EDGE-REALIZABLE GRAPHS WITH UNIVERSAL VERTICES by DALIBOR FRONČEK

(Received 19 March, 1990)

All graphs considered in this article are finite connected, without loops and multiple edges. Let G be a graph and x be a vertex. The vertex neighbourhood graph (or v-neighbourhood) of x in G (denoted by $N_G^v(x)$) is the subgraph of G induced by the set of all vertices of G adjacent to x. Analogously if f = xy is any edge of G, the edge neighbourhood graph (or *e*-neighbourhood) of f in G is the subgraph of G (denoted $N_G^e(f)$ or $N_G^e(xy)$) induced by the set of all vertices of G which are adjacent to at least one vertex of the pair x, y and are different from x, y.

Zelinka [6] proposed the edge neighbourhood version of the well-known Zykov's problem [7] (concerning v-neighbourhoods) in the following way.

PROBLEM. Characterize the graphs H with the property that there exists a graph G such that $N_G^e(f) \cong H$ for each edge f of G.

A graph H with the property mentioned above is called *e-realizable* and G is called the *e-realization* of H (or *v-realizable* and *v-realization* in the *v*-neighbourhood version).

Zelinka [6] and others ([1], [2], [5]) studied some families of e-realizable graphs. Hell [4] proved the following result.

THEOREM 1. (P. Hell) If H has n universal vertices, then H is not v-realizable unless $H = K_n + H'[K_{n+1}]$ for a v-realizable graph H' without universal vertices.

By a universal vertex of H we mean a vertex which is adjacent to all other vertices of H; + denotes Zykov's sum and F[G] denotes the lexicographic product [3, p. 21]. A graph induced by the vertex set $\{x_1, x_2, \ldots, x_n\}$ will be denoted by $\langle x_1, x_2, \ldots, x_n \rangle$.

We will prove the *e*-neighbourhood version of Theorem 1.

THEOREM 2. Let a graph H with $n \ge 3$ vertices contain at least one universal vertex, and let G be an e-realization of H. Then each edge of G is incident to a vertex of degree n or n + 1 and G has exactly n + 2 vertices.

Proof. Let $N_G^e(y_1y_2) = \langle x_1, x_2, \ldots, x_n \rangle$ be the *e*-neighbourhood of an arbitrary edge $e = y_1 y_2$. If x_1, x_2, \ldots, x_k $(1 \le k \le n)$ are universal vertices of $N_G^e(y_1y_2)$ and x_1 is adjacent to y_2 then $N_G^e(x_1y_2) = \langle y_1, x_2, \ldots, x_n \rangle$ contains some universal vertex different from x_2, \ldots, x_k . Since the vertices x_{k+1}, \ldots, x_n are not universal in $N_G^e(y_1y_2)$ (if k < n) they also cannot be universal in $N_G^e(x_1y_2)$. Thus in any case y_1 is the universal vertex in $N_G^e(x_1y_2)$ and it is of degree at least n in G.

It is clear that x_1 cannot be adjacent to any other vertex z different from $y_1, y_2, x_2, \ldots, x_n$; for in this case $N^e_G(x_1 y_2)$ contains at least n+1 vertices y_1, x_2, \ldots, x_n , z. Analogously, because y_1 is adjacent to y_2, x_2, \ldots, x_n , none of these vertices can be adjacent to any other vertex z (for in this case $N^e_G(x_1 x_i)$, for some $i \ge 2$, contains n + 1 vertices $y_1, y_2, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$, which is a contradiction). Hence G has n + 2 vertices. \Box

Let $G = \langle x_1, x_2, \dots, x_{n+2} \rangle$ and H be graphs as in Theorem 2, with p and q edges, respectively. Then the neighbourhood of any edge $x_i x_i$ contains all other vertices of G and

Glasgow Math. J. 33 (1991) 309-310.

q edges, and it is evident that

$$\deg x_i + \deg x_i = p - q + 1 = \text{constant}$$

for each pair of mutually adjacent vertices x_i , x_j . If G contains a vertex x_1 of degree n + 1 then all the other vertices must be of the same degree r, and, for each pair of mutually adjacent vertices x_i , x_i (i, j > 1) we have

$$2r = \deg x_i + \deg x_i = \deg x_1 + \deg x_i = n + 1 + r.$$

Thus r = n + 1 and G is isomorphic to K_{n+2} .

If the maximal degree of G is n, and x_1 , of degree n, is adjacent to x_2, \ldots, x_{n+1} , then deg $x_2 = \ldots = \deg x_{n+1} = r$. In addition, because x_{n+2} is adjacent to some x_i (i > 1), it is clear that deg $x_{n+2} = n$.

Now let there exist an edge $x_i x_j$ $(i, j \neq 1, n + 2)$. Then by a similar argument to the above, deg $x_2 = \ldots = \deg x_{n+1} = n$ and G is regular of degree n. Thus n is an even number and G is isomorphic to $K_{n+2} - \frac{n+2}{2}K_2$.

Finally if there exists no such edge $x_i x_j$ then G is isomorphic to $K_{2,n}$. Thus we have proved the following result.

THEOREM 3. If a graph H contains universal vertices then H is not e-realizable unless (i) $H \cong K_{1,n}$, (ii) $H \cong K_{1,1,2,\dots,2}$

or

(iii) $H \cong K_n$.

Note that, in comparison, the graph K_n is *v*-realizable while $K_{1,n}$ (for n > 1) and $K_{1,1,2,\dots,2}$ are not *v*-realizable.

REFERENCES

D. Fronček, Graphs with given edge neighbourhoods, Czech. Math. J. 39 (1989), 627-630.
D. Fronček, Graphs with near v- and e-neighbourhoods, Glasgow Math. J. 42 (1990), 197-199.

3. F. Harary, Graph theory (Addison-Wesley, 1969).

4. P. Hell, Graphs with given neighborhoods I, Problèmes combinatoires et théorie des graphes, Colloque CNRS, 260, Orsay 1976, 219-223.

5. R. Nedela, Graphs which are edge-locally C_n , Czech. Math. J, to appear.

6. B. Zelinka, Edge neighbourhood graphs, Czech. Math. J. 36 (1986), 44-47.

7. A. A. Zykov, Problem 30, in: Theory of graphs and its applications, Proc. Symp. Smolenice 1963 (Academia Prague, 1964), 164–165.

DEPARTMENT OF MATHEMATICS SILESIAN UNIVERSITY BEZRUČOVO NÁMESTÍ 13 746 01 Opava Czechoslovakia

310