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1. Consider the Fredholm equation of the second kind

ka(x, y)j(y)dy = h(x) (0 g x g 1), (1.1)
o

where

['° (v£-*), (1.2)

and Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the
unknown function is/(x), and the solution is required for large values of the
real parameter a. Under reasonable conditions the solution of (1.1) is given
by its Neumann series (a set of sufficient conditions on ka(t) for the convergence
of this series is given in Section 4, Lemma 2). However, in many applications
the convergence of the series becomes too slow as a-*oo for any useful results
to be obtained from it, and it may even happen that/(.*)-> oo as a->oo. It is
the aim of the present investigation to consider this case, and to show how
under fairly general conditions on ka(t) an approximate solution may be
obtained for large a, the approximation being valid in the norm of L2(0, 1).
The exact conditions on ka{t) and the main result are given in Section 4. Roughly,
it is required that 1 —ka{at) should behave like f(p>0) as t->0. For example,
ka(t) might be exp [-(f/a)'].

Equation (1.1) occurs in the solution of a class of mixed boundary value
problems. This type of problem often leads to the following pair of dual
integral equations:

r
Jo

r2*[i-kjit)]Ui)J,+JLxt)dt = Mix) ( o g x g i ) , (1.3)

f" L(t)Jv+a(xt)dt = 0 (x>l), (1.4)
Jo

and it is well known that these equations may be reduced formally to (1.1);
this reduction is considered in detail in (9). The rigorous analysis of (1.1)
is more straightforward than that of (1.3) and (1.4), and this investigation will
be mainly concerned with (1.1). However, in Section 5 some results are obtained
for the approximate solution of dual integral equations. These results are
relevant to the discussion in Sneddon (9), Section 4.8.

E.M.S.—M
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Examples of cases where (1.1) occurs are problems considered by Love (7),
Cooke (2) and Mahalanabis (8). In (5) the author has used a particular case
of the method in obtaining an approximate solution for the coaxial disc con-
denser at small separations.

An outline of this investigation is as follows. In Sections 2 and 3 the
problem is formulated in the Hilbert space L2(0, 1) and the approximate
solution is obtained in an abstract form. The results in these sections are
not new and are a generalisation by the author (4) of results of Widom (10)
and (11) for translation kernels. In Section 4 the explicit approximate solution
of (1.1) is given. In Section 5 the approximate solution of a pair of dual
integral equations is discussed.

2. In this section some of the standard properties of the Hankel transform
are given. A family of operators Aa depending on a parameter a will then be
defined in terms of the transform, and the approximate inversion of Aa will
be discussed formally. It will be shown in Section 4 that the integral equation
(1.1) may be studied by considering operators of this kind.

Denote by L2(0, oo) the Hilbert space of complex valued, measurable,
square integrable functions defined on [0, oo) with the usual inner product
(/, g) and norm | | / | | . L2(0, 1) will denote the closed subspace of L2(0, oo)
composed of functions vanishing outside [0, 1]. The Hankel transform is
a particular case of the general transforms studied in (1), and its definition
and relevant properties are given in the following theorems.

Theorem 1. For any f g eL2(0, oo) and any v ^ — \ the limit

J(t) = Hv(f) = lim I*" (xt)*Jy(xt)f(x)dx (2.1)
^-*co Jo

exists in the norm of L2(Q, oo) and the mapping/-»/, called the Hankel transform,
is a self inverse isometric isomorphism ofL2(0, oo) onto itself, so that

(?,§) = (/, 9). (2.2)
Theorem 2. Suppose f,ge Lp(0, oo) for some p, 1 <p g 2. Then for any

v ^ — •£• the limit defined in (2.1) exists in the norm ofLq(0, oo) where p~1+q~1 = 1.
Also the following relation holds

[ (2.3)
o Jo

Denote by L2(0, 1) the image of 1-2(0, 1) under the Hankel transform.
The domain and range of an operator, say A, will be written T)(A) and 9?C<4)
respectively.

Let P(t) be a real, measurable and uniformly bounded function. Then
clearly the equation

(f,geL2(0,l)), (2.4)
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defines a linear, continuous, self adjoint operator on L2(0, 1) into itself. It
will be shown in the next section that even if P{t) is not bounded it is often
still possible to define an unbounded self adjoint operator A corresponding
to P so that (2.4) holds for/and g in a dense subset of L2(0, 1).

Suppose now that Pa{t) is a family of functions depending on a parameter
a, and Aa is the corresponding family of operators. If as a->oo, PJj)^P{t)
for every t, then it might be expected that Aa would tend to A in some sense.
For the cases of interest this convergence only holds in a certain generalised
sense, see (6). However, it will be shown in the next section that under reason-
able conditions on Pa and P the operators all have continuous inverses, and as
a->co, A~l-*A~l in the uniform operator norm of L2(0, 1). This property
gives the approximate inverse of Aa for large a, and will be used to find the
approximate solution of (1.1).

3. The discussion in this section is based on results obtained by Widom
(10) for the Fourier transform and extended by the author (4) to more general
transforms of which the Hankel transform is a special case.

Let P(t) be a real, non-negative measurable function defined on [0, oo)
which vanishes on a set of measure zero. Suppose also that P{t) is essentially
bounded on every compact set and that it is bounded by a polynomial as t
approaches infinity. Let ft be the set of functions in £2(0, 1) such that

f
Jo

[1+P(0]|/(0|2^< oo. (3.1)
Jo

With the inner product

[ (3.2)
o

and norm | | [ / ] | | = [/, / ] * , ft is clearly a Hilbert space, and it is shown in
(4) that the set ft is dense in L2{0, 1). Also

l| )- (3-3)
The relation [/, g~\ = [/, g~] defines another Hilbert space HczL2(0, 1).

H will be used to define an operator A, unbounded in general, by means
of the following result easily deduced from (6, VI Theorems (2.1), (2.6)).

Lemma 1. There exists a unique, linear, self adjoint {densely defined) operator
A on L2(0, 1) into itself with 1>{A)cH such that

(.{I+A)f,g) = [f,g] = [f,fl {feV{A),geH). (3.4)

A is positive in the sense that

{Af,f)>0 ( / £ S ( 4 / # 0 ) . (3.5)

Further properties of A are obtained by using (i) and (ii) below which
follow immediately from the definition of the Hankel transform.

(i) If / ( B ) eL2(0, 1) and / ( n ) converges weakly in £2(0, 1) to / , then /(n)(/)
converges pointwise to f(t).
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(ii) Let U = {/ | /eZ,2(0, 1), | | / | | ^ 1}. Then for any given finite sub-
interval E of [0, oo) there exists $E(t) in L2(0, oo) such that for a l l / e U, t e E,
1 /(0I <§d.0- Under these conditions it was shown in (4) Theorem 2, Corollary
2 that the following result holds.

Theorem 3. Let L = essljm.P(/) as t-+co. The spectrum of A to the left
ofL consists of strictly positive eigenvalues of finite multiplicity whose only possible
limit point is L. IfL = oo then A'1 is a positive definite compact operator.

Corollary. Let L = oo. If R is a bounded operator on L2(Q, 1) such that
3l(R)czHand

W,g] = ((I+XV,0) (3-6)
for all f and all g e H, then A~1 = R.

Proof. By Theorem 3, A'1 is compact. Therefore, for any/there exists
an A e D(A) with/ = Ah. Hence from (3.4) and (3.6)

Nowsetg = (RA-I)h. Then from (3.3), (RA-I)h = 0,andsoi?/= h = / T 1 /
for all / . This completes the proof.

Now consider a family of functions Pa{i) depending on the parameter a,
each of which is defined in the same manner as P(t). Let Aa be the correspond-
ing family of operators defined by Lemma 1. Suppose the following conditions
hold.

(3.7) As a-*oo, Pa(t)-+P(t) pointwise.

(3.8) There exist numbers a0, cu c2 such that Pa{t) ^ C!+c2P(0 for all
a>a0 and all t.

(3.9) Given any e>0, there exist numbers t0, a0 such that for a>a0,

The convergence of Aa to A is given by the following result.

Theorem 4. If (3.7), (3.8) and (3.9) are satisfied, then for a large enough
A'1 is continuous. IfL = oo, then as a->oo, A~1->A~1 in the uniform operator
norm ofL2(0, 1).

Proof. From (3.9) for a large enough, as £—>oo, lim Pa(t)>0. Therefore
by Theorem 3 zero is not in the spectrum of Aa, so that A~i is continuous.
The remainder of the result is proved in (4) Theorem 2, Corollary 2.

4. The results of Sections 2 and 3 will now be used to investigate the integral
equation (1.1). Lemma 2 below gives a sufficient condition for the convergence
of the Neumann series (a remark on this point is made in (3)). However, the
main result, Theorem 5 below, deals with the case when this series converges
more and more slowly as a-*<x> and shows that it is still possible to obtain
an approximate solution for a rather large class of kernel.

Suppose the real valued function ka{t) defined for t ^ 0 and a>at satisfies
the following conditions:
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(4.1) For each a, ka(i) is either in L^O, oo) or L2(Q, oo).

(4.2) A:o(0) = 1 and for />0 , ka(t) ̂  -1 + 8 for some <5>0. Also given
any 8 > 0, there exist numbers a0 and / such that

ka{at)^l<\ (t^8,a^a0).

(4.3) There exist positive numbers b, p such that

approaches zero uniformly (with respect to a) as t->0.
Let Ka be the integral operator on L2(0, 1) with kernel ka(x, y) defined by

(1.2), so that

(KJ)(x) = P kJLx, y)f(y)dy (/e L2(0, 1)). (4.4)
Jo

The integral equation (1.1) may then be written

(I-Ka)f=h (heL2(0,l)). (4.5)

By using the Hankel transform together with (2.2), it follows that

((/ - Ka)f, g) = ((1 - fca(0)/(0, £(')) (/, 9 e L2(0, 1)), (4.6)

where condition (4.1) has been used. Now set

/>a(o = &-v(i-/ao). (4.7)
Then from (3.4)

i4a=fc-V(/-XJ. (4.8)
We then have the following result.

Lemma 2. Z-e? a 6e fixed. Suppose that either &a(f) eL^O, oo) or
ka(t)eL2(0, oo). Suppose that for each <5>0 f/tere exists / < l w/rA
fca(0 ^ l(t>8), and for some y>0, A:a(0 ^ - 1 + y (t ̂  0). TAe« fAe Neumann
series of (4.5) is convergent in the norm ofL2(0, 1) so that

f= t K'J (heL2(0,l)). (4.9)
n = 0

Proof. It follows from (4.7) that Jim Pa(/)>0. By Theorem 3 the spectrum
of Aa is to the right of some e>0. Therefore the spectrum of Ka is by (4.8)
to the left of \-ba~pe. Also ka(t) ̂  —l + y so the spectrum of Ka is to the
right of - 1 + y. Hence the spectral radius of Ka is less than unity. The result
follows immediately.

If (4.3) holds the series (4.9) will converge more and more slowly as a->oo
and so will be of little use in finding a solution of (4.5) for large a. In this
case an approximate solution is given by Theorem 5 below.

Let R be the integral operator on L2(0, 1) with kernel R(x, y); that is,

- I '
Jo

(Rh)(x) = R(x, y)h(y)dy, (4.10)
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R(x, )0 = 22-'Tr(^Y| \xy)v+i T «-2v-"+1[(«2-x2)(u2-/)]*p-1du)
L \ 2 / J Jmax(x, y)

(4.11)
where i? is defined for 0 ^ x, y ^ I and x ^ y.

Theorem 5. Suppose (4.1), (4.2) and (4.3) are satisfied and v ^ — •£.
' / II A || # 0, fAe integral equation (4.5) Aaj a unique solution feL2(0, 1)

/ = jrV(Kfc + 5o). (4.12)
We have || Rh || ^ 0 am/ || da || ^ ea || A ||, w/iere ea is a set of numbers in-
dependent ofh and ea->0 as a-*co.

Proof. It is a simple matter to check that with P(t) = /" and PJt) given by
(4.7) conditions (3.7), (3.8) and (3.9) are satisfied. Evidently L = oo, so that
by Theorem 4, A~1-+A~l uniformly. It is proved in the appendix that
A'1 = R. The result follows on using (4.8).

It will usually be the case that this approximation may be iterated by
substituting the approximate solution in (4.5) and using (4.12) again. For this
to be valid it is only necessary that the new right hand side of (4.5) should
be small in norm as a->oq. An example where an iteration has been used is
given in (5).

5. Consider the dual integral equations

f" Pa(i)Kt){xt?Jv(xt)dt = h(x) ( O g x ^ 1), (5.1)
Jo

f
Jo

(5.2)

where Pa(t) satisfies conditions (3.7), (3.8) and (3.9) with P(t) = t" (p>0).
These equations are easily reduced by a formal argument to

(h,g) (f,geH). (5.3)
It follows from Lemma 1 and Theorem 4 that, for any h eL2(0, 1 ) , /= A~xh.
If for each a, PJf) is uniformly bounded then / will be the solution of (5.1)
and (5.2), and Theorem 4 will give an approximate solution of these equations.
However this is not true for general PJf). For example suppose a is fixed and
PJf) — {2n where n is a positive integer. Then it is easy to see from (A5)
that there will always be a function h in L2(0, 1) such that t"f(t) is in L2(0, oo)
but t2nf(t) is not in Lp(0, oo) for any p ^ 1, so that the left hand side of (5.1)
cannot be interpreted as a transform. In this case / is a weak solution in the
sense that (5.3) is satisfied. The following result now holds, R being given by
(4.10) and (4.11).

Theorem 6. Let h e L2(0, 1) and suppose that one of the following conditions
holds.

(i) PJf) ^ Ma (t ^ 0)for some set Ma of finite numbers.

(ii)(l + f)(Rh)(t)eL2(0,oo).
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Then the solution of (5.1) and (5.2) is given by

where || 5a || ^ ea \\ h \\ and eo->0 as a-*co with ea independent of h.

Appendix. The operator A'1 corresponding to P{t) = f will now be
obtained. This may be done by a formal argument from the dual integral
equations (5.1) and (5.2). However, as remarked in Section 5, the " solution "
obtained does not in general satisfy the original equations in any ordinary
sense. These equations will not therefore be used in the proof. The method
adopted will be to show that (5.3) is satisfied. This is analogous to the method
used by Widom (10) for translation kernels.

It is convenient in the subsequent analysis to use the notation Hv(f) for
the Hankel transform of/. As before L2(0, 1) is the set of functions in L2(0, oo)
with support in [0, 1].

Theorem 7. If Pit) = f(p>0) and v ;> — j , then A~l = R where R is
given by (4.10) and (4.11).

Proof. The proof utilises the Corollary to Theorem 3. It is simple to
show by estimating approximately the integral in (4.11) that for each p>0
there is a constant Mp such that

| R(x, y)\ ^ MP{1 + | x-y p ^ + l o g | x-y I"1}.
It follows from (6) Chapter III, 2.4 that R is a bounded operator on L2(0, 1).
It will be proved that 5R(.R)c:i/. Also it will be shown that

(ti'HXRf), t*'HJte)) = (Hv(/), Hv(g)) (g e H), (A\)
which is equivalent to (3.6). By the Corollary to Theorem 3, this shows that
A'1 = R.

Let p = 2M+/J, where n is an integer and 0 ^ j? < 2. The following relations
hold.

t2nHv(R(x, y)) = (yt)*Jv(yt)-y"+* "^ b,t'+\l-y2)'Jv+r(t) (p = 2n), {A3)
r = 0

t»Hv(R(.x, y)) = (yt)*Jv(yt)-/+*(1 - y 2 f £ a,. /**
r = 0

i;
where arp and br are constants that depend only on r, p and r respectively.
These relations may be proved by a straightforward but tedious calculation
using standard Bessel function identities, and their proof will be omitted.
The following Lemmas will be used in the proof.

Lemma Al. Let feL2(0, 1). Define Frp (z) = 0 for 0 ^ z ^ 1, and for
z>\ set

F r » = ( z 2 -
Jo
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where r is an integer with 0 ^ r ^ n. Then Frp (z) eLp(0, oo) for

and Hv+r(Frp)eLq(0, oo) for max (2, 2[2-#]-1)<?<a>.

t"Hv(Rf) = H v ( / ) - £ ariPHv+r{Fr,p)t
r, (A4)

r = 0

/2)Hv(Rf) eL2(0, oo),

Proof. Evidently each Frp(z) is continuous except at z = 1. From
Schwartz's inequality,

ff
Jo
f

o
Hence | Frp(z)| = O{z~l~"~p) as z-+oo. Since the case n = /? = 0 is excluded,
Fr3P(z) eLp{b, oo) for any £> 1 and /> ^ 1. For z near 1 it is straightforward
to obtain from the above integral the estimates:

This shows that Fr>p(z)eI,p(0, oo) for 1 ̂  /?<min (2, 2)?"1). The statement
about the transform follows from Theorem 2.

To prove (A4) it is first noted that

\lAy)dy \ l (xt)*Jv(xt)R(x, y)dx = f * (xt)*Jv(xt)dx f' K(x, y)Ky)dy.
Jo Jo Jo Jo

For, R(x, y) ^ 0, and R is a bounded operator on L2(0, 1). Thus by Schwartz's
inequality and Fubini's theorem the order of integration may be changed.
Hence, from (A3),

t"Hv(Rf) = Hv(f)

Now it has been shown that F,tP(z) eLt(0, oo), this being true iff is replaced
by | / | in its definition. By Fubini's theorem the order of integration may
be changed, and this gives (A4) immediately.

Since RfeL2(0, 1) then Hv(Rf)eL2(0, oo), and so t"/2H,(Rf) is square
integrable on [0, 1]. It only remains to consider large /. First take /? = 0.
Then by (AT)

n - 1 |*1

<•=« V+r J o
?+*(l-y2yf(y)dy. (AS)
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For large * the right hand side is O(t'1). Hence t"/2Hv(Rf) e L 2 * oo). If
now P =£ 0 then by (A4)

t+'HJRf) = r*"HJin-r*fFit)
say, where F(t)eLq(0, oo) for max [2, 2(2-P)~1]<q<oo. By Holder's
inequality

The second integral is finite if q>2, (p ^ 1) or q>2(l -p)~l, (0<P< 1). These
conditions are consistent with a choice of q for which F(t)eLq(0, oo). This
shows that t~p/2F(t)eL2(0, oo), and the concluding statements of the Lemma
follow immediately.

Lemma A2. Suppose fe L2(0, 1) and for some positive integer r,

t'H,(f)eL2(0,oo).

Then there is a g eL2(0,1) such that the following relation holds almost eveywhere:

fH,(f) = Hv+r(9). (A6)

Proof. First suppose r = 1. Since tHv(f)eL2(0, oo) there is evidently
no loss of generality in taking / to be continuous. It follows that /(I) = 0.
Now set

Jo
As tHv(f) e L2(0, oo), then as 2?-»oo, gB(u) must tend in L2(0, oo) to a limit,
say g(u), with tHv(f) = Hv+1(g) p.p. By Schwartz's inequality,

fi fi
lim u-v-±gB(u)du = u~v-^g(u)du (x>0). (A8)

Substitution for gB(u) from (A7) gives after a change of order of integration,
valid by Fubini's theorem,

xv + * f1
 u - v - i 0 B ( u ) d M = fB

Jx Joo
Let 5-»oo. Then by (,48) since/(I) = 0,

fix) = f1
r u~v"

As/(;c) = 0 for x ^ 1 then g(u) = 0 p.p. for u> 1. The proof is complete for
/• = 1, and the result for general r follows by a repetition of the argument.

It was proved in Lemma A\ that 31(11)cH. The proof of the theorem will
be complete if it can be shown that (A\) holds. Suppose first that j? / 0.
From Lemma A2

t"Hv(9) = ?-'Hv
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for son&gr in L2(0, 1). By an application of Holder's inequality it is easily
seen that Hv+r(jgr)eLp(0, oo) for 2(1 +P)~l<p<2. Hence from (A4), for all
fe L2(0, I) and geH,

- £ artP(Hv+r(Fr,p),Hv+r(gr)),
0

£
r = 0

where FrpeLp(0, oo) for 1 <p<min (2, 2/?"1). It is clearly possible to choose
p so that both Frp and Hv+r(gr)eLp(0, oo). Since F r p and gr have supports
in intervals with intersection of measure zero, by Theorem 2 each term in the
summation vanishes and (Al) is proved. Finally, if /? = 0, the above proof
will hold except for the term r = n. In this case both gn and Fn 2n e L2(0, oo).
The result now follows from Theorem 1. This concludes the proof of Theorem
Al.
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