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TWO ADDENDA TO THE AUTHOR'S
'TRANSFINITE CONSTRUCTIONS'

G.M. KELLY

Since the author's article "A unified treatment of transfinite

constructions ...", in Volume 22 (1980) of this Bulletin, had an

encyclopaedic goal, he now takes the opportunity to answer two

further questions raised since that article was submitted. The

lesser of these asks whether the only pointed endofunctors for

which every action is an isomorphism are the well-pointed ones,

at least when the endofunctor is cocontinuous; a counter-example

provides a negative answer. The more important question concerns

the reflexion from the comma-category T/A into the category of

algebras for the pointed endofunctor T of A , and the algebra-

reflexion sequence which converges to this reflexion; and asks

for simplified descriptions in the special case where T is

cocontinuous. We give closed formulas in this case, both for the

reflexion and for the sequence which converges to it. The reader

may wonder why we care about the approximating sequence when we

have a closed formula for the reflexion; the answer is that, in

certain applications, we need to separate the roles of finite

colimits and filtered ones.

1. Introduction

Recall from the author's article [/] that a pointed endofunotor

{T, T) on a category A is an endofunctor T of A along with a natural
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222 6.M. KeI ly

transformation T : 1 -»• T , and that (T, t) is called well-pointed if

TT = TT : T -*• T̂  . A T-algebra is an object A together with an action

a : TA -*• A , the la t ter being a map satisfying the Knit axiom a.TA = 1 .

If T has more structure, such as that of a monad, there are more axioms

for the action a to satisfy; but we never suppose T to have less

structure. When we want to consider the algebras for a mere, unpointed,

endofunctor H of A , given by actions HA •*• A subject to no axioms, we

treat them as the algebras for the pointed endofunctor T = 1 + H .

In the case of a well-pointed (T, T) , i t is shown in Proposition 5.2

of [/] that every action a : TA -*• A is an isomorphism. Thus here A

admits an action only when lA : A -*• TA is invertible, and then admits the

unique action (TA) ; in consequence, the forgetful functor

U : T-Alg •* A is fully faithful.

The goal of [7] was to give a comprehensive account of old and new

trans finite-sequence existence proofs in categorical algebra, unified by

the technique of embedding the T-algebras as a full subcategory in the

comma-category T/A , and then exhibiting them as the algebras for a well-

pointed endofunctor on T/A . This reduces the reflectivity of T-Alg in

T/A to the question of the reflectivity, in the case of a well-pointed

T , of T-Alg in A . Trans finite-sequence arguments of various degrees

of delicacy were now used to give sufficient conditions for this last ; in

the simpler cases the sequence A -*• TA •*• TA •*• . . . , continued trans-

finitely, ultimately stops and gives the desired reflexion. Then, trans-

lating back to the case of a general pointed T , we get an algebra-

reflexion sequence for each object of T/A , giving i ts reflexion into

T-Alg .

In line with the encyclopaedic aim of [1], the author would now like

to record the answers to two further questions raised since that manuscript

was written.

In a let ter to the author of lU December 1979, Michael Barr asked

whether the pointed (T, x) is necessarily well-pointed if every action is

an isomorphism - at least in the case where T is cocontinuous. As Barr

pointed out, the question is not a pressing one, but a positive answer

might save an author from giving a complicated argument where a simple one
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would suffice; he had a particular instance in mind. We show by an

example that the answer is in fact negative.

Recent work of the author with Anders Kock on synthetic differential

geometry has shown that we need at our disposal a simplified closed form

for the algebra-reflexion sequence in the special case when T is

oocontinuous - as for instance when T is D ® - for a pointed object D

in a monoidal biclosed category A . Of course the sequence stops for a

cocontinuous 1 at i t s coth term, and gives the reflexion. However no

closed formula was given in [7] except the classical expression £ E

n€N

for the free monoid on an unpointed E in a biclosed monoidal A . We

therefore treat below the three cases of a pointed endofunctor T , an

unpointed endofunctor H , and a monad T , under the hypothesis of

cocontinuity.

2. The counter-example for Barr's question

Let R be the associative (1/22)-algebra of dimension 3 with

vector-space basis {l, e, /} and with multiplication given by e = e ,

fe = f , ef = f = 0 . Take for A the category of i?-bimodules, and

write ® for ® . The principal 2-sided ideals J and J of R
H

generated by e and / respectively sa t i s fy IJ = 0 and JI = J . Let

k : R -*• R/I = K be the canonical map. In each of the exact sequences

K •*• 0 , I ® J •+ R ® J fegt7> K ® J •* 0 ,

the middle object i s isomorphic to J ; the image of J ® I •*• J i s J

while tha t of J ® J •*• J i s 0 ; consequently J ® K = 0 , while k ® J

i s an isomorphism between non-zero objects .

Set D = K © J , making i t a pointed object via d = ( ) : R -*• K @ J .

I f an action a : D ® A •* A i s given by (b, a) -. (K ® A) © (J ® A) •*• A ,

the unit axiom becomes b(k ® A) = 1 ; forcing b : K ® A •*• A to be an

isomorphism since k ® A i s an epimorphism. We now have

J®A=J®K®A = O since J ® K = 0 ; whence a : D ® A •* A i s i t s e l f

an isomorphism.

Yet D ® d , d®D: D-*D®D do not coincide; for as maps
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K © J -*• (K ® K) © (J ® K) © (K ® J) © (J ® J) they differ in the component

J •*• K ® J , which is 0 for D ® d tut is the non-zero k ® J for

d ® Z? .

3. The free-algebra sequence for a cocontinuous pointed endofunctor

Let T : 1 -*• T : A •*• A where A i s cocomplete and 1 i s

cocontinuous. Write O : T •+ T for the jo in t coequalizer of the maps

3'^T^"~^~1 : T " " 1 -»• r " where 0 < i < n-1 ; and note tha t O is

1 : 1 ->• 1 while a i s 1 : T -*• T , the f i r s t non- t r iv ia l case being the

coequalizer O2 : T2 •*• T^ of TT, TI : T •*• T2 . Observe tha t 7^ i s

cocontinuous since each T i s so.

PROPOSITION 1. There is a unique <J> renderinq commutative
rm *

aZearly (J) is epimorphio.

Proof. From the fact that 0 21" and T a are certain joint
m m n

coequalizers, from the naturality of T T TT , and from the fact that

O 21""1 is epimorphic, it easily follows that a
m
a
n , as (rm

a
M) • I

0,/") »

is the universal map which jointly coequalizes x'r T , ..., T IT and

jointly coequalizes im\Tn~ , ..., I^f"" T . The result follows. •

PROPOSITION 2. We have $Qn = $ = 1 : T^ -»• T^ . 27ie diagram
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(2)

T T r,
m n k

rm k

1 T.

rik
-*• T T ,

m n+k

m,n+k

m+n k d>
-»• T

m+n+k

commutes, and it is a pushout for n > 0 .

P r o o f . The f i r s t s t a t e m e n t i s c l e a r b e c a u s e 0 = 1 . As f o r t h e

s e c o n d , i t s u f f i c e s t o c o n s i d e r t h e c o m p o s i t e o f ( 2 ) w i t h t h e e p i m o r p h i s m

0 0 0 , , w h i c h b y ( l ) i s
171 Yl t\

m n+k

am+nak

-*• T T

mn+k

-*• T
m+n k

This commutes by (l), each leg being °m+n+]< • Moreover, by the proof of

Proposition 1, the pushout of 0 0 , and o 0, is the universal map
TJX yVrK Tfn~Tl K

which jointly coequalizes the four sets Trf~1'F'* , ..., !^n~1T'/l+ ;

2V*-1, ..., Wk-\ ; T^"-1^, ..., -rn-\^ , and
'f&nTT'~X, ..., 'f*n-f-~Xi . if n > 0 we have the overlap that makes this

equal to

We now make n i—• T into a functor w -*• A from the ordered set

uj = {0, 1, 2, ...} , defining the transition-map I^+1 : 21 •+ T^^ by

(U)

* TT.

vm

n+1
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and the transition-maps T : T •* T for m > n by composition. (We use

this notation to agree with that of [J]; the reader is unlikely to confuse

"r with the power [T ) , which will never occur.) Note that (U) is

equivalent to its composite with the epimorphism a , which by (l) and

naturality is

(5) n+1

n+1

by the definition of a , we could replace XT here by T IT for

any i with 0 2 i 5 n .

PROPOSITION 3. For m' > m and n' > n we have commutativity in

(6)

T T
m n

Tmn

m n
m' n'

Tm'n'

m+n jn'+n1

m+n

T
m'+n'

Proof. I t su f f i ces t o consider the cases m' = m + 1 , n' = n and

m' = m , n' = n + 1 . In these cases we have only t o compose (6) with the

epimorphism O a , and use (1) and ( 5 ) . d
m n

REMARK 4. I f we regard u as a morioidal category with tensor

product m + n , we can see Propositions 2 and 3 as asser t ing tha t

[T , r and <$> cons t i tu t e a monoidal functor a) -*• End A .n n) mn

We now define T as the colimit of t h i s functor n >—*• T from 0)co n

t o A , with colimit-cone 1 : T •*• T . Of course i t comes to the same
n n °°
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thing to define Tm in one step, as the colimit of the diagram with all

the T* as vertices and all the T XT T ... XT r : T* •* 'f as edges;

but in some of the applications we shall want to separate the roles of the

finite colimits and the filtered ones. Note that, as the colimit of

cocontlnuous functors, T is cocontinuous.

Fixing m in $ : T T -*• T and passing the colimit defines
mn m n m+n

V > : V » "* T°° ' While fixins n instead defines ^ : TJn -* Tm ; a

second passage to the colimit defines <pom : T^^ •* Tm , which is easily

seen to be independent of the order of the passages. Now (6) holds even if

some of m, n, m', n' are °° , provided we set m + 00 = 00 + M = 00 + 00 = 00;

whence (2) also holds if some of m, n, k are °° . Moreover we have

Ôoo = *ooo = X : Too "*" yoo • T n u s I2"-' ̂ -l a""1 "i1— a r e n o w extended to a

monoidal functor from co + 1 = w + {°°} to End A . The monoid °° in

0) + 1 is sent by this to the monoid Tm in End A , with multiplication
00

cf> a n d u n i t T_ : 1 •+ T . P a s s a g e t o t h e c o l i m i t i n (k) g i v e s
*O00O Q OO ° * ' o

exhibit ing $n : TT •*• T as an action of T on T .
<-J ' j_oo oo oo oo

In the light of Sections Xk, IT, 22, and 23 of [?], the following

result is a consequence of the more general Theorem 8 below.

THEOREM 5. For a pointed cocontinuous (T, T) , the free-algebra

sequence at A € A is given by the T A with the connecting naps T

and the "approximate actions" <t> A : TT A •*• 1 4 . The free T-algebra

on A is the TmA to which this converges, with the action § ; and

the unit of this adjunction is T A : A •*• TJi . The (algebraically) free

f 00 x

monad on T is given by \Tm, TQ, <J>00COJ , the unit of this adjunction being
OO

T : T -*• Tm . When A is monoidal biclosed and {T, x) has the form

(0 ® - , 6 ® - ) , we have Tn = Dn® - and Tm = Dm ® - , where D and

Dm are constructed from D = D ® D ® . . . ® D just as T and Tx are

from T ; and D^ is the algebraically free monoid on D . D
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4. The algebra-reflexion sequence in the cocontinuous pointed case

We now consider the reflexion into T-Alg of an arbitrary object

(A, a : TA -*• B) of T/A . Again we give the sequence itself as well as

the algebra i t converges to: partly, once again, to separate the roles of

finite and filtered colimits; and partly as a simple way of proving the

result.

We set X= A and define X for n > 0 by the pushout

TnTA

(8) <f> .AY n l

T , 4
n + 1

- TnB

-* X
n + 1 '

noting that, since $ = 1 , we have

(9) X± = B , y± = a : TA * B , zQ = 1 : B •*- B .

We now se t x : TX •*• X equal to a : TA •*• B , and define

x : TX -*• X for n > 0 by the diagram

TT A 'n+1 Tz
-+ TX

n+1

n+1

X
1n+2

n+2

TTnB

n+1
T Bn+1

This defines a unique x . since T of (8) i s again a pushout and s i n c e ,

t>y ( 2 ) , ( 8 ) , and n a t u r a l i t y , we have

= 3 . .3" na.(j), 2i4 = z n .(j) B.TT a .n+1 n+1 T ln n+1 r l n n

We s h a l l prove:

PROPOSITION 6. X and x are the objects and maps so named in
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Section 17.2 of [7 ] .

First, a remark and a lemma. Similar reasoning to that which gave the

existence of x in (10), except that this time we compare the pushout

T of (8) with the case n + 2 of (8), gives a diagram like (10) of which

we record only the right-hand square:

^T B
2 n

(11) n+1

n+2

LEMMA 7. The right-hand square of (10) is a pushout for n > 0 .

Not so for n = 0 ; we have x = z , although Ts = 1 and § B = 1 .

Proof. I t suffices to prove that for n > 0 the outside of

TT an -f T B
n+1

Tz n+i

TTn+1 TXn+1
n+i

n+2

is a pushout, since the left square is so by (8) and by the cocontinuity of

T • But by naturality and (10), this is also the outside of

TT TAn Tn+1
TA

TT ^A
n+1 'n+2

-*• T B
n+1

n+1

n+2

and here the right square is a pushout by ( 8 ) , and the left square by

Proposition 2 if n > 0 . For n = 0 , we have 3 = 1 by (9) and
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p = 1 by Proposition 2, so that x = z by (10). D

Proof of Proposition 6. The values of X , X , and x are those

required by ( l j .3) of [ / ] . I t remains to show that x
n+1 i-s the

coequalizer in

(12)
1TX

TX > T X Xn ^ TXn+X - ^ - W '

as required by (17.U) of [/]. Since the coequalizer of IT and Ti is

0 , which by (l) is <j

that we have a pushout

0 , which by (l) is <j> because a = 1 , we have equivalently to show

T2X
Tx

-*• TX
n+1

(13)
n+1

-*• X
n+2

for n > 0 . When n = 0 this reduces to the case n = 1 of the pushout

(8), since x = a by definition and x = z by Lemma 7- To deal with

the case n > 0 we replace n by n + 1 in (13), and compose with

T z : TT B -*• T X +, ; it suffices to prove this composite a pushout, since

T'z is epimorphic - z is the pushout (8) of the epimorphism § A ,

2 ™2
and 31 preserves epimorphisms. Now the composite Tx .TZ is

is' While the c o m P ° s i t e h
by naturality; so that we must show the outside of
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T2,

T2X

VnB

n+1

Tz
-* TT

M+l
M+l

-* TX
n+2

n+2

w
->• x

rt+3

to be a pushout for some w . But here the top left region is a pushout by

Proposition 2, and the right region is a pushout by Lemma 7; so that the

two top regions express x + 2 as the pushout of 1 T B by Tz .Tip B .

Moreover the bottom region commutes by (11) if we take w for w , and

T23 is epimorphic. Hence the outside of (l!|) is indeed a pushout. D

Now, as in Section 17.2 of [/], we define the transition-map

X : X •*• X by
n n n+1

(15)

+ TX

n+1 '

making X in to a functor w -»• A with transition-maps F . Composing

(10) with TT A , using the na tu ra l i ty of T , and using (1+) and (15), we

see that y and z are natural transformations. This being so, passing

to the colimit in (8) gives a closed formula for the colimit X of
00

X : w •* A , as the pushout
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T TA

(16)

T a
T B

N o t e t h a t t h e n a t u r a l i t y o f z a n d o f y g i v e s , s i n c e 3 = 1 a n d

OO 00 00 00

y = a , t ha t X = zm.T' B and X .a = ym.T A . Composing the f i r s t of

these with XT = x .TX = a.TA and the second with \A = TZA , we have

(IT) X°Q = zm.T°QB.a.TA = y^.fy , *~ = zm.T°QB .
That the x constitute a natural transformation x follows from the

n

general theory in [ 7 ] , or d i r ec t l y from (15) and (12). We can therefore

d e f i n e xm : TXm a s t h e c o l i m i t o f : IX^ ; which i s

equally t o define xm by the case n = °° of (10) , the r ight square of

which i s s t i l l a pushout by passage to the colimit in Lemma 7- Now passage

to the colimit in (15) gives

t-\p.\ r Ty = -\
* ' co" oo — '

exh ib i t ing Xm as a T-algebra with action x^ . I t follows from (l8)

tha t x^ i s the coequalizer of iX^.x^ and 1 ; so tha t by (17.6) of [ I ]

the x : TX •*• X , = X where the sequence converges i s indeed x
to (i) UH-1 0) & °°

Thus :

THEOREM 8. The algebra-reflexion sequence of [ /] Section 17 at

(A, a : TA •*• B) in T/A is given by the X above, with the connecting

maps X™ and the "approximate actions" x : TX •* X . The T-algebra

xoo : ^co •* Xa> t° vh^0*1 this converges is the reflexion of {A, a : TA •* B)
f OO OOx

in T-Alg , the unit of this reflexion being [X , X J . •

We complete the proof of Theorem 5 by observing tha t the free-algebra

sequence a t A € A i s the algebra-reflexion sequence a t (A, 1 : TA -*• TA) ,

and t h a t when a = 1 we have y = 1 and z = (J> A by (8 ) , giving
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x = <f> A by (10) and the def ini t ion of x .

5. The case of an unpointed cocontinuous endofunctor

Let H now be any cocontinuous endofunctor of A , and write T for

the cocontinuous endofunctor 1 + H , pointed by the coprojection

T : 1 -»• 1 + ff . As we said, an ff-algebra, given by an action a : HA -*• A

subject to no axioms, is the same thing as a {T, x)-algebra. Thus to give

the algebra-reflexion sequence explicitly for the reflexion of T/k into

H-Alg , we have only to translate the results above.

Since H is cocontinuous, T = (1+ff) is given by the binomial

series £ (")#r . and i t is clear that a : T" -»• T just identifies the

( ) copies of H , so that we have

(19) T = £ fl2" .
n r=0

Moreover the map T : T •*• T for m > n is the evident coprojection, so

that T is given by the case n = °° of (19)- It is immediate that the
GO

maps d> : T T •*• T , , for finite or infinite m and n , are just
rm m n m+n

those which map the summand HrIT of T T identically onto the summand
m n

Hr S of T . Note that T and T now commute, and that
m+w m n

<t = d> . As in Theorem 5, if A is monoidal biclosed and R is

OO

E ® - , we have T = D ® - , where now D = Y E ; which is the

r=0

classical expression for the algebraically-free monoid Dm on the

unpointed object E of a biclosed A .

Consider now the algebra-reflexion sequence [x , x ) of Section h at

a general object a : A + HA •* B of T/k , where a has components

M : A •*• B and v : HA •*• B . When we simplify (8) by using (19), we easily

see that z : T B -*• X is the universal map whose components
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z : n B X render commutative the diagrams

H*v

-»• X

ra>
n+1

for 0 5 v 5 w-1 which is to say that z is the coequalizer in

(20) T
n-±

^+1H2
n

X
n+1 '

where 6
n—±

: T H
n—L

is the obvious coprojection.

By (15), the first component of a; : X + HX •*• X is

X : X X ; write v : HX •* X for the second component, so

that u. = V : HA -*• B . The right square of (10), which since Tz is

epimorphic is sufficient to fix the value of xn+1 > reduces on using

TT B = T B + HT B to two squares. One of these merely asserts the
y\ 7t it

naturality of z ; the other fixes the value of u by the

commutativity of

Hz
HTnB -* HXn+l

(21) e B
n

n+1

n+1
n+2

https://doi.org/10.1017/S0004972700005724 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005724


Two addenda 235

Passing to the colimit in (20) and in (2l) , we see that the reflexion

into #-Alg of (M, V) : A + BA •*• B is Xm given as the coequalizer in

T A

(22) Tu

TJiA x ,

with the action V : HX -*- X determined by
CO CO 00 "

HT^B

(23)

The u n i t [x, X~) of t h e r e f l e x i o n i s given by ( I T ) , which h e r e becomes

(21*) xi =

6. The case of a cocontinuous monad

The category T-Alg of algebras for a monad T = (T, T, y) with unit

T and multiplication p is a full subcategory of the category T-Alg of

algebras for the pointed endofunctor (I1, x) , and is hence like T-Alg

fully embedded in T/k . Section 2k of [7] gives a new algebra-reflexion

sequence , x : TXn •* X ) for each (A, a : TA •* B) of T/A , which

when i t converges gives the reflexion of (A, a) into T-Alg (and no

longer into T-Alg ). This new sequence again starts with X= A ,

X = B , and x = a : TA -*• B ; bu t now x is the coequalizer in

https://doi.org/10.1017/S0004972700005724 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005724


236 G.M. KeI I y

(25)

n Tx TX
n

n+l x n+2 '

while the connecting-map A : X -*• X

n+l

is still given by (15).

As remarked in Section 25-2 of [ J ] , the free-algebra sequence,
obtained by calculating the algebra-reflexion sequence at (A, 1 : TA •* TA) ,
is now t r i v i a l ; X = TA i s already the free T-algebra on A , and

XT = 1 . However the algebra-reflexion sequence at a general (A, a) ,

which when i t converges allows us to construct colimits in T-Alg and left
adjoints to algebraic functors T-Alg -»• T'-Alg , does not usually converge
at a f inite index.

I t is however otherwise in the special case of a cocontinuous T :

THEOREM 9. The algebra-reflexion sequence for a cocontinuous monad

T stops and gives the reflexion into T-Alg at the term Xp , the map

X~ being the identity.

Proof. We have Xn = A , A, = B , xn = a • To avoid subscripts

wr i te C for Z_ and b : TB •+ C for x Consider the diagram

(26)

The bottom is the case n = 0 of (25), and the top is T of this; since

T is cocontinuous, Tb is the coequalizer in the top as b is in the
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bottom. The vertical squares, except the l as t , commute by naturality and

the associative law for U . I t follows that 2>.uB coequalizes rra and

r a. TTiA. T\ia , and hence factorizes through their coequalizer Tb as

c.Tb for some c : TC -»• C .

We claim that a is the coequalizer x« of Tb and Tb.TW.\iB .

For suppose that some f : C •* D satisfies f.Tb = f.Tb.TW.vB . Then

f.Tb factorizes through the coequalizer uB of 1 and TTB.\IB as

f.Tb = g.\sB for some g : TB •+ D . Now f.Tb coequalizes T^a and

Ta.TTA.T\iA , since Tb already does so; hence g.vB does so. By the

commutativity in (26), i t follows that g coequalizes Ta.\xTA and

Ta.TTA.\iA.]\TA . Since \iTA is a retraction, g already coequalizes Ta

and Ta.TTA.\iA , and hence factorizes through their coequalizer b as

g = hb for some h : C -*• D . Thus f.Tb = g.\sB = hb.\iB = ho.Tb , giving

f - ho since Tb is epimorphic. Since a too is epimorphic because b

and yB are, the factorization of f through c is unique, and a is

indeed the coequalizer x~ .

I t remains to show that XZ = e.xC is 1 . But c.TC.b - o.Tb.xTB

by naturality, which by the commutativity of the right-most square in (26)

is ZJ.UB.TIB , which is b . Since b is epimorphic, we do have

o.xC = 1 . D
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