertical maps form the cofibration sequence

from which (3) follows.
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We compute HtC from ntC. Consider the cubical diagram of spaces

B( r ) —"• B( r/M)

- • » *

B( r/N) B( T/MN)

Figure 1.3

We enlarge this diagram by taking homotopy fibres:

B(N)

B( M n N ) •

£12C

B(N)

- » • *

B(M)

B(M)

B(T)

B(T)

B( MN/N)

- * • *

B( r /N)

a c • * • *

Figure 1.4

and extract the fibration sequence

163

B( r /M)

B( r/MN)
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for further perusal. We see that ni+3C = ntF for / ^ 2, and the exact homotopy sequence
ends

A presentation of TtiF, and a description (in terms of this presentation) of the map
n^F^M f\N is given in Theorem 2.3 of [8]. From this description it is immediate that y
has image [M, N][T, M D N], whence

H3C = 7i3C = MH N/[M, N]\T, M n TV]

by the Hurewicz Theorem. Furthermore, K4C = ker y. J. H. C. Whitehead's exact
sequence [19] starts

and as in Lemma 4.2 of [5] the image of n3C®Z2 in n4C can be explicitly identified in
F. It follows that

Now the map H4C —*H2G in the exact homotopy sequence of 2 can be identified as the
restriction of the canonical homomorphism /\(T; M,N)-^ A(F; F, F), since by [18] there
is an isomorphism //2F = ker(A(F;r,r)-s.G). Now ker a <ker(/\(T;M,N)^>T), and
part (iii) of the theorem follows.

Suppose now that q > 1. The short exact sequence of coefficient modules

induces a long exact sequence in the homology of the space C, part of which is

. . . -»H3(C,I)-^H3(C, Z)->H3(C,Iq)^0.

It follows that H3(C,Zq) = MDN/[M,N](T#q(MnN)). There is also an induced long
exact sequence in the homology of D, part of which is

It follows that H2(D, lq) = T/(M D N)(T #q T). Parts (i) and (ii) of the theorem for q > 1
now follow from the cofibration sequence (2).

2. Independent normal subgroups of free groups. Let F be a free group with basis
x and suppose that {Ru... ,Rn} is a family of normal subgroups of F, with n > 1. We
write R for the product Rt... Rn of all the Rt with 1 < / < n, and Nt for the product
/? i . . . /?,-_!/?,-+!... Rn that omits /?,-. Since each Rt is normal, the order of the factors in
such products is irrelevant. The quotient FIR we denote by G, and the quotient F/Rt by
G,. The family {R1,...,Rn} is independent if, for all i with 1 < / < A I , we have
Rj C\ Nj = [Rh Ni]. This notion has been studied in [1], [9], [11] and [16]. Independence
may be considered as ensuring that certain intersections are as small as possible, or as
ensuring that certain commutator subgroups are as large as possible: the following
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remarks will indicate that the second point of view is generally the most appropriate.
None of these remarks depends upon the freeness of F.

REMARKS
1. The trivial group may be added to, or deleted from, an independent family to

leave an independent family.
2. If {Ru... Rn} is an independent family with K a normal subgroup of F contained

in Ru and if {K, R2,... , Rn} is independent, then K n [Ru Nx] = [K, ty].
We now state the generalisation of Corollary 1.2.

THEOREM 2.1. Let Fbe a free group and {/?,,... , Rn} a family of normal subgroups of
F, with n > 1. Then the following are equivalent:

(1) the family {7?i,... , Rn} is independent,
(2) the quotient maps R -» R/Nh (1 < / < n) induce an isomorphism

of I.G-modules.

Proof. (1) => (2). The quotient maps R-* i?/N, certainly induce a surjection 0: /?a* -»
n

® (R/Ni)ab and, as in (1) in Section 1 there is an isomorphism of ZG-modules
; = 1

(RIN,)ab = Rab®G.~IG. So it suffices to show that 9 is an isomorphism of ZG-modules.
Since the ZG-action on both Rab and (R/Nj)ab is induced by conjugation in F, it follows
that 6 is a ZG-map. The kernel of 9 is isomorphic to

M n.. . n Nn

so that it suffices to show that Nx n . . . D Nn £ [R, R]. we set

"i, ik= El Rj-
j^i1,...,ik

L E M M A 2 . 2 . For any subset { / ] , . . . , i k } c { 1 , . . . , n } we have

ty, n . . . n Nik = (/?,, n Nh)... (Rik n N,JN,. lk.

Proof of Lemma. For ease of notation we shall assume that /, = / and we proceed by
induction on k. The case Ac = 1 is clear. For i s l w e assume that

jv,n...njvtniVH1 = (/?, nw,)... (Rk n A ^ k n Nk+1.

Suppose that x lies in the right-hand side. Then

x = rxr2 ... rkrk+x... rn = r^r2 • • • ^ - I V H 2 • • • r«>

where r;, r) e Rj and if ; s k, r} e 7?; Pi A/,. Then

rfc+1 = (r) . . . rk)~
lr[... r'krk+2. . • r'n(rk+2 . . . r n ) " ] e Nk+1

and so x e (Rx nA/j).. . (Rk D Nk)(Rk+1 n Nk+i)Nlr^kyk+v This completes the inductive
step and establishes one inclusion of the lemma, whilst the reverse inclusion is clear.
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We apply the lemma with {;'b..., ik} = {1 , . . . n}, which tells us that Ni D . . . D Nn
n

II Ri n Nh and so assuming independence of the Rt we have

). There exist minimal and pairwise disjoint generating sets r, for Rf as a
ZG-module, (i = 1,.. . n), with preimages f, c f such that no two elements of fj U . . . U fn
are F-conjugate. For each / with 1 < / < n there is a short exact sequence

0->;r2y,._>©ZG,- • 0 (4)

where ^ is the standard 2-complex model of the presentation (x ?,-) of Gh and a short
exact sequence

0 ^ n2Y-+ © ZG -* 7?flb -»0
r

where r = r l U . . . U r n and Y is the 2-complex model of the presentation (x | f) of G.
Tensoring each sequence (4) with ZG and summing over / yields the commutative
diagram

©n y

i=l K2 i Br. ZG>
ZC>

Figure 2.1

n

from which it follows that the map © n2 Y,--2* 7r2 Y is surjective.

Let Z, be the 2-complex model of the presentation

( x | f , U . . . U r , _ 1 U f , + 1 U . . . U r n )

of F/Nj. Then the map a factors through n2Yt © ̂ 2Z, •&* n2 Y which is therefore surjective:
however, by [11] its cokernel is /?, D Nj/[Rh A/,-].

In [4,7] hyper-relative homology groups are considered for any group F relative to a
family of normal subgroups {Nu... ,Nn}. We recall from [7] that the first hyper-relative
homology group Hi(F;Nu... ,Nn) may be defined algebraically as

Wl{™,,.. iAU_jn-™.

with n A7,- interpreted as R.
0

n [nty,n
/Sfl n) Lie/ ;« /
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PROPOSITION 2.3. Let F be a free group and {Ru- • • >Rn} a family of independent
normal subgroups of F, with n > 1. Then

(a) H,(F;Nu...,Nn) = 0,
(b) for each i with 1 < i < n, we have H2(R/Ni) = 0 = H2(R/Rj).

Proof, (a) Recall from the proof of Theorem 2.1 that, assuming the independence of

the /?,-, we have J V , n . . . n i V B = n [/?»#,•]• We shall show that

fl[K,,JV;]£ 11
i=i / s ( i , . ,

Consider a term in the product on the right-hand side with / = {/}. Then by Lemma
2.2,

and the right-hand side here clearly contains [Nh Rt].
(b) We use Hopf s formula for H2: for R/N, this gives

H2(RIN,) = HziRMIN,)
= (Nin[RiNhRiN,])W,RiNi]

= (N, n [Rh Rt][Nh N&R,, N,])W, N&N,, /?,-].

But [NhN,][NhRl] = [NhN,](R,nNl) = Nln[N,,Ni]R, which clearly contains TV, n
[Rj, Ri][Nh Nj][Rh Ni\. The P r o o f t n a t Hi(R/Rd = 0 proceeds in the same way.

2.1. Examples

2.1.1 Free products
Consider a free product G = AX*... *An. Given presentations (x, | r,) of the A,, we obtain
a presentation (x | r) of G, where x = x, U . . . U x,, and r = rj U . . . U rn. Let Ft be the free
group with basis x,- and F the free group with basis x: then Rt is the normal closure of r, in
F. We write <5, for the free group *,#,/> Let A/, be the relation module of the presentation
fa | r,), that is, the ,4,-module (i*i}')ah'- then the following three equivalent statements
hold.

(a) the normal subgroups Ru. • • ,Rn are independent,
(b) the inclusions r, <-» r induce an isomorphism

of ZG-modules,
(c) the inclusions r, <-> i induce an isomorphism

of ZG-modules, where G, is the free product <t>, *>!, with presentation (x | r,).
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The equivalence of (b) and (c) follows from the group isomorphism R,> =
*,BTt~l{[ii)}F't, where T is a transversal for the double cosets /JYF/^r,))^, and the
equivalence of (a) and (c) follows from Theorem 2.1. It is easy to deduce (b) from the
relation sequence

n

and the decomposition of the augmentation ideal IG as IG = 0 IAj<8>A.ZG, see [12].1 = 1

2.1.2 Efficient factorizations of free groups
Let (x | r) be a balanced finite presentation of the trivial group, and let F be the free group
with basis x. For any partition r = ti U . . . U rn, we let 7?, denote the normal closure in F
of r,. Bogley [1] calls the product F = Rx . . . Rn an efficient factorization of F and
conjectures that if 7? and 5 are distinct factors in an efficient factorization then
i?fl5 = [fi,S]. Bogley proves this conjecture for n=2, and this case shows that the
factors in an efficient factorization of a finitely generated free group are independent.
Here we have a good source of examples. If Bogley's conjecture is true, then the factors
of an efficient factorization are an independent set of normal subgroups every subset of
which is also independent.

3. Independence and one-relator products. A one-relator product is the quotient of
a free product by the normal closure of a single element. Let G =>1 *5/((w)) be a
one-relator product, where w is cyclically reduced and of length at least 2 in A * B. We
write w = um for m>\ as large as possible, so that u is not a proper power in A*B.
Howie [13,14,15] and Duncan and Howie [6] have established relation module
decompositions for certain one-relator products. The group G is said to be exceptional of
type E(p,q,m) if some cyclic permutation of u zA*B can be written as aVbV~l with
a,b eAUB and V e A * B such that ap = bq = 1 m.A*B and Up + 1/q + Urn >1. Note
that if G is exceptional then there are at least two cyclic permutations of u of the given
form, namely aVbV~l and bV~laV. If there are exactly two such cyclic permutations of u
then G is uniquely exceptional.

We obtain a presentation for G, from given presentations (X] | rt) and (x21 r2) for A
and B respectively, in the following way. Let F be the free group with basis x = x2 U x2.
We replace u by a word in F mapping to it, and so obtain the presentation (x | tu r2, u

m) of
G. We let Fj be the free group with basis x, and set Gj = A * F2, G2 = Fx * B. We set
Rt = (iy, R3 = {umy and R = «ri,r2, um))F.

Suppose that either
(1) m > 4 and that G is not exceptional [14], or
(2) that m a 3 and u E A * B contains no letter of order 2 [6], or
(3) A and B are locally indicable [13].

Then the relation module Rab decomposes as a G-module as

(MA®AZG)@{MB®BZG)@I.GI{l-u)
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where MA = ((M)*)"" and MB = («r2»fi)a&. It follows that Rab is isomorphic to

(Rf ®Gl ZG) © (Ra
2
b ®G2ZG) © (Rf <8>G3 ZG)

where G3 is the one-relator group (x | um), and by Lyndon's Identity Theorem,
Rf = ZG3/(1 - u). From Theorem 2.1 we deduce the following result.

THEOREM 3.1. Suppose that one of the three conditions (1) to (3) above holds. Then
the family {Rx, R2, R3} is independent.

If u * [F, F] then /ftF/AO = H,(A) © //,(B), (/ = 1,2,3,4), H2(F/M) = 0 = //4(F/M)
and H3(F/M) = Zm. It then follows from the calculations of //,(G) in [6,14,15] that in
Theorem 1.1 (in which we set T = F, M = R3 and N = R^R2) the terms V2 and V3 are
zero. If u e [F, F] then H2(F/M) = Z. However, as pointed out to us by Bogley, it is still
true that V2 = 0 = V3. For the calculations of second homotopy groups in [6,14,15] imply
that the map

H2(A) © H2(B) © H2(F/M) -* H2(G)

is injective and that for i > 2 w e have Ht(F/M) = HSJLm). From these facts it follows that
V2 = 0=V3.

In the case where G is a uniquely exceptional group and m £ 4 it is still possible to
determine the structure of i?3nJV3/[fi3,7V3], although {RUR2,R3} is not independent.
Recall from [11] that /?3n N3/[R3, A ]̂ s coker(jS), where for suitably chosen complexes
V3, Z3 and Y, we have /3: n2Y3® n2Z3-> n2Y. In fact, as before, we can take Y3, Z3 and Y
to be the standard 2-complex models of (x | um) and (x|ri,r2) and (x\ruT2,u

m),
respectively. If G is uniquely exceptional with m £ 4 , then it follows from Section 4 of [14]
that R3r\N3/[R3,N3] is generated as a G-module by a single element.

The detailed argument involves the representation of elements of n2Y by spherical
pictures over G, and the generator for R3 fl N3/[R3, N3] is obtained from a picture of type
T(p,q,m) over G, see [14]. In terms of pictures, the quotient map n2Y^>R3(~)
N3/[R3, N3] amounts to choosing an equator [2] on a spherical picture T. To construct an
equator we choose a minimal subtree T of T (regarding vertices as O-dimensional) and
then choose a regular neighbourhood N of T U {vertices of T} such that no region of T is
contained in ./V. The boundary of the closure of N is then an equator on T. The equator
bounds a picture over G on the disc, the boundary label of which is an element of
R3 n A/3.

The word labelling the boundary can be of considerable complexity, which we
illustrate with G uniquely exceptional of type £(2,3,4). Here u= aVbV~x with
a2 = bi = 1. Let c = V~xaV: then (R3 D N3)/[R3, N3] is generated over G by

c((bcfb)((bc)2b)b((bc)2b)b(bc)\c(bcy)(c(bc))(c(bc)3)(c(bcy).

This is the label on an equator of the F(2,3,4) picture shown in Figure 3.1.
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VbV

Figure 3.1
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