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TWO ADDENDA TO THE AUTHOR'S
"TRANSFINITE CONSTRUCTIONS’

G.M, KeLLy

Since the author's article "A unified treatment of transfinite
constructions ...", in Volume 22 (1980) of this Bulletin, had an
encyclopaedic goal, he now takes the opportunity to answer two
further questions raised since that article was submitted. The
lesser of these asks whether the only pointed endofunctors for
which every action is an isomorphism are the well-pointed ones,
at least when the endofunctor is cocontinuous; a counter-example
provides a negative answer. The more important question concerns
the reflexion from the comma-category T/A into the category of
algebras for the pointed endofunctor 7T of A , and the algebra-
reflexion sequence which converges to this.reflexion; and asks
for simplified descriptions in the special case where T is
cocontinuous. We give closed formulas in this case, both for the
reflexion and for the sequence which converges to it. The reader
may wonder why we care about the approximating sequence when we
have a closed formula for the reflexion; the answer is that, in
certain applications, we need to separate the roles of finite

colimits and filtered ones.

1. Introduction

Recall from the author's article [1] that a pointed endofunctor

(T, 1) on a category A is an endofunctor T of A along with a natural
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transformation T : 1 + T , and that (T, 1) 1is called well-pointed if

IT =7t : T~ T2 . A T-algebra is an object A together with an action
a : TA > A, the latter being a map satisfying the wnit axiom a.T4 = 1 .
If T has more structure, such as that of a monad, there are more axioms
for the action a to satisfy; but we never suppose T to have less
structure. When we want to consider the algebras for a mere, unpointed,
endofunctor H of A , given by actions HA - A subject to no axioms, we

treat them as the algebras for the pointed endofunctor T =1+ H .

In the case of a well-pointed (T, T) , it is shown in Proposition 5.2
of [1] that every action a : TA * A is an isomorphism. Thus here A4
admits an action only when T4 : A > TA is invertible, and then admits the

unique action (TA)-l ; in consequence, the forgetful functor
U: T-Alg > A is fully faithful.

The goal of [1] was to give a comprehensive account of old and new
transfinite-sequence existence proofs in categorical algebra, unified by
the technique of embedding the T-algebras as a full subcategory in the
comma-category T/A , and then exhibiting them as the algebras for a well-
pointed endofunctor on T/A . This reduces the reflectivity of 7T-Alg in
T/A +to the question of the reflectivity, in the case of a well-pointed
T , of T-Alg in A . fTransfinite-sequence arguments of various degrees

of delicacy were now used to give sufficient conditions for this last; in

the simpler cases the sequence A4 + T4 ~» T2A + ... , continued trans-
finitely, ultimately stops and gives the desired reflexion. Then, trans-
lating back to the case of a general pointed T , we get an algebra-
reflexion sequence for each object of T/A , giving its reflexion into
T-Alg .

In line with the encyclopaedic aim of [1], the author would now like
to record the answers to two further questions raised since that manuscript

was written.

In a letter to the author of 1t December 1979, Michael Barr asked
whether the pointed (T, T) is necessarily well-pointed if every action is
an isomorphism -~ at least in the case where T 1is cocontinuocus. As Barr
pointed out, the question is not a pressing one, but a positive answer

might save an author from giving a complicated argument where a simple one
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would suffice; he had a particular instance in mind. We show by an

example that the answer is in fact negative.

Recent work of the author with Anders Kock on synthetic differential
geometry has shown that we need at our disposal a simplified closed form
for the algebra-reflexion sequence in the special case when T is
cocontinuous - as for instance when T is D @® - for a pointed object D
in a monoidal biclosed category A . Of course the sequence stops for a

cocontinuous T at its wth term, and gives the reflexion. However no

closed formula was given in [J] except the classical expression Z E'(n)
neN
for the free monoid on an wnpointed E in a biclosed monoidal A . We
therefore treat below the three cases of a pointed endofunctor T , an
unpointed endofunctor H , and a monad T , under the hypothesis of

cocontinuity.

2. The counter-example for Barr's question

Let R be the associative (Z/2Z)-algebra of dimension 3 with

vector-space basis {1, e, f} and with multiplication given by e2 =e ,

fe=Ff, ef-= f2 =0 . Take for A the category of R-bimodules, and
write ® for ®R . The principal 2-sided ideals I and J of R

generated by e and f respectively satisfy IJ =0 and JI =J . Let

k : R+ R/T = K be the canonical map. In each of the exact sequences

J®I+J®R—JW<I®K-*O > I®J+R®J—@+K®J->O >

the middle object is isomorphic to J ; the image of J®I +J is J
while that of I ®J >J 1is 0 ; consequently J® K =0 , while kK ® J
is an isomorphism between non-zero objects.
. . . . . k

Set D=K®J , making it a pointed object via d = (O) t:R+>K®J .
If an action a : D®A +A is given by (b, e) : (KQA) ®(J®A) >4 ,
the unit axiom becomes b(K ® A) =1 ; forcing b : K®A4 +A to be an
isomorphism since k ® A is an epimorphism. We now have
JOA=ZJROK®A=0 since JOK=0; vwhence a : D® A4 + A is itself

an isomorphism.

Yet D®d, d®D : D>DQ®D do not coincide; for as maps
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K@J > (KQK)®(JRK) ®(K®J) & (J ®J) they differ in the component
J+*K®J , which is 0 for DQ®d but is the non-zero k ® J for
d® D .

3. The free-algebra sequence for a cocontinuous pointed endofunctor
Let T :1>7T:A=+A vwhere A is cocomplete and T is

cocontinuous. Write On : Tn - Tn for the joint coequalizer of the maps

TzTZﬂ—‘L_l : Tn_l > 7 wvhere 0 27 £ n-1 ; and note that 00 is

1l :1-+1 while ol is 1 : T > T , the first non~-trivial case being the

coequalizer g, : T2 > T2 of T, Tt : T~ T2 . Observe that Tn is

cocontinuous since each 1’" is so.

PROPOSITION 1. There is a wnique - rendering commutative

g O

7" mn TT

n

(1) o )

m
mn
Twm 3
’
clearly ¢”m i8 epimorphic.

Proof. From the fact that Oan and Tmon are certain joint
. . i _,Zn—l-i
coequalizers, from the naturality of TmT T , and from the fact that
-1 . . . . .
oan is epimorphic, it easily follows that Cmdn , as (Tmon) .[Omfl'n ] N

is the universal map which jointly coequalizes TTm_lTn, vy Im-lTTn and
jointly coequalizes .’ZJnTZﬁ-l, v Ian—lT . The result follows. 0O

PROPOSITION 2. We have ¢0n = ¢n0 =1 : Tn > Tn . The diagram

https://doi.org/10.1017/5S0004972700005724 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700005724

Two addenda 225

T ¢
m'nk
TanTk - Tan+k
(@) 1 Om nk
T T -~ T
mn k q>m+ n.k min+k
commutes, and it is a pushout for n > 0 .
Proof. The first statement is clear because 00 =1 . As for the

second, it suffices to consider the composite of (2) with the epimorphism

0,0,0; » which by (1) is
I/n+n+k O n+k s
(3) OmenCk - Stk
Tm+nTk ¢ —— ~ Tm+n+k

This commutes by (1), each leg being o Moreover, by the proof of

men+k

Proposition 1, the pushout of Om0n+k and om+nok is the universal map

which jointly coequalizes the four sets TIm_erHk, ceey Tfﬂ-lﬂﬁ"'k 5
’ImTka_l, e Imek—lT ; T'.T’"m-llk, e, I’”m_erk ; and

Tm+n'r1'k_l, e ImmTk_lT . If »n >0 we have the overlap that makes this
equal to Gm+n+k . a

We now make nH—> Tn into a functor w *+ A from the ordered set

_ o L. +1
w={0,1, 2, ...}, defining the transition-map Zﬁ : Tn > Tn+l by
TTn
T, T,
(L) b1,
7L
n
Tn+l
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and the transition-maps TZ : 1% > Tm for m=n by composition. (We use
this notation to agree with that of [1]; the reader is unlikely to confuse
Iﬂ with the power (Tn)m , which will never occur.) Note that (4) is
equivalent to its composite with the epimorphism o, which by (1) and

naturality is

Tn TTn 1.,1-#-1

T

Tn Tn+l n+l
n

by the definition of on , we could replace TTn here by TtTTn_t for

+1

any ¢ with 0 =< =#n.

PROPOSITION 3. For m'=2m and n' =2 n we have commutativity in

T T nn >7 T,

mn m' n
(6) b O

Tm+n Tm’+n’ . 2w'+n'

mn
Proof. It suffices to consider the cases m' =m+ 1, n' =n and

m'"=m, n'"=n+1 . In these cases we have only to compose {6) with the
epimorphism 00, , and use (1) and (5). O

REMARK 4, 1If we regard w as a monoidal category with tensor

product m + n , we can see Propositions 2 and 3 as asserting that

[Tn’ TZ] and ¢mn constitute a monoidal functor ® = End A .

We now define I as the colimit of this functor 7> Ih from w

o
to A , with colimit-cone Th : Ih -+ Zm . Of course it comes to the same
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thing to define T in one step, as the colimit of the diagram with all
. 1 i

the 7' as vertices and all the T lTT 2’! ot T Tn > 1" as edges;

but in some of the applications we shall want to separate the roles of the

finite colimits and the filtered ones. Note that, as the colimit of

cocontinuous functors, I, 1is cocontinuous.

Fixing m in ¢mn : Tan Tm+rz and passing the colimit defines
¢m°° : Tme + T, , while fixing 7 instead defines ¢°°n : Tan T ; a

second passage to the colimit defines ¢, : I T, * T, , vhich is easily

seen to be independent of the order of the passages. Now (6) holds even if

some of m, n, m', n' are « , provided we set m+ ©® = ©® + p = ® } © = ©,

whence (2) also holds if some of m, n, K are ®© . Moreover we have

¢O°° = ¢°°O =1:T,+T, . Thus [Tn, TZ] and ¢m are now extended to a

monoidal functor from w+ 1 =w + {®} to End A . The monoid « in

w + 1 1is sent by this to the monoid T in End A , with multiplication
(o]

¢, and unit TO : 1> T . Passage to the colimit in (4) gives

(1) b TTy = 1

exhibiting ¢l°° :PT_ *T_  as an getionof T on T .

In the light of Sections 14, 17, 22, and 23 of [1], the following
result is a consequence of the more general Theorem 8 below.

THEOREM 5. For a pointed cocontinuous (T, 1) , the free-algebra
sequence at A € A 1is given by the A with the connecting maps ’.T”:' A
and the "approximate actions' ¢lnA : T A>T LA The free T-algebra

on A is the T A to which this converges, with the action ¢l 3 and
the wnit of this adjunction is T:A : A>T A . The (algebraically) free

mnad on T is given by (I, T‘;, 6 ) , the wnit of this adjunction being

T: :T+T . When A is monoidal biclosed and (T, 1) has the form

(P®-,60®-), we have T =D ®- and T, =D, ,®-, where D and
(n)

D are constructed from D

=DO®D® ... ®D just as Tn and T, are

from T'; and D, is the algebraically free monoid on D . o
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4. The algebra-reflexion sequence in the cocontinuous pointed case

We now consider the reflexion into T-Alg of an arbitrary object
(A, a : TA > B) of T/A . Again ve give the sequence itself as well as
the algebra it converges to: partly, once again, to separate the roles of
finite and filtered colimits; and partly as a simple way of proving the
result.

We set XO = A and define Xn+l for n = 0 by the pushout

T 3
—_—_—————
T nTA TnB

( 8) q)nlA zn

Tn+lA -_
yn+1

noting that, since ¢ _ =1 , we have

0l
(9) X, =B, y=a:TA>B, 2 =1:B~+5.
We now set .'x:o : TX0 > Xl equal to a : TA - B , and define
. - .
Tyt TXn+l -+ Xn+2 for n = 0 by the diagram
Ty Tz
n+l n
7,14 LY TT,B
(10) q’l ,n+lA xn+l ¢lnB
T X T _B
n+2A Ypao n+2 Z,1 n+l
This defines a unique T, since T of (8) is again a pushout and since,
by (2), (8), and naturality, we have
Ynao 0 nnn? IO = Vppn 9 149,74
= zn+l'Tn+la'¢lnTA = zn+l.¢lnB.TTna .

We shall prove:

PROPOSITION 6. X ~and =z, are the objects and maps so named in
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Section 17.2 of [11].

First, a remark and a lemma. Similar reasoning to that which gave the

existence of xn+1 in (10), except that this time we compare the pushout

T, of (8) with the case n + 2 of (8), gives a diagram like (10) of which

we record only the right-hand square:

T23n
T2X'n+l T2TnB
(11) wn+l ¢2nB
+ T B
n+3 zn+2 n+2

LEMMA 7. The right-hand square of (10) is a pushout for n > 0 .

Not so for n =0 : we have x =2, although Tzo =1 and ¢loB =1.

Proof. It suffices to prove that for =n > 0O the outside of

T4 i L. 77 B v T B
T, n n+1
T¢nIA Tzn zn+l
T A > TX S X
n+l Ty . n+l % n+2

is a pushout, since the left square is so by (8) and by the cocontinuity of

T . But by naturality and (10), this is also the outside of

¢lnTA T a

n+l N
TTnTA > Tn+1TA Tn+1B
T¢nlA ¢n+1,IA zn+1
TT A > T X 3
n+l ¢l,n+lA n+2A yn+2 n+2

and here the right square is a pushout by (8), and the left square by

Proposition 2 if n >0 . For n =0 , we have 2_ =1 by (9) and

(0]
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¢10 =1 by Proposition 2, so that z, =3 by (10). (]

Proof of Proposition 6. The values of XO, Xi , and xo are those
required by (17.3) of [1]. It remains to show that Ty is the
coequalizer in
(12) rr —on, g2 > TX » X

n —?;iz* n Txn n+l Ty n+2

as required by (17.4) of [1]. Since the coequalizer of TT and Tt is

O, s which by (1) is ¢ll because o, = 1 , we have equivalently to show

that we have a pushout

(13) $11%, Tne1

77X —m———— X

2n n+2
for n2 0 . When 7 =0 this reduces to the case # =1 of the pushout
(8), since x, = a by definition and x = zl by Lemma 7. To deal with

the case # > 0 we replace n by 7n + 1 in (13), and compose with

Tzzn : T2TnB > T2Xn+l 3 1t suffices to prove this composite a pushout, since

Tzzn is epimorphic - 2, is the pushout (8) of the epimorphism ¢nlA ,

2 . . .
and T preserves epimorphisms. Now the composite Txn+l.T22n is

Tz .T¢lnB by (10), while the composite .T2zn is T2zn'¢llTnB

n+l ¢lerl+l

by naturality; so that we must show the outside of
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Té¢. B Tz
2 1n n+l
T TnB — TTn+1B TX'n+2
¢11TnB ¢l,n+lB
(14) T 1B o_B Tp+d® Tpe2
2n
T2zn 340
1 4
T2Xn+l » > Xh+3
to be a pushout for some w . But here the top left region is a pushout by

Proposition 2, and the right region is a pushout by Lemma 7; so that the

two top regions express T, .5 8s the pushout of ¢111hB by Izn+1.T¢lnB .
Moreover the bottom region commutes by (1l) if we take wn+l for w , and
Tzzn is epimorphic. Hence the outside of (14) is indeed a pushout. ]

Now, as in Section 17.2 of [1], we define the transition-map

+1
. >
XZ : Xh Xﬁ+l by

TXh
X TX
n n
(15) bddin x
n n
Xh+l i
making X into a functor w + A with transition-maps X: . Composing

lA , using the naturality of T , and using (4) and (15), we

see that y and =z are natural transformations. This being so, passing

(10) with 1T
n+

to the colimit in (8) gives a closed formula for the colimit X, of

X : w~> A, as the pushout
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T a
o0
ITA—— I B
o0
(16) By 4 l
TA -——————————-+ X
oo
Note that the naturality of 2z and of y gives, since zo =1 and

00 [=2) e (e
¥y, =a that X1 = zoo.ToB and Xl.a = yw.TlA . Composing the first of

these with Xé =_x0.TXO = q.TA and the second with T4 = T(])'A , we have

0 _ (o] _ Lo} 00 _ 00
(17) Xo = zm.TOB.a.TA = yw.TOA . Xl = zoo.ToB .

That the .rn constitute a natural transformation &« follows from the

general theory in [1], or directly from (15) and (12). We can therefore

define x  : TX + X  as the colimit of x, TXn -+ Xn+1 3 which is

equally to define & by the case n = ® of (10), the right square of
which is still a pushout by passage to the colimit in Lemma 7. Now passage

to the colimit in (15) gives

(18) x .TX =1,

o o

exhibiting X, as a T-algebra with action x_ . It follows from (18)
that x_ is the coequalizer of TX .x  and 1 ; so that by (17.6) of [1]

the x, TXw > Xw+l = Xu) where the sequence converges 1s indeed «
Thus :
THEOREM 8. The algebra-reflexzion sequence of [1] Section 17 at
(A4, a : TA ~B) in T/A 1is given by the X above, with the connecting
” y y 1 . _
maps }[: and the "approximate actions €, Tx > Xn - The T-algebra

x, : TX ~+ X to which this converges is the reflexion of (A, a : TA + B)

(=]

in T-Alg , the wnit of this reflexion being (Xw, XD . (]

We complete the proof of Theorem 5 by observing that the free-algebra
sequence at A € A 1is the algebra-reflexion sequence at (4, 1 : T4 + T4) ,
and that when a =1 we have Yper = 1 and z = ¢nlA by (8), giving
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x, = ¢lnA by (10) and the definition of z, -
5. The case of an unpointed cocontinuous endofunctor

Let H now be any cocontinuous endofunctor of A , and write T for
the cocontinuous endofunctor 1 + H , pointed by the coprojection
T:1>1+H . As we said, an H-algebra, given by an action a : HA > A
subject to no axioms, is the same thing as a (7, T)-algebra. Thus to give
the algebra-reflexion sequence explicitly for the reflexion of T/A into
H-Alg , we have only to translate the results above.

Since H 1is cocontinuous, Tn = (l+H)n is given by the binomial

series Ez(n)ﬂr , and it is clear that o  : s Jjust identifies the
- n n

(z) copies of g , so that we have
(19) T =Y B .

Moreover the map TZ : Th *—Zh for m = n 1is the evident coprojection, so
that T is given by the case n =« of (19). It is immediate that the
maps ¢mn : ZhTh -> 1h+n , for finite or infinite m and n , are Jjust
those which map the summand B'E®  of Tth identically onto the summand

+.
B o T . Note that T and 7T now commute, and that
mn m n

¢mn = ¢nm . As in Theorem 5, if A is monoidal biclosed and H is

(o)
E®- ,vehave T =D ®- , wvherenow D= Y E’(r) 3 which is the
r=0
classical expression for the algebraically-free monoid D, on the
unpointed object E of a biclosed A
Consider now the algebra-reflexion sequence (Xh, xn) of Section L at

a general object a : A + HA > B of T/A , where a has components
u:A>B and v : HA + B . When we simplify (8) by using (19), we easily

. - . :
see that zn : ThB Xh+l is the universal map whose components
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Zpp #'B + Xn+l render commutative the diagrams
+1
Hr+l 4 Vel U R HﬁlB
v 2, o1
H'B . > X

nr

for 0 = r = n-13; which is to say that zn is the coequalizer in

\Tu

/ ~

(20) T B - X ,
where © : T _H->T 1is the obvious coprojection.
n-1 n-1 n
By (15), the first component of x, Xn + HXn > Xn+1 is
}Zﬁl : X + X 3 write v : HX > X for the second component, so
n " n n+l n n n+l ?

that vy =V s HA - B . The right square of (10), which since Tzn is

epimorphic is sufficient to fix the value of x , reduces on using

n+l

TTnB = TnB + HTnB to two squares. One of these merely asserts the

naturality of 2 ; the other fixes the wvalue of vn+1 by the

commutativity of

Hz

—_—
HT B HXn+1

(21) enB v
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Passing to the colimit in (20) and in (21), we see that the reflexion

into H-Alg of (u, v) : A+ HA+B is X_ given as the coequalizer in

T 4
(o]
(22) eo/ \ou
T_HA 75— LB 5 X,

(o] e

k]

with the action vy : HX > X determined by

Hz
00
HT B ——————— HX

(23) 8 B v

L) ©o

rg —mm——— X
© z o)
o

The unit (Xg, Xi) of the reflexion is given by (17), which here becomes

(24 X =z .T. P =2 .T.B
) 0 = Zoor OB.u . Xi =2, T8 .

6. The case of a cocontinuous monad

The category T-Alg of algebras for a monad T = (T, T, u) with unit
T and multiplication M is a full subcategory of the category T-Alg of
algebras for the pointed endofunctor (T, 1) , and is hence like T-Alg
fully embedded in T/A . Section 2L of []] gives a new algebra-reflexion

sequence (Xh, z, TXh - Xﬁ+l] for each (4, a : TA + B) of T/A , which

when it converges gives the reflexion of (4, a) into T-Alg (and no

longer into 7T-Alg ). This new sequence again starts with Xb =4,

Xi =B , and mo =q : TA > B ; but now xn+1 is the coequalizer in
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TXh
(25) ux, ItX,
szn 1 T2Xn Tz Xn4 Tz Xpep
n n+l
. . +1 . . .
while the connecting-map XZ : Xh - Xﬁ+l is still given by (15).

As remarked in Section 25.2 of [1], the free-algebra sequence,
obtained by calculating the algebra-reflexion sequence at (4, 1:TA + T4) ,
is now trivial; Xl = TA 1is already the free T-algebra onm A4 , and

Xi = 1 . However the algebra-reflexion sequence at a general (4, a) ,

which when it converges allows us to construct colimits in T-Alg and left
adjoints to algebraic functors T-Alg » T'-Alg , does not usually converge
at a finite index.
It is however otherwise in the special case of a cocontinuous T :
THEOREM 9. The algebra-reflexion sequence for a cocontinuous monad

T stops and gives the reflexion into T-Alg at the term X, , the map

X3 being the identity.

2

Proof. We have Xb =4, Xi =B, Ty =a . To avoid subscripts
write C for X2 and b : TB » C for z - Consider the diagram

/
24
O
(26) T4 — 74 Pa 2 B,
uAl
M B c

Ta — 1B b > C

TA TA uTA
SN
7°4 > S+ 774

The bottom is the case 7n = 0 of (25), and the top is T of this; since

T 1is cocontinuous, Tb is the coequalizer in the top as b 1is in the
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bottom. The vertical squares, except the last, commute by naturality and
the associative law for M . It follows that b.puB coequalizes Tza and

T2a.T2TA.TMa , and hence factorizes through their coequalizer Tb as
¢. b for some ¢ : TC ~ C .

We claim that ¢ is the coequalizer x, of Tb and Tb.T1B.uB .

2
For suppose that some f : C + D satisfies f.Tb = f.Th.TtB.uB . Then
f.Tb factorizes through the coequalizer B of 1 and TMB.uB as

f-Tb = g.uB for some g : TB + D . Now f.Tb coequalizes 7°a  and

T2a.12TA.IMA , since Tb already does so; hence g.uB does so. By the
commutativity in (26), it follows that g coequalizes Ta.uTA and
Ta.TTA.yA.WTA . Since uTA 1is a retraction, g already coequalizes Ta
and Ta.TtA.u4 , and hence factorizes through their coequalizer b as
g=hb for some h :C>D. Thus f.Tb =g.uB =hb.yuB = he.Tb , giving
f

and WB are, the factorization of f through ¢ is unique, and ¢ 1is

he since Tb is epimorphic. Since ¢ too is epimorphic because b

indeed the coequalizer z, -

It remains to show that Xg =e¢.1C is 1 . But e.1C.b = ¢.Th.TTB

by naturality, which by the commutativity of the right-most square in (26)
is b.uB.1TB , which is b . Since b is epimorphic, we do have

e.1C =1 . a
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