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All graphs considered in this article are finite connected, without loops and multiple
edges. Let G be a graph and j ; be a vertex. The vertex neighbourhood graph (or
u-neighbourhood) of x in G (denoted by NG{x)) is the subgraph of G induced by the set
of all vertices of G adjacent to x. Analogously if f = xy is any edge of G, the edge
neighbourhood graph (or e-neighbourhood) of / in G is the subgraph of G (denoted
NG(f) or NG(xy)) induced by the set of all vertices of G which are adjacent to at least
one vertex of the pair x, y and are different from x, y.

Zelinka [6] proposed the edge neighbourhood version of the well-known Zykov's
problem [7] (concerning u-neighbourhoods) in the following way.

PROBLEM. Characterize the graphs H with the property that there exists a graph G
such that N'o(f) = H for each edge / of G.

A graph H with the property mentioned above is called e-realizable and G is called
the e-realization of H (or v-realizable and v-realization in the v-neighbourhood version).

Zelinka [6] and others ([1], [2], [5]) studied some families of e-realizable graphs. Hell
[4] proved the following result.

THEOREM 1. (P. Hell) If H has n universal vertices, then H is not v-realizable unless
H = Kn + H'[Kn+i] for a v-realizable graph H' without universal vertices.

By a universal vertex of H we mean a vertex which is adjacent to all other vertices of
H; + denotes Zykov's sum and F[G] denotes the lexicographic product [3, p. 21]. A
graph induced by the vertex set {xux2,. • . ,xn) will be denoted by (xl,x2,. • . ,xn).

We will prove the e-neighbourhood version of Theorem 1.

THEOREM 2. Let a graph H with n^3 vertices contain at least one universal vertex,
and let G be an e-realization of H. Then each edge of G is incident to a vertex of degree n
or n + 1 and G has exactly n + 2 vertices.

Proof. Let NG{yxy2) = (xux2, . . . , * „ ) be t r |e e-neighbourhood of an arbitrary edge
e —yiy2- If X\,x2,... ,xk(\^k^n) are universal vertices of NG(yly2) andxt is adjacent
to y2 then Ne

G(xiy2)= {y\,x2, • • • ,xn) contains some universal vertex different from
x2,. . . ,xk. Since the vertices xk+1,. .. ,xn are not universal in Ne

G{yYy2) (if k<n) they
also cannot be universal in Ne

G(xiy2). Thus in any case yx is the universal vertex in
Nc(xiy2) and it is of degree at least n in G.

It is clear that Xi cannot be adjacent to any other vertex z different from
yi,y2,x2,...,xn; for in this case NG(xxy2) contains at least n + 1 vertices
yi,x2,. . . ,xn,z. Analogously, because _yi is adjacent to y2,x2,. .. ,xn, none of these
vertices can be adjacent to any other vertex z (for in this case NG(xiXj), for some i = 2,
contains n + 1 vertices y\,y2,x2,. .. ,Xj_uxi+1,. . . ,xn, which is a contradiction). Hence
G has n + 2 vertices. D

Let G = (xux2,... ,xn+2) and H be graphs as in Theorem 2, with p and q edges,
respectively. Then the neighbourhood of any edge JC,X; contains all other vertices of G and
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q edges, and it is evident that

deg x, + deg xt•,= p — q + 1 = constant

for each pair of mutually adjacent vertices xit Xj. If G contains a vertex xt of degree n + 1
then all the other vertices must be of the same degree r, and, for each pair of mutually
adjacent vertices xt, xt (i,j > 1) we have

2r = degx, + degx, = deg xl + deg*, = n + 1 + r.

Thus r = n + 1 and G is isomorphic to Kn+2.
If the maximal degree of G is n, and xu oi degree n, is adjacent to x2,. . . , xn+i,

then deg x2 = . . . = degxn+1 = r. In addition, because xn+2 is adjacent to some *, (i > 1), it
is clear that deg;tn+2 = n.

Now let there exist an edge xtXj (i,j^l,n +2). Then by a similar argument to the
above, degjc2 = . • • = deg *„+, = « and G is regular of degree n. Thus n is an even

number and G is isomorphic to Kn+2 — K2.

Finally if there exists no such edge XjXj then G is isomorphic to K2n. Thus we have
proved the following result.

THEOREM 3. If a graph H contains universal vertices then H is not e -realizable unless

(i!)//^;"'2,..,2

or
(Hi) H = Kn.

Note that, in comparison, the graph Kn is u-realizable while Khn (for n > 1) and
^ l p l 2 2 are not u-realizable.
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