
1 Measurement of wireless
transceivers

1.1 Introduction

This book is entitled Microwave and Wireless Measurement Techniques, since the
objective is to identify and understand measurement theory and practice in wireless
systems.

In this book, the concept of a wireless system is applied to the collection of sub-
systems that are designed to behave in a particular way and to apply a certain procedure
to the signal itself, in order to convert a low-frequency information signal, usually called
the baseband signal, to a radio-frequency (RF) signal, and transmit it over the air, and
vice versa.

Figure 1.1 presents a typical commercial wireless system architecture. The main
blocks are amplifiers, filters, mixers, oscillators, passive components, and domain con-
verters, namely digital to analog and vice versa.

In each of these sub-systems the measurement instruments will be measuring voltages
and currents as in any other electrical circuit. In basic terms, what we are measuring are
always voltages, like a voltmeter will do for low-frequency signals. The problem here
is stated as how we are going to be able to capture a high-frequency signal and identify
and quantify its amplitude or phase difference with a reference signal. This is actually
the problem throughout the book, and we will start by identifying the main figures of
merit that deserve to be measured in each of the identified sub-systems.

In order to do that, we will start by analyzing a general sub-system that can be
described by a network. In RF systems it can be a single-port, two-port, or three-port
network. The two-port network is the most common.

1.2 Linear two-port networks

1.2.1 Microwave description

A two-port network, Fig. 1.2, is a network in which the terminal voltages and currents
relate to each other in a certain way.

The relationships between the voltages and currents of a two-port network can be
given by matrix parameters such as Z-parameters, Y -parameters, or ABCD parameters.
The reader can find more information in [1, 2].

https://doi.org/10.1017/CBO9780511791512.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511791512.003


2 Measurement of wireless transceivers

Figure 1.1 A typical wireless system architecture, with a full receiver and transmitter stage.
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Figure 1.2 A two-port network, presenting the interactions of voltages and currents at its ports.

The objective is always to relate the input and output voltages and currents by using
certain relationships. One of these examples using Y -parameters is described by the
following equation:

[
i1

i2

]
=
[
y11 y12

y21 y22

] [
v1

v2

]
(1.1)

where

y11 = i1
v1

∣∣∣
v2=0

y12 = i1
v2

∣∣∣
v1=0

y21 = i2
v1

∣∣∣
v2=0

y22 = i2
v2

∣∣∣
v1=0
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Figure 1.3 Two-port scattering parameters, where the incident and reflected waves can be seen in
each port.

As can be seen, these Y -parameters can be easily calculated by considering the other
port voltage equal to zero, which means that the other port should be short-circuited.
For instance, y11 is the ratio of the measured current at port 1 and the applied voltage at
port 1 by which port 2 is short-circuited.

Unfortunately, when we are dealing with high-frequency signals, a short circuit is not
so simple to realize, and in that case more robust high-frequency parameters should be
used.

In that sense some scientists started to think of alternative ways to describe a two-port
network, and came up with the idea of using traveling voltage waves [1, 2]. In this case
there is an incident traveling voltage wave and a scattered traveling voltage wave at
each port, and the network parameters become a description of these traveling voltage
waves, Fig. 1.3.

One of the most well-known matrices used to describe these relations consists of the
scattering parameters, or S-parameters, by which the scattered traveling voltage waves
are related to the incident traveling voltage waves in each port.

In this case each voltage and current in each port will be divided into an incident
and a scattered traveling voltage wave, V +(x) and V −(x), where the + sign refers
to the incident traveling voltage wave and the − sign refers to the reflected traveling
voltage wave. The same can be said about the currents, where I+(x) = V +(x)/Z0 and
I−(x) = V −(x)/Z0, Z0 being the characteristic impedance of the port. The value x

now appears since we are dealing with waves that travel across the space, being guided
or not, so V +(x) = Ae−γ x [1, 2].

These equations can be further simplified and normalized to be used efficiently:

v(x) = V (x)√
Z0

i(x) = √
Z0I (x)

(1.2)

Then each normalized voltage and current can be decomposed into its incident and
scattered wave. The incident wave is denoted a(x) and the scattered one b(x):
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v(x) = a(x) + b(x)

i(x) = a(x) − b(x)
(1.3)

where

a(x) = V +(x)√
Z0

b(x) = V −(x)√
Z0

(1.4)

with

V = √
Z0(a + b)

I = 1√
Z0

(a − b)

Fortunately, we also know that in a load the reflected wave can be related to the
incident wave using its reflection coefficient �(x):

b(x) = �(x)a(x)

or

�(x) = b(x)

a(x)
(1.5)

In this way it is then possible to calculate and use a new form of matrix parame-
ter to describe these wave relationships in a two-port network, namely the scattering
parameters:

[
b1

b2

]
=
[
S11 S12

S21 S22

] [
a1

a2

]
(1.6)

where

Sij = bi(x)

aj (x)

∣∣∣∣
ak=0 to k �=j

(1.7)

As can be deduced from the equations, and in contrast to the Y -parameters, for the
calculation of each parameter, the other port should have no reflected wave. This cor-
responds to matching the other port to the impedance of Z0. This is easier to achieve
at high frequencies than realizing a short circuit or an open circuit, as used for Y - and
Z-parameters, respectively.

Moreover, using this type of parameter allows us to immediately calculate a number
of important parameters for the wireless sub-system. On looking at the next set of equa-
tions, it is possible to identify the input reflection coefficient immediately from S11, or,
similarly, the output reflection coefficient from S22:
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Figure 1.4 Power waves traversing a guided structure.

S11 = b1(x)

a1(x)

∣∣∣∣
a2=0

= Z1 − Z0

Z1 + Z0
(1.8)

S22 = b2(x)

a2(x)

∣∣∣∣
a1=0

= Z2 − Z0

Z2 + Z0
(1.9)

The same applies to the other two parameters, S21 and S12, which correspond to
the transmission coefficient and the reverse transmission coefficient, respectively. The
square of their amplitude corresponds to the forward and reverse power gain when the
other port is matched.

Note that in the derivation of these parameters it is assumed that the other port is
matched. If that is not the case, the values can be somewhat erroneous. For instance,
�in(x) = S11 only if the other port is matched or either S12 or S21 is equal to zero. If
this is not the case, the input reflection should be calculated from

�in = S11 + S12S21�L

1 + S22�L
(1.10)

More information can be found in [1, 2].
With the parameters based on the wave representation that have now been defined,

several quantities can be calculated. See Fig. 1.4.
For example, if the objective is to calculate the power at terminal IN, then

P = V I ∗ = aa∗ − bb∗ = |a|2 − |b|2 (1.11)

Here |a|2 actually corresponds to the incident power, while |b|2 corresponds to the
reflected power.

Important linear figures of merit that are common to most wireless sub-systems can
now be defined using the S-parameters.
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Figure 1.5 A noisy device, Y -parameter representation, including noise sources.

1.2.2 Noise

Another very important aspect to consider when dealing with RF and wireless systems
is the amount of introduced noise. Since for RF systems the main goal is actually to
achieve a good compromise between power and noise, in order to achieve a good noise-
to-power ratio, the study of noise is fundamental. For that reason, let us briefly describe
the noise behavior [3] in a two-port network.

A noisy two-port network can be represented by a noiseless two-port network and a
noise current source at each port. An admittance representation can be developed.

The voltages and currents in each port can be related to the admittance matrix:[
i1

i2

]
= [Y ]

[
v1

v2

]
+
[
in1

in2

]
(1.12)

(Fig. 1.5). A correlation matrix CY can also be defined, as

[CY ] =
[〈

in1i
∗
n1

〉 〈
in1i

∗
n2

〉〈
in2i

∗
n1

〉 〈
in2i

∗
n2

〉] (1.13)

The correlation matrix relates the properties of the noise in each port. For a passive
two-port network, one has

[CY ] = 4kBT 	f Re(Y ) (1.14)

where kB is the Boltzmann constant (1.381 × 10−23J/K), T the temperature (typically
290 K), 	f the bandwidth, and Y the admittance parameter.

Actually these port parameters can also be represented by using scattering parameters.
In that case the noisy two-port network is represented by a noiseless two-port network
and the noise scattering parameters referenced to a nominal impedance at each port
(Fig. 1.6). [

b1

b2

]
= [S]

[
a1

a2

]
+
[
bn1

bn2

]
(1.15)

where bn1 and bn2 can be considered noise waves, and they are related using the corre-
lation matrix, CS . The correlation matrix CS is defined by

[CS] =
[〈

bn1b
∗
n1

〉 〈
bn1b

∗
n2

〉〈
bn2b

∗
n1

〉 〈
bn2b

∗
n2

〉] (1.16)
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Figure 1.6 A noisy device, S-parameter representation.

and, for a passive two-port network,

[CS] = kBT 	f
(
(I ) − (S)(S)T∗) (1.17)

where (I ) is the unit matrix and (S)T∗ denotes transpose and conjugate.

1.3 Linear FOMs

After having described linear networks, we proceed to explain the corresponding figures
of merit (FOMs). We make a distinction between FOMs that are defined on the basis of
S-parameters (Section 1.3.1) and those defined on the basis of noise (Section 1.3.2).

1.3.1 Linear network FOMs

1.3.1.1 The voltage standing-wave ratio
The voltage standing-wave ratio (VSWR) is nothing more than the evaluation of the port
mismatch. Actually, it is a similar measure of port matching, the ratio of the standing-
wave maximum voltage to the standing-wave minimum voltage. Figure 1.7 shows dif-
ferent standing-wave patterns depending on the load.

In this sense it therefore relates the magnitude of the voltage reflection coefficient and
hence the magnitude of either S11 for the input port or S22 for the output port.

The VSWR for the input port is given by

VSWRin = 1 + |S11|
1 − |S11| (1.18)

and that for the output port is given by

VSWRout = 1 + |S22|
1 − |S22| (1.19)
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Figure 1.7 The VSWR and standing-wave representation. The standing wave can be seen for
different values of the VSWR.

1.3.1.2 Return loss
Other important parameters are the input and output return losses. The input return loss
(RLin) is a scalar measure of how close the actual input impedance of the network is to
the nominal system impedance value, and is given by

RLin = ∣∣20 log10

∣∣ S11
∣∣∣∣ dB (1.20)

It should be noticed that this value is valid only for a single-port network, or, in a
two-port network, it is valid only if port 2 is matched; if not, S11 should be exchanged
for the input reflection coefficient as presented in Eq. (1.10). As can be seen from its
definition, the return loss is a positive scalar quantity.

The output return loss (RLout) is similar to the input return loss, but applied to the
output port (port 2). It is given by

RLout = ∣∣20 log10

∣∣ S22
∣∣∣∣ dB (1.21)

1.3.1.3 Gain/insertion loss
Since S11 and S22 have the meaning of reflection coefficients, their values are always
smaller than or equal to unity. The exception is the S11 of oscillators, which is larger
than unity, because the RF power returned is larger than the RF power sent into the
oscillator port.

The S21 of a linear two-port network can have values either smaller or larger than
unity. In the case of passive circuits, S21 has the meaning of loss, and is thus restricted
to values smaller than or equal to unity. This loss is usually called the insertion loss.
In the case of active circuits, there is usually gain, or in other words S21 is larger than
unity. In the case of passive circuits, S12 is equal to S21 because passive circuits are
reciprocal. The only exception is the case of ferrites. In the case of active circuits, S12

is different from S21 and usually much smaller than unity, since it represents feedback,

https://doi.org/10.1017/CBO9780511791512.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511791512.003


1.3 Linear FOMs 9

which is often avoided by design due to the Miller effect. The gain or loss is typically
expressed in decibels:

gain/insertion loss = ∣∣20 log10

∣∣ S21
∣∣∣∣ dB (1.22)

1.3.2 Noise FOMs

1.3.2.1 The noise factor
The previous results actually lead us to a very important and key point regarding noisy
devices, that is, the FOM called the noise factor (NF), which characterizes the degrada-
tion of the signal-to-noise ratio (SNR) by the device itself.

The noise factor is defined as follows.

D E F I N I T I O N 1.1 The noise factor (F) of a circuit is the ratio of the signal-to-noise
ratio at the input of the circuit to the signal-to-noise ratio at the output of the circuit:

F = SI/NI

SO/NO
(1.23)

where

SI is the power of the signal transmitted from the source to the input of the two-port
network

SO is the power of the signal transmitted from the output of the two-port network to
the load

NI is the power of the noise transmitted from the source impedance ZS at temperature
T0 = 290 K to the input of the two-port network

NO is the power of the noise transmitted from the output of the two-port network to the
load

The noise factor can be expressed as

F = Nad + GANaI

GANaI
(1.24)

where GA is the available power gain of the two-port network (for its definition, see
Section 1.8), Nad is the additional available noise power generated by the two-port net-
work, and NaI is the available noise power generated by the source impedance:

NaI = 4kBT0 	f (1.25)

As can be seen from Eq. (1.24), F is always greater than unity, and it does not depend
upon the load ZL. It depends exclusively upon the source impedance ZS.

Using reference [3], the noise factor can also be related to the S-parameters by:

F = Fmin + 4
RN

Z0

|�OPT − �s|2
(1 − |�s|2)|1 + �OPT|2 (1.26)

where Fmin is the minimum noise factor, RN is called the noise resistance, �OPT is the
optimum source reflection coefficient for which the noise factor is minimum.
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10 Measurement of wireless transceivers

This formulation can also be made in terms of Y -parameters, and can be expressed as
a function of the source admittance YS:

F = Fmin + RN

Re(YS)
|YS − YOPT|2 (1.27)

where YOPT is the optimum source admittance for which the noise factor is minimum.
The terms FMIN, RN, and �OPT (or YOPT) constitute the four noise parameters of the

two-port network. They can be related to the correlation matrices very easily [3].
The noise figure (NF) is simply the logarithmic version of the noise factor, F .

1.3.2.2 Cascade of noisy two-port components
If we cascade two noisy devices with noise factors F1 and F2, and with available power
gains GA1 and GA2, with a source impedance at temperature T0 = 290 K, the additional
available noise powers are

Nad1 = (F1 − 1)GA1kBT0 	f

Nad2 = (F2 − 1)GA2kBT0 	f
(1.28)

The available noise power at the output of the second two-port network is

NaO2 = kBT0 	f GA1GA2 + Nad1GA2 + Nad2 (1.29)

The total noise factor is thus

F = NaO2

kBT0 	f GA1GA2
(1.30)

This finally leads to the well-known noise Friis formula,

F = F1 + F2 − 1

GA1
(1.31)

In this expression the gain is actually the available power gain of the first two-port
network, which depends on the output impedance of the first network. F1 depends on
the source impedance, and F2 depends on the output impedance of the first two-port
network.

The general Friis formula is

F = F1 + F2 − 1

GA1
+ F3 − 1

GA1GA2
+ · · · + FN − 1

GA1GA2 . . . GAN−1

1.4 Nonlinear two-port networks

In order to better understand nonlinear distortion effects, let us start by explaining the
fundamental properties of nonlinear systems. Since a nonlinear system is defined as a
system that is not linear, we will start by explaining the fundamentals of linear systems.

Linear systems are systems that obey superposition. This means that they are systems
whose output to a signal composed by the sum of elementary signals can be given as
the sum of the outputs to these elementary signals when taken individually.
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Figure 1.8 The power balance of a nonlinear system.

This can be stated as

y(t) = SL[x(t)] = k1y1(t) + k2y2(t) (1.32)

where x(t) = k1x1(t)+k2x2(t), y1(t) = SL[x1(t)], and y2(t) = SL[x2(t)]. Any system
that does not obey Eq. (1.32) is said to be a nonlinear system. Actually, this violation
of the superposition theorem is the typical rule rather than being the exception. For the
remainder of this section, we assume the two-port network to be an amplifier.

To better understand this mechanism, consider the general active system of Fig. 1.8,
where PIN and POUT are the input power entering the amplifier and the output power
going to the load, respectively; PDC is the DC power delivered to the amplifier by the
power supply; and Pdiss is the total amount of power lost, by being dissipated in the
form of heat or in any other form [4].

Using the definition of operating power gain, G = POUT/PIN (see also Section 1.8.1),
and considering that the fundamental energy-conservation principle requires that PL +
Pdiss = PIN + PDC, we can write the operating power gain as

G = 1 + PDC − Pdiss

PIN
(1.33)

From this equation we can see that, since Pdiss has a theoretical minimum of zero
and PDC is limited by the finite available power from the supply, the amplifier cannot
maintain a constant power gain for increasing input power.

This will lead the amplifier to start to deviate from linearity at a certain input power,
and thus start to become nonlinear. Figure 1.9 presents this result by sketching the
operating power gain of an amplifier versus the input power rise.

1.4.1 Nonlinear generation

In order to evaluate how the inherent nonlinear phenomena can affect amplifiers, let us
consider a simple analysis, where we will compare the responses of simple linear and
nonlinear systems to typical inputs encountered in wireless technology.
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Figure 1.9 The nonlinear behavior of the variation of power gain versus input power.

In wireless systems, which are mainly based on radio-frequency communications, the
stimulus inputs are usually sinusoids, with these being amplitude- and phase-modulated
by some baseband information signal. Therefore the input signal of these systems can
be written as

x(t) = A(t)cos[ωct + θ(t)] (1.34)

where A(t) is the time-dependent amplitude, ωc is the carrier pulsation, and φ(t) is the
modulated phase.

The simplest form of nonlinear behavior that allows us to mathematically describe
the response is that in which the nonlinearity is represented by a polynomial [4]:

yNL(t) = a1x(t − τ1) + a2x(t − τ2)
2 + a3x(t − τ3)

3 + · · · (1.35)

In this case the polynomial was truncated to the third order to simplify the calcu-
lations, but a higher-degree polynomial can obviously be used. Actually, this type of
approximation is the first solution to the more complex nonlinear behavior of an ampli-
fier, and, if the as coefficients and τs are changed, then many systems can be modeled
in this way.

The system actually behaves as a linear one, if x(t)� x(t)2, x(t)3, and yNL(t) ≈
yL(t) = SL[x(t)] = a1x(t − τ1).

In this case, the linear response will be

yL(t) = a1A(t − τ1)cos[ωct + θ(t − τ1) − φ1] (1.36)
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and the overall nonlinear response can be written as

yNL(t) = a1A(t − τ1)cos[ωct + θ(t − τ1) − φ1]
+ a2A(t − τ2)

2 cos[ωct + θ(t − τ2) − φ2]2

+ a3A(t − τ3)
3 cos[ωct + θ(t − τ3) − φ3]3 (1.37)

Using some trigonometric relations, as presented in [4], the equations can be
written as

yNL(t) = a1A(t − τ1)cos[ωct + θ(t − τ1) − φ1]
+ 1

2
a2A(t − τ2)

2

+ 1

2
a2A(t − τ2)

2 cos[2ωct + 2θ(t − τ2) − 2φ2]

+ 3

4
a3A(t − τ3)

3 cos[ωct + θ(t − τ3) − φ3]

+ 1

4
a3A(t − τ3)

3 cos[3ωct + 3θ(t − τ3) − 3φ3] (1.38)

where φ1 = ωcτ1, φ2 = ωcτ2, and φ3 = ωcτ3.
In typical wireless communication systems, the variation of the modulated signals

is usually slow compared with that of the RF carrier, and thus, if the system does not
exhibit memory effects, one can write

yL(t) = a1A(t)cos[ωct + θ(t) − φ1] (1.39)

and

yNL(t) = a1A(t)cos[ωct + θ(t) − φ1]
+ 1

2
a2A(t)2

+ 1

2
a2A(t)2 cos[2ωct + 2θ(t) − 2φ2]

+ 3

4
a3A(t)3 cos[ωct + θ(t) − φ3]

+ 1

4
a3A(t)3 cos[3ωct + 3θ(t) − 3φ3] (1.40)

From Eqs. (1.39) and (1.40) it is clear that the linear and nonlinear responses are
significantly different. For instance the number of terms in the nonlinear formulation is
quite high compared with the number in the linear formulation.

Moreover, the output of the linear response is a version of the input signal, with
the same spectral contents, but with a variation in amplitude and phase as compared
with the input, whereas the nonlinear response consists of a panoply of other spectral
components, usually called spectral regrowth. Actually, this is one of the properties of
nonlinear systems, namely that, in contrast to a linear system, which can only introduce
quantitative changes to the signal spectra, nonlinear systems can qualitatively modify
spectra, insofar as they eliminate certain spectral components and generate new ones.
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Figure 1.10 Signal probing throughout the wireless system path: (a) the analog signal at point 4;
and (b) the signal at point 5, where the generation of nonlinear distortion is visible.

One example of a typical linear component is a filter, since the output of a filter
can in principle change exclusively the amplitude and phase of the input signal, while
an example of a nonlinearity is a frequency multiplier, where the output spectrum is
completely different from the input spectrum.

In a typical wireless system such as the one presented in Fig. 1.1, the most important
source of nonlinear distortion is the power amplifier (PA), but all the components can
behave nonlinearly, depending on the input signal excitation.

1.4.2 Nonlinear impact in wireless systems

In the previous section the nonlinear generation mechanism was explained using a sim-
ple polynomial. In this section we will probe the signal throughout the system presented
in Fig. 1.1.

Figure 1.10 presents the spectral content in each of the stages of the wireless system,
and allows one to see how the signal changes on traversing the communication path.
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As can be seen from the images, the starting signal is nothing more than a bit stream
arriving at our digital-to-analog converter, point 1 in Fig. 1.1. Then this signal is further
converted to analog and filtered out (point 2), up-converted to an IF channel (point 3),
amplified and further up-converted to RF (point 4), amplified again (point 5), and trans-
mitted over the air (point 6).

The signal then traverses the air interface and, at the receiver, it is first filtered out
(point 7), then amplified using a low-noise amplifier (point 8), and then down-converted
to IF (point 9), and to baseband again (point 10), and reconverted to a digital version
(point 11).

Since in this section we are looking mainly at the nonlinear behavior of the RF sig-
nal, let us concentrate on points 4 and 5. In this case the input signal has a certain
spectral shape, as can be seen in Fig. 1.10(a), and, after the nonlinear behavior of the
PA, it appears completely different at point 5, where several clusters of spectra appear,
Fig. 1.10(b).

The first cluster is centered at DC and, in practical systems, it consists of two forms of
distortion, namely the DC value itself and a cluster of very-low-frequency spectral com-
ponents centered at DC. The DC value distortion manifests itself as a shift in bias from
the quiescent point (defined as the bias point measured without any excitation) to the
actual bias point measured when the system is driven at its rated input excitation power.

If we look back at Eq. (1.40), we can understand that the DC component comes from
all possible mixing, beat, or nonlinear distortion products of the form cos(ωit) cos(ωj t),
whose frequency mixing appears at ωx = ωi − ωj , where ωi = ωj .

The low-frequency cluster near DC constitutes a distorted version of the amplitude-
modulating information, A(t), as if the input signal had been demodulated. This cluster
is, therefore, called the baseband component of the output. In spectral terms their fre-
quency lines are also generated from mixing products at ωx = ωi − ωj , but now where
ωi �= ωj .

From Fig. 1.10(b) it is clear that there are some other clusters appearing at 2ωc and
3ωc. These are the well-known second- and third-harmonic components, usually called
the harmonic distortion. Actually, they are high-frequency replicas of the modulated
signal.

The cluster appearing at 2ωc is again generated from all possible mixing products of
the form cos(ωit) cos(ωj t), but now the outputs are located at ωx = ωi + ωj , where
ωi = ωj (ωx = 2ωi = 2ωj ) or ωi �= ωj .

The third-harmonic cluster appears from all possible mixing products of the form
cos(ωit) cos(ωj t) cos(ωkt), whose outputs are located at ωx = ωi + ωj + ωk , where
ωi = ωj = ωk (ωx = 3ωi = 3ωj = 3ωk) or ωi = ωj �= ωk (ωx = 2ωi + ωk =
2ωj + ωk) or even ωi �= ωj �= ωk .

The last-mentioned cluster is the one appearing around ωc. In this scenario the non-
linear distortion appears near the spectral components of the input signal, but is also
exactly coincident with them, and thus is indistinguishable from them.

Unfortunately, and in contrast to the baseband or harmonic distortion, which falls
on out-of-band spectral components, and thus could be simply eliminated by bandpass
filtering, some of these new in-band distortion components are unaffected by any linear
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16 Measurement of wireless transceivers

operator that, naturally, must preserve the fundamental components. Thus, they consti-
tute the most important form of distortion in bandpass microwave and wireless sub-
systems. Since this is actually the most important form of nonlinear distortion in nar-
rowband systems, it is sometimes just called “distortion.”

In order to clearly understand and identify the in-band-distortion spectral compo-
nents, they must be first separated in to the spectral lines that fall exactly over the
original ones and the lines that constitute distortion sidebands. In wireless systems, the
former are known as co-channel distortion and the latter as adjacent-channel distortion.

Looking back at our formulation Eq. (1.40), all in-band-distortion products share the
form of cos(ωit)cos(ωj t)cos(ωkt), which is similar to the ones appearing at the third
harmonic, but now the spectral outputs are located at ωx = ωi + ωj − ωk . In this
case, and despite the fact that both co-channel and adjacent-channel distortion can be
generated by mixing products obeying ωi = ωj �= ωk (ωx = 2ωi − ωk = 2ωj − ωk)

or ωi �= ωj �= ωk , only the mixing terms obeying ωi = ωj = ωk (ωx = ωi) or
ωi �= ωj = ωk (ωx = ωi) fall on top of the co-channel distortion.

1.5 Nonlinear FOMs

Let us now try to identify how we can account for nonlinearity in wireless two-port
networks. To this end we will use different signal excitations, since those will reveal
different aspects of the nonlinear behavior. We will start first with a single-tone exci-
tation, and then proceed to the best-known signal excitation for nonlinear distortion,
namely two-tone excitation, and then the multi-sine excitation figures of merit will also
be addressed. Finally, a real modulated wireless signal will be used to define the most
important FOMs in wireless systems.

1.5.1 Nonlinear single-tone FOMs

We start by considering that x(t) in Eq. (1.35) is a single sinusoid, x(t) = A cos(ωct).
The output signal is described by Eq. (1.40), and, if we consider that the input signal
does not have a phase delay, it can be further simplified to

yNL(t) = a1A cos[ωct − φ1]
+ 1

2
a2A

2

+ 1

2
a2A

2 cos[2ωct − 2φ2]

+ 3

4
a3A

3 cos[ωct − φ3]

+ 1

4
a3A

3 cos[3ωct − 3φ3] (1.41)

In this case the output consists of single-tone spectral components appearing at DC,
in the same frequency component as the input signal, and at the second and third
harmonics.
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Figure 1.11 AM–AM curves, where the output power is plotted versus the input power increase.
The 1-dB-compression point is also visible in the image.

Actually, the output amplitude and phase variation versus input drive manifest them-
selves as if the nonlinear device could convert input amplitude variations into out-
put amplitude and phase changes or, in other words, as if it could transform possible
amplitude modulation (AM) associated with its input into output amplitude modulation
(AM–AM conversion) or phase modulation (AM–PM conversion).

AM–AM conversion is particularly important in systems that are based on amplitude
modulation, while AM–PM has its major impact in modern wireless telecommunication
systems that rely on phase-modulation formats.

If a careful analysis is done at the harmonics, we can also calculate the ratio of the
integrated power of all the harmonics to the measured power at the fundamental, a figure
of merit named total harmonic distortion (THD).

1.5.1.1 AM–AM
The AM–AM figure of merit describes the relationship between the output amplitude
and the input amplitude at the fundamental frequency [4].

Figure 1.11 presents the AM–AM characteristic, where the power of each of the fun-
damental spectral components is plotted versus its input counterpart. As can be seen, it
characterizes the gain compression or expansion of a nonlinear device versus the input
drive level.

One of the most important FOMs that can be extracted from this type of characteri-
zation is called the 1-dB-compression point, P1dB.

1.5.1.2 The 1-dB-compression point (P1dB)
D E F I N I T I O N 1.2 The 1-dB-compression point (P1dB ) is defined as the output power
level at which the signal output is compressed by 1 dB, compared with the output power
level that would be obtained by simply extrapolating the linear system’s small-signal
characteristic.
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Figure 1.12 AM–PM curves, where the phase delay of the output signal is visible when the input
power is varied.

Thus, the P1dB FOM also corresponds to a 1-dB gain deviation from its small-signal
value, as depicted in Fig. 1.9 and Fig. 1.11.

1.5.1.3 AM–PM
Since the co-channel nonlinear distortion actually falls on top of the input signal spectra,
Eq. (1.41), the resulting output component at that frequency will be the addition of two
vectors: the linear output signal, plus a version of the nonlinear distortion. So vector
addition can also determine a phase variation of the resultant output, when the input
level varies, as shown in Fig. 1.12.

The change of the output signal phase, φ(ω,Ai), with increasing input power is the
AM–PM characteristic and may be expressed as a certain phase deviation, in
degrees/dB, at a predetermined input power.

1.5.1.4 Total harmonic distortion
The final FOM in connection with single-tone excitation is one that accounts for the
higher-order harmonics, and it is called total harmonic distortion (THD).

D E F I N I T I O N 1.3 The total harmonic distortion (THD) is defined as the ratio between
the square roots of the total harmonic output power and the output power at the funda-
mental frequency.

Therefore the THD can be expressed as

THD =
√

1/T
∫ T

0

[∑∞
r=2 A0r (ω,Ai)cos[rωt + θ0r (ω,Ai)]

]2
dt√

1/T
∫ T

0

[
A01(ω,Ai)cos[ωt + θ01(ω,Ai)]

]2
dt

(1.42)
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and, for the polynomial case, we will have

THD =
√

1
8a2

2A4
i + (1/32)a2

3A6
i + · · ·√

a2
1A2

i /2
(1.43)

1.5.2 Nonlinear two-tone FOMs

A single-tone signal unfortunately is just a first approach to the characterization of a
nonlinear two-port network. Actually, as was seen previously, the single-tone signal
can be used to evaluate the gain compression and expansion, and harmonic generation,
but no information is given about the bandwidth of the signal, or about the distortion
appearing in-band.

In order to get a better insight into these in-band-distortion products, RF engineers
started to use so-called two-tone excitation signals.

A two-tone signal is composed of a summation of two sinusoidal signals,

x(t) = A1 cos(ω1t) + A2 cos(ω2t) (1.44)

Since the input is now composed of two different carriers, many more mixing prod-
ucts will be generated when it traverses the polynomial presented in Eq. (1.35). There-
fore, it is convenient to count all of them in a systematic manner. Hence the sine repre-
sentation will be substituted by its Euler expansion representation:

x(t) = A1 cos(ω1t) + A2 cos(ω2t)

= A1
e j [ω1t] + e−j [ω1t]

2
+ A2

e j [ω2t] + e−j [ω2t]

2
(1.45)

This type of formulation actually allows us to calculate all the mixing products arising
from the polynomial calculations, since the input can now be viewed as the sum of
four terms, each one involving a different frequency. That is, we are assuming that
each sinusoidal function involves a positive- and a negative frequency component (i.e.,
the corresponding positive and negative sides of the Fourier spectrum), so that any
combination of tones can be represented as

x(t) =
R∑

r=1

Ar cos(ωr t)

= 1

2

R∑
r=−R;r �=0

Are
jωr t (1.46)

where r �= 0, and Ar = A∗−r for real signals.
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Figure 1.13 The spectrum arrangement of a two-tone signal traversing a nonlinearity, where
different spectrum clusters can be seen.

The output of the polynomial model for this type of formulation is now much simpler
to develop, and for each mixing value we will have

yNLn(t) = 1

2n
an

[
R∑

r=−R

Are
jωr t

]n

= 1

2n
an

R∑
r1=−R

· · ·
R∑

rn=−R

Ar1 · · ·Arne
j (ωr1 +···+ωrn )t (1.47)

The frequency components arising from this type of mixing are all possible combi-
nations of the input ωr :

ωn = ωr1 + · · · + ωrn

= m−Rω−R + · · · + m−1ω−1 + m1ω1 + · · · + mRωR (1.48)

where the vector [m−R ... m−1m1 ... mR] is the nth order mixing vector, which must
satisfy

R∑
r=−R

mr = m−R + · · · + m−1 + m1 + · · · + mR

= n (1.49)

In the case of a two-tone signal (Fig. 1.13), the first-order mixing, arising from the
linear response (coefficient a1 in the polynomial), will be
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−ω2,−ω1, ω1, ω2 (1.50)

Adding then the second order (coefficient a2), we will have

−2ω2,−ω2 − ω1,−2ω1, ω1 − ω2, DC, ω2 − ω1, 2ω1, ω1 + ω2, 2ω2 (1.51)

and, for the third-order coefficient a3,

−3ω2,−2ω2 − ω1,−ω2 − 2ω1,−3ω1,

−2ω2 + ω1,−ω2,−ω1,−2ω1 + ω2,

2ω1 − ω2, ω1, ω2, 2ω2 − ω1,

3ω1, 2ω1 + ω2, ω1 + 2ω2, 3ω2 (1.52)

Obviously there are several ways in which these mixing products can be gathered,
and the reader can find the calculations in [4, 5]. If the Euler coefficients corresponding
to each mixing product are now added, we obtain the following expression for the output
of our nonlinearity when excited by a two-tone signal:

yNL(t) = a1A1 cos(ω1t − φ110) + a1A2 cos(ω2t − φ110)

+ 1

2
a2(A

2
1 + A2

2)

+ a2A1A2 cos[(ω2 − ω1)t − φ2−11]
+ a2A1A2 cos[(ω1 + ω2)t − φ211]
+ 1

2
a2A

2
1 cos(2ω1t − φ220) + 1

2
a2A

2
2 cos(2ω2t − φ202)

+ 3

4
a3A

2
1A2 cos[(2ω1 − ω2)t − φ32−1]

+
(

3

4
a3A

3
1 + 6

4
a3A1A

2
2

)
cos(ω1t − φ310)

+
(

3

4
a3A

3
2 + 6

4
a3A2A

2
1

)
cos(ω2t − φ301)

+ 3

4
a3A1A

2
2 cos[(2ω2 − ω1)t − φ3−12]

+ 1

4
a3A

3
1 cos(3ω1t − φ330)

+ 3

4
a3A

2
1A2 cos[(2ω1 + ω2)t − φ321]

+ 3

4
a3A1A

2
2 cos[(ω1 + 2ω2)t − φ312]

+ 1

4
a3A

3
2 cos(3ω2t − φ303) (1.53)

where φ110 = ω1τ1, φ101 = ω2τ1, φ2−11 = ω2τ2−ω1τ2, φ220 = 2ω1τ2, φ211 = ω1τ2+ω2τ2,
φ202 = 2ω2τ2, φ32−1 = 2ω1τ3 + ω2τ3, φ310 = ω1τ3, φ301 = ω2τ3, φ3−12 = 2ω2τ3 − ω1τ3,
φ330 = 3ω1τ3, φ321 = 2ω1τ3 + ω2τ3, φ312 = ω1τ3 + 2ω2τ3, and φ303 = 3ω2τ3.
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If we look exclusively at the in-band distortion, the output components will be

yNLin-band(t) = a1A1 cos
(
ω1t − φ110

)+ a1A2 cos
(
ω2t − φ110

)
+ 3

4
a3A

2
1A2 cos

[
(2ω1 − ω2)t − φ32−1

]
+
(

3

4
a3A

3
1 + 6

4
a3A1A

2
2

)
cos

(
ω1t − φ310

)
+
(

3

4
a3A

3
2 + 6

4
a3A2A

2
1

)
cos

(
ω2t − φ301

)
+ 3

4
a3A1A

2
2 cos

[
(2ω2 − ω1)t − φ3−12

]
(1.54)

From this equation it is clear that the in-band distortion in this case is much richer
than that in the single-sinusoid case. With the two-tone excitation one can identify the
linear components arising from the a1 terms and the nonlinear components arising from
the a3 terms.

For the nonlinear components, two further distinctions can be made, since two terms
will fall in frequency sidebands, namely the cases of 2ω1 − ω2 and 2ω2 − ω1, and two
other terms will fall right on top of the input signal at ω1 and ω2.

The terms falling in the sidebands are normally called intermodulation distortion
(IMD). Actually, every nonlinear mixing product can be denominated as an intermodu-
lation component since it results from intermodulating two or more different tones. But,
although it cannot be said to be universal practice, the term IMD is usually reserved for
those particular sideband components.

This form of distortion actually constitutes a form of adjacent-channel distortion.
The terms that actually fall on top of ω1 and ω2 are known as the co-channel distor-

tion, and in fact, if we look carefully, we see that they can actually be divided into two
separate forms. For instance, for ω1,

yNLco-channel(t) =
(

3

4
a3A

3
1 + 6

4
a3A1A

2
2

)
cos

(
ω1t − φ310

)
= 3

4
a3A

3
1 cos

(
ω1t − φ310

)+ 6

4
a3A1A

2
2 cos

(
ω1t − φ310

)
(1.55)

which corresponds to a term that depends only on A3
1, which is perfectly correlated with

the input signal at A1, and another term that falls on top of ω1 but depends also on the
A2 term, meaning that it can be uncorrelated with the input signal.

Actually, the correlated version of the output signal 3
4a3A

3
1 cos(ω1t−φ310) is the term

that is responsible for the compression or expansion of the device gain. This is similar to
what was previously said regarding single-tone excitations, which we called AM–AM
and AM–PM responses.

The other term, 6
4a3A1A

2
2 cos(ω1t − φ310), which also includes a contribution from

A2 and can be uncorrelated with the input signal, is actually the worst problem in terms
of communication signals. It is sometimes referred to as distortion noise. In wireless
communications it is this type of nonlinear distortion that can degrade, for instance, the
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Table 1.1 Two-tone nonlinear distortion mixing products up to third order

Mixing product frequency Output amplitude Result

ω1 (1/2)a1A1 Linear response
ω2 (1/2)a1A2 Linear response

ω1 − ω1 (1/2)a2A2
1 Change in DC bias point

ω2 − ω2 (1/2)a2A2
2 Change in DC bias point

ω2 − ω1 (1/2)a2A1A2 Second-order mixing response
2ω1 (1/4)a2A2

1 Second-order harmonic response
ω1 + ω2 (1/2)a2A1A2 Second-order mixing response
2ω2 (1/4)a2A2

2 Second-order harmonic response

2ω1 − ω2 (3/8)a3A2
1A2 Third-order intermodulation distortion

ω1 + ω2 − ω2 (3/4)a3A1A2
2 Cross-modulation response

ω1 + ω1 − ω1 (3/8)a3A3
1 AM–AM and AM–PM response

ω2 + ω2 − ω2 (3/8)a3A3
2 AM–AM and AM–PM response

ω2 + ω1 − ω1 (3/4)a3A2
1A2

1 cross-modulation response
2ω2 − ω1 (3/8)a3A1A2

2 Third-order intermodulation distortion
3ω1 (1/8)a3A3

1 Third-order harmonic response
2ω1 + ω2 (3/8)a3A2

1A2 Third-order mixing response
2ω2 + ω1 (3/8)a3A1A2

2 Third-order mixing response
3ω2 (1/8)a3A3

2 Third-order harmonic response

error-vector magnitude (the definition of which will be given later) in digital communi-
cation standards.

Table 1.1 summarizes the above definitions by identifying all of the distortion com-
ponents falling on the positive side of the spectrum which are present in the output of
our third-degree polynomial subjected to a two-tone excitation signal.

Following this nonlinear study for a two-tone signal excitation, some figures of merit
can be defined.

1.5.2.1 The intermodulation ratio
The intermodulation ratio (IMR) is, as the name states, the ratio between the power cor-
responding to the output that appears exactly at the same positions as the input spectral
components (these components will be called from now on the power at the fundamental
frequency) and the power corresponding to the intermodulation power.

D E F I N I T I O N 1.4 The intermodulation ratio (IMR) is defined as the ratio between the
fundamental and intermodulation (IMD) output powers:

IMR = Poutfund

PIMD
(1.56)
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Figure 1.14 IMR definition in a two-tone excitation.

It should be noticed here that the output power at the fundamental frequency already
includes some nonlinear distortion that appears at the same frequency as the input. This
was seen in Section 1.5.2 as the co-channel distortion responsible for the AM–AM
curves for the case of single-tone excitation, and consequently for the gain compression
and expansion. On considering Fig. 1.14 and Eq. (1.56), it is clear that the intermodu-
lation ratio refers only to the in-band nonlinear distortion, not to the harmonic content.
This measure is usually described in dBc, meaning decibels below carrier. It should also
be pointed out here that the upper IMD and the lower IMD may be different, which is
called IMD asymmetry [6]. The IMR must then be defined as upper or lower.

In order to observe the results for the two-tone case, as was stated above, the in-band
distortion is

yNLin-band(t) = a1A1 cos
(
ω1t − φ110

)+ a1A2 cos
(
ω2t − φ110

)
+ 3

4
a3A

2
1A2 cos

[
(2ω1 − ω2)t − φ32−1

]
+
(

3

4
a3A

3
1 + 6

4
a3A1A

2
2

)
cos

(
ω1t − φ310

)
+
(

3

4
a3A

3
2 + 6

4
a3A2A

2
1

)
cos

(
ω2t − φ301

)
+ 3

4
a3A1A

2
2 cos

[
(2ω2 − ω1)t − φ3−12

]
(1.57)

which has terms that are clearly co-channel distortion, and thus will add to the output
linear response, namely those appearing at

yNLin-band-co-channel(t) = a1Ai1 cos
(
ω1t − φ110

)+ a1Ai2 cos
(
ω2t − φ110

)
+
(

3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)
cos

(
ω1t − φ310

)
+
(

3

4
a3A

3
i2 + 6

4
a3Ai2A

2
i1

)
cos

(
ω2t − φ301

)
(1.58)
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In this case the IMD power and the fundamental linear output power will be

PIMD(2ω1 − ω2) = 1

T2ω1−ω2

∫ 2ω1−ω2

0

[
3

4
a3A

2
i1Ai2 cos

[
(2ω1 − ω2)t − φ32−1

]]2

dt

= 9

32
a2

3A4
i1A

2
i2

Pfund(ω1) = 1

Tω1

∫ ω1

0

[
a1Ai1 cos

(
ω1t − φ110

)

+
(

3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)
cos

(
ω1t − φ310

)]2

dt

= 1

2
a2

1A2
i1 + 1

2

(
3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)2

+ a1Ai1

(
3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)
cos

(
φ110 − φ310

)
(1.59)

The same calculations should be done for the IMD at 2ω2 − ω1, resulting in an IMR
for two tones as

IMR2tlow = 32

9a2
3A4

i1A
2
i2

×
[

1

2
a2

1A2
i1 + 1

2

(
3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)2

+ a1Ai1

(
3

4
a3A

3
i1 + 6

4
a3Ai1A

2
i2

)
cos(φ110 − φ310)

]
(1.60)

Nevertheless, for low-power signals the nonlinear contribution to the co-channel dis-
tortion is insignificant, and thus sometimes only the linear output power is considered
when calculating the overall IMR, which will be

IMR2tlow =
1
2a2

1A2
i1

(9/32)a2
3A4

i1A
2
i2

(1.61)

For equal input signal amplitude in both tones, Ai = Ai1 = Ai2, the IMR value will
finally be

IMR2t =
1
2a2

1A2
i

(9/32)a2
3A6

i

= 16a2
1

9a2
3A4

i

(1.62)

1.5.2.2 Underlying linear gain
Actually it should also be mentioned here that sometimes a figure of merit called under-
lying linear gain (ULG) is defined. This gain accounts for the overall output signal that
is correlated with the input signal, thus the ULG is given by

ULG = Poutfund

Pinfund

(1.63)
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For a two-tone excitation it will be

ULG2tlow =
1
2a2

1A2
i1 + 1

2

( 3
4a3A

3
i1

)2 + a1Ai1
( 3

4a3A
3
i1

)
cos

(
φ110 − φ310

)
1
2A2

i1

(1.64)

In the case of linear systems, this gain reduces to the linear gain, that is LG =
1
2a2

1A2
i1/
(

1
2A2

i1

)
= a2

1 . Actually, with the ULG we are accounting for the AM–AM
impact on the overall gain.

1.5.2.3 Intercept points
If the output power at the fundamental and that at the IMD spectral components are plot-
ted versus input power for traditional nonlinear components, the results seen in Fig. 1.15
are observed. In this case the fundamental output power will start first with a linear pro-
gression with the input power. That is, a 1-dB increase in input power will impose a
1-dB increase in output power. Next it will start compressing or expanding the growth
slope accordingly to Eq. (1.59). The IMD power will start at a lower level than the
fundamental power, since it depends on a third-order polynomial. Then it will rise at
a slope of 3 dB for each additional 1 dB at the input, corresponding to the third-order
polynomial. Finally, for higher values of output power, the IMD will compress or ex-
pand according to higher orders of distortion. If the linear output response on the one
hand and the third-order small-signal response on the other hand are extrapolated, it
gives rise to a FOM called the third-order intercept point (IP3). This FOM allows wire-
less engineers to calculate the small-signal nonlinear response very efficiently. Actually,
this is very important for obtaining the amount of nonlinear distortion that arises from
an interferer at the wireless system receiver.

D E F I N I T I O N 1.5 The third-order intercept point (IP3) is a fictitious point that is
obtained when the extrapolated 1-dB/dB slope line of the output fundamental power
intersects the extrapolated 3-dB/dB slope line of the IMD power.

From a mathematical point of view, we will have to calculate the input or output
power at which they intercept, thus, referring to Eq. (1.59),

1

2
a2

1A2
i = 9

32
a2

3A6
i → A2

i = 4

3

a1

a3
(1.65)

IP3 = P(ω1) = 2

3

a3
1

a3
(1.66)

In this case the output IP3 was calculated, but in certain cases it is preferable to
calculate the input IIP3; see Fig. 1.15.

It should be mentioned that, despite their rarely being seen, some other intercept
figures of merit could be defined for fifth-order (IP5) or seventh-order (IP7) distortion.
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Figure 1.15 The definition of IP3. The extrapolated IP3 can be seen as the intercept of the
third-order and fundamental power rises.

IP3 can be further used to calculate the intermodulation power at any input power, if
restricted to the small-signal region. It is then possible to relate the IMR to IP3 by [4]

IP3dB = PfunddB + 1

2
IMRdB (1.67)

or

IMRdB = 2
(
IP3dB − PfunddB

)
(1.68)

These equations were calculated for a two-tone input signal with equal amplitudes in
both tones, and PfunddB is the output power at a specific tone.

1.5.2.4 Nonlinear distortion in the presence of dynamic effects
It should be stated here that certain nonlinear DUTs present what are called memory ef-
fects. These effects are a representation of dynamics in the nonlinear generation mech-
anism, as is discussed in [6]. The dynamic effects can mask the real intermodulation
distortion in the DUT, since the lower sideband and higher sideband of the two-tone
analysis can be different. Most often the dynamics arise from a baseband component
being mixed with the fundamentals. So the dynamic effects can be measured by excit-
ing these baseband components.
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Figure 1.16 The impact of two-tone nonlinear dynamics: (a) two-tone IMD measurement when
memory effects are visible; and (b) two-tone IMD variation with tone spacing.

These phenomena can be measured in the laboratory by exciting the nonlinear device
with a signal that covers most of the baseband spectrum behavior. One way to achieve
that is by using a two-tone signal and varying the tone spacing between the tones. If
the IMD is measured with varying tone separation, then the impact of the baseband
envelope behavior will be seen in the IMD variation, as shown in Fig. 1.16.

1.5.3 FOMs for nonlinear continuous spectra

New wireless communication standards, mainly digital wireless communications, have
great richness in spectral content, which means that the single-tone and two-tone figures
of merit have become obsolete, and are not able to characterize important aspects of that
type of transmission.

Thus microwave and wireless system engineers have started to use other forms of
excitation and other types of FOM to account for nonlinear distortion in digital wireless
communication signals. Moreover, the nonlinear nature of RF components means that
there will be a close relationship between the usefulness of a certain characterization
technique and the similarity of the test signal to the real equipment’s excitation.

In this sense engineers are considering other forms of excitation, including digitally
modulated carriers with pseudo-random baseband signals, multi-tones (more than two
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Frequency

Figure 1.17 A typical input signal in a wireless communication system.

Frequency

Figure 1.18 The nonlinear output response of a multi-sine signal excitation.

tones, usually called multi-sines), and band-limited noise [7]. In this section we will
address figures of merit developed for rich spectra, continuous or not.

In Fig. 1.17 we can see the typical input in a wireless communication system, for
which the spectrum is actually continuous. Microwave engineers sometimes use similar
signals in the laboratory for mimicking this type of spectral richness using a multi-sine
signal, Fig. 1.18, which allows a much simpler analysis of the output signal.

Figures 1.18 and 1.19 present the output of a typical signal like this, where the
baseband, IMD, second harmonic and third harmonic are evident. This is similar to what
we had previously seen in a two-tone excitation, but now each cluster is much richer.

In this sense the out-of-band distortion is dealt with by deploying the same line of
thought as that which was used for the single-tone and the two-tone signal, meaning
that in traditional wireless signals these are eliminated using output filtering. So the
typical FOM for wireless systems usually refers mainly to the in-band components.

Figure 1.20 presents the in-band distortion that can be seen at the output of a nonlinear
system when it is excited by a bandlimited continuous spectrum.

It is evident that we can identify the co-channel distortion that falls on top of the
linear output signal, corresponding to a linear complex gain multiplication of the input
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Frequency

Figure 1.19 The nonlinear output response of a rich input spectrum.
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Figure 1.20 The in-band nonlinear output response of a rich input spectrum.

spectrum. We can also see a sideband on each side, corresponding to what is called
spectral regrowth. It arises from the nonlinear odd-order terms, similarly to the IMD
tones appearing in a two-tone excitation. Having this signal in mind, we can now define
some important figures of merit for characterization of nonlinear rich spectra.

1.5.3.1 The multi-sine intermodulation ratio
The multi-sine intermodulation ratio (M-IMR) is actually a generalization of the IMR
concept introduced in Section 1.5.2.1. As can be seen from Fig. 1.21, this figure of merit
can be defined as follows.

D E F I N I T I O N 1.6 The multi-sine intermodulation ratio (M-IMR) is defined as the ratio
of the common fundamental power per tone, Pfundtone , to the power of the ωr distortion
component present in the lower or upper adjacent bands, PL/U(ωr).

In mathematical terms it is nothing other than

M-IMR = Pfundtone

PL/U(ωr)
(1.69)
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Figure 1.21 The definition of the multi-sine intermodulation ratio.
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Figure 1.22 The definition of the adjacent-channel power ratio.

1.5.3.2 The adjacent-channel power ratio
The FOM known as the M-IMR allows engineers to measure and account for each tone
in the multi-sine approach, but when the signal is continuous the user should account
not for each sine, but for all the spectral power that is being created by the nonlinear-
ity. This part of the spectrum is called adjacent-channel distortion, and is composed of
all distortion components falling on the adjacent-channel location. Actually, in typical
communication scenarios it can be a source of interference with adjacent channels. For
accounting for this type of distortion, and mainly the amount of power being regrown,
several FOMs can be defined.

D E F I N I T I O N 1.7 The total adjacent-channel power ratio (ACPRT ) is the ratio of
the total output power measured in the fundamental zone, Pfund, to the total power
integrated in the lower, PLA, and upper, PUA, adjacent-channel bands.

Figure 1.22 shows this FOM and how it is calculated. Mathematically it can be
described as
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ACPRT = Pfund

PLA + PUA

=
∫ ωU1
ωL2

So(ω)dω∫ ωL2
ωL1

So(ω)dω + ∫ ωU2
ωU1

So(ω)dω
(1.70)

where So(ω) is the power spectral density.
Sometimes it is also interesting to address only a specific part of the spectral regrowth,

and in that situation we can define the upper or lower ACPR value. This FOM can be
defined as follows.

D E F I N I T I O N 1.8 The upper or lower adjacent-channel power ratio (ACPRL or
ACPRU ) is the ratio between the total output power measured in the fundamental
zone, Pfund, and the lower or upper adjacent-channel power, PLA or PUA.

Mathematically,

ACPRL = Pfund

PLA
=
∫ ωU1
ωL2

So(ω)dω∫ ωL2
ωL1

So(ω)dω

ACPRU = Pfund

PUA
=
∫ ωU1
ωL2

So(ω)dω∫ ωU2
ωU1

So(ω)dω

(1.71)

Sometimes it is preferable to consider not all of the adjacent-channel power, but only
a piece of it. That happens because in continuous spectra it is usually difficult to define
where the adjacent-channel spectrum starts and ends, mainly due to the roll-off of the
system filters. Thus the industry refers to this FOM as the spot ACPR, this being defined
as follows.

D E F I N I T I O N 1.9 The spot adjacent-channel power ratio (ACPRSP L
or ACPRSP U

)
is the ratio of the total output power measured in the fundamental zone, Pfund, to the
power integrated in a band of predefined bandwidth and distance from the center fre-
quency of operation PSPL/U .

Mathematically it can be described as

ACPRSPL = Pfund

PSPL
=

∫ ωU1
ωL2

So(ω)dω∫ ωNBL2
ωNBL1

So(ω)dω

ACPRSPU = Pfund

PSPU
=

∫ ωU1
ωL2

So(ω)dω∫ ωNBU2
ωNBU1

So(ω)dω

(1.72)

Figure 1.23 shows this figure of merit and how it is calculated.

1.5.3.3 Co-channel distortion FOMs
As was seen previously, nonlinear distortion generates adjacent-band spectral regrowth,
but also co-channel distortion, which imposes a strong degradation of the signal-to-
noise ratio. Unfortunately, co-channel distortion falls exactly on top of the input signal
spectrum, and thus on top of the linear output signal.
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Figure 1.23 The definition of the adjacent-channel spot power ratio.
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Figure 1.24 The definition of the noise power ratio.

This type of distortion can be accounted for using a FOM known as the co-channel
power ratio (CCPR), which allows a correct measure of the nonlinear distortion falling
inside the band. However, because this form of distortion is intricately mixed with the
fundamental zone of much higher amplitude, the measurement of this type of distortion
is quite difficult. That is why wireless system engineers came up with a FOM called
the noise power ratio (NPR) that actually allows one to characterize the co-channel
distortion in an indirect way. The basic idea is mainly to open a notch in the input signal
spectrum, and to account for the noise in that notch hole both at the input and at the
output, Fig. 1.24. We will see in future chapters how to measure this type of co-channel
distortion, but let us now define these co-channel FOMs.

The NPR can be defined as follows.

D E F I N I T I O N 1.10 The noise power ratio (NPR) is defined as the ratio of the output
power spectral density function measured in the vicinity of the test window position, ωT,
So(ωT), to the power spectral density observed within that window, Swd(ωT).

Mathematically it is expressed by

NPR(ωT) = So(ωT)

Swd(ωT)
(1.73)
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Figure 1.25 The definition of the co-channel power ratio.

The co-channel power ratio (Fig. 1.25) can be defined as follows.

D E F I N I T I O N 1.11 The co-channel power ratio (CCPR) is defined as the ratio of the
integrated output power measured in the fundamental zone, Pfund, to the total integrated
co-channel perturbation, Pco-channel.

Mathematically it is expressed as

CCPR = Pfund

Pco-channel

=
∫ ωU1
ωL2

So(ω)dω∫ ωU1
ωL2

Sco-channel distortion(ω)dω
(1.74)

1.6 System-level FOMs

Regarding general figures of merit that can be applied to generic RF and wireless com-
ponents and circuits, some system-level FOMs will now be presented. These FOMs
relate more generally not to a single component or circuit, but rather to a bigger system.
In that sense they are normally stated as high-level quantities, and most of the time they
are related to the information being sent over the communication channel and thus not
necessarily to any spectral or time characteristics.

Some of these FOMs include the error-vector magnitude and the bit error rate, which
are FOMs that can be measured at a high level of abstraction and that depend not on a
single component but rather on the activity of the complete system.

1.6.1 The constellation diagram

In a digital radio, the evaluation of the transmitted signals is fundamental. This charac-
terization can be done by referring to the constellation diagram. Let us explain the con-
cept of a constellation diagram. In a digital modulated RF signal we can describe
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the input and output signal as a sine wave that is in phase or in quadrature phase
arrangement:

x(t) = A(t)cos(ωt + θ(t))

= A(t)
ej (ωt+θ(t)) + e−j (ωt+θ(t))

2

= Re
[
A(t)e−j (ωt+θ(t))

]

= Re
[
A(t)e−jθ(t)e−jωt

]

= Re
[
x̃(t)e−jωt

]

= Re
{
[I (t) + jQ(t)]e−jωt

}
(1.75)

= I (t)cos(ωt) + Q(t)sin(ωt)

By representing a wireless signal as a complex number and modulating a cosine and
sine carrier signal with the real and imaginary parts, respectively, the symbol can be
sent with orthogonal carriers on the same frequency.

These carriers are often referred to as quadrature carriers. If the wireless system uses
a coherent detector, then it is possible to independently demodulate these carriers. This
principle is actually the base for quadrature modulation.

Actually the phase and quadrature information is normally called the complex enve-
lope of the signal, and is represented in several ways. One possibility is to include a
two-time-domain graph with I (t) and Q(t) plotted over time; the other possibility is
using a constellation diagram, where the phase and quadrature values are plotted over
each other in a complex graph representation (see Fig. 1.26).

Since the symbols are represented as complex numbers, they can be visualized as
points on the complex plane. The real-number and imaginary-number coordinate axes
are often called the in-phase axis, or I -axis, and the quadrature axis, or Q-axis.

Plotting several symbols in a scatter diagram produces the constellation diagram.
The points on a constellation diagram are called constellation points. They are a set of
modulation symbols comprising the modulation alphabet.

Thus a constellation diagram is nothing more than a representation of these I (t) and
Q(t) in a complex diagram, plotting each pattern in phase (I (t)) and quadrature (Q(t)).
Actually, it displays the signal as a two-dimensional scatter diagram in the complex
plane. Sometimes the plot is displayed only at the symbol-sampling instants, but the
overall trajectory is also very important for understanding certain aspects of the system
behavior.

In a pure quadrature phase-shift keying (QPSK) signal the constellation diagram will
be that presented in Fig. 1.27(a) if the represented symbols are plotted only at the symbol
rate, but it will be that presented in Fig. 1.27(b) if the overall trajectories of I (t) and
Q(t) are plotted.
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Figure 1.26 The I (t) and Q(t) representation: (a) time-domain waveforms and (b) the
constellation diagram.

Constellation diagrams can be used to recognize the type of interference and distor-
tion in a signal.

This tool is very important, since it allows engineers to observe the transmitted con-
stellation points and to compare them with the received ones. In this way, they are able
to identify the similarities and differences between them, thereby accounting for the
signal degradation from a point of view that is actually the ultimate one, meaning that
it relates directly to the information transmission quality.

The system itself can degrade the transmitted signal by adding noise to the signal, or
can degrade it due to nonlinear distortion, as was seen in Section 1.4.

In terms of transmission degradation, engineers will seek in the constellation diagram
a deviation of the actual received signal from the transmitted one, and will calculate this
difference using some form of Euclidean distance. Thus the receiver will demodulate
the received signal incorrectly if the corruption has caused the received symbol to move
closer to another constellation point than the one transmitted.

This is actually called maximum-likelihood detection. The use of the constellation
diagram allows a straightforward visualization of this process.
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(a) (b)

Figure 1.27 The QPSK constellation diagram: (a) Sampled at the symbol rate; and (b) the overall
trajectory.

1.6.2 The error-vector magnitude

Considering the constellation-diagram approach, the first system-level FOM to be pre-
sented is the error-vector magnitude (EVM). The EVM is a measure that is used to
evaluate the performance of an RF system in digitally modulated radios.

An ideal signal sent by an ideal transmitter without any interference will have all
constellation points precisely at the ideal locations. However, if the signal is interfered
with by different propagation-channel imperfections, such as noise, nonlinear distortion,
phase noise, adjacent-channel interference, etc., the symbols and thus the constellation
points will deviate from the ideal locations.

The EVM is actually accounting for the errors in the points in a constellation diagram.
It is nothing more than a measure of how far the points are from their ideal locations.

D E F I N I T I O N 1.12 The error-vector magnitude (EVM) is a vector (geometric) in the
I–Q plane between the ideal constellation point and the point received by the receiver.
It can also be stated as the difference between actually received symbols and ideal
symbols. The average power of the error vector, normalized with respect to the signal
power, is the EVM. For the percentage format, the root-mean-square (rms) average is
used.

In mathematical terms the EVM is expressed as a percentage:

EVM[RMS] =
√√√√∑N

k=1 |Zc(k) − S(k)|2∑N
k=1 |S(k)|2 (1.76)

EVM[%] = EVM[RMS] × 100 (1.77)

where N is the number of received symbols, Zc( ) is the actual received symbol, and
S( ) is the ideal symbol that should be received (Fig. 1.28).
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Q

I

Figure 1.28 Calculation of the error-vector magnitude.

The EVM can also be obtained from the signal-to-noise ratio, and some relationships
have been developed to compare these two quantities [8]:

EVM[RMS] =
√

1

SNR
(1.78)

This equation is very important, since it states that, by accounting for the noise degra-
dation or the nonlinear distortion degradation inside the band, it is possible to account
for the EVM of an overall system.

1.6.3 The peak-to-average power ratio

Another important FOM that actually cannot be attributed to the system itself, but rather
must be attributed to the signal, is the one that accounts for the relationship between the
peak power and the average power of the signal. Some authors [9] have used the peak-
to-average power ratio (PAPR), as the ratio of the average power that would result if the
envelope were sustained at its peak magnitude to the average power in the N -sinusoid
sum. The PAPR thus has the mathematical form

PAPR = max|x(t)2|
[1/(NT )] ∫ NT

0 |x(t)|2 dt
(1.79)

A version of the PAPR for a sampled signal can also be used. This is defined as

PAPRs = max|x2
k |

E|(x(k)|2 dt
(1.80)

where E( ) is the expectancy of x.

1.7 Filters

Filters, combiners, power dividers, isolators, and other linear components can be char-
acterized using the linear FOMs presented in Section 1.3. In all these situations the
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Table 1.2 A filter datasheet of electrical characteristics (guaranteed over −50 ◦C to +90 ◦C operating
temperature)

Frequency Insertion loss Maximum Typical
Part number band [MHz] (dB) VSWR (dB) attenuation (dB)

Filter 1 800–1000 0.35 typical (0.5 max.) 1.5 30 at 2F0
Filter 2 865–985 0.34 typical (0.5 max.) 1.4 27 at 2F0
Filter 3 1700–1900 0.37 typical (0.5 max.) 1.6 40 at 2F0

( )

(
)

S21

S11

f

Figure 1.29 Measured S-parameters of a low-pass filter.

main FOMs to consider are the S-parameters, and correspondingly the insertion loss
and VSWR as well as the bandwidth.

In order to better understand a typical datasheet of a filter, consider Table 1.2. On
this example datasheet, several filters, all bandpass filters, are presented, each with their
respective bandwidth, insertion loss, in this case near 0.5 dB in the band of interest,
and VSWRs on the order of 1.4, which corresponds to an impedance mismatch of near
�in = 0.17 and to an impedance of 35 � to 70 � in a 50-� environment.

The bandwidth of a filter is usually determined by the lower and upper frequencies at
which the in-band insertion loss has dropped with a certain dB value, typically 3 dB.

Another important FOM is the one corresponding to the out-of-band attenuation. In
this sample case, it is specified at the double frequency of F0, which is the bandwidth’s
upper frequency limit. These frequencies are indicated in Fig. 1.29, showing the mea-
sured S-parameters of a low-pass filter.

1.8 Amplifiers

Amplifiers have been the main components in any RF/microwave radio design, since
they allow one to increase the signal level in order to be able to transmit or receive the
communication signal with a certain signal-to-noise ratio value.
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Depending on the section of the system where the amplifier has to be inserted, the
amplifier can have different functions, for instance consider Fig. 1.1. If the amplifier is
inserted into the receiver as its first stage, then the focus will be on the low-noise behav-
ior, and therefore it is a low-noise amplifier (LNA). On the other hand, if the amplifier is
to be inserted into the transmitter as its last stage, the amplifier is focused on increasing
the output power, since the main objective of the transmitter is to achieve a high power
level in order to fulfill the link budget that the system engineer has designed. In this
case the amplifier is called a power amplifier (PA). In other sections of the transceiver
chain, we can see some generic amplifiers (GAs) that are usually designed to maxi-
mize gain, and not necessarily for high power or low noise. This category of amplifier
includes the variable-gain amplifiers (VGAs). Their objective is to reduce distortion in
subsequent stages, by dynamically optimizing the gain in order to maintain a constant
output amplitude.

In the next sections, the FOMs applicable to amplifiers are described. A distinc-
tion is made among linear and noise FOMs, which are of interest primarily for GAs
and LNAs but also for PAs; nonlinear FOMs, which are primarily applicable to PAs;
and transient FOMs, which are specific for VGAs. As an example, Table 1.3 presents
a typical datasheet of an amplifier. The linear FOMs calculable from S-parameters
are the gain as function of frequency, gain variation over temperature, input and
output return loss, and reverse isolation. The noise figure is listed as well. The
nonlinear FOMs listed in this example datasheet are the 1-dB-compression point, sat-
urated power, and third-order intercept point. An amplifier datasheet always includes
also the DC operating conditions. The temperature dependency is especially important
for PAs.

1.8.1 Linear and noise FOMs

Since amplifiers are two-port networks, the linear FOMs described in Section 1.3 are
generally applicable.

First of all, an RF engineer should be aware of any mismatch in the input and output
connections, in order to guarantee that the power loss in these connections is minimal.
This can be expressed by the VSWR, defined in Section 1.3.1.1, or by the return loss,
RL, defined in Section 1.3.1.2.

The FOM related to noise is the noise figure, NF, which was defined in Section 1.3.2.1.
The lower the noise figure, the better the performance of the low-noise amplifier. Nev-
ertheless, even when not optimized, the noise figure is usually listed as well in the
datasheets of the other types of amplifiers. It is a measure for the noise added by
the amplifier in the system, which is of importance to evaluate the overall noise, as
expressed by the Friis formula (1.31).

The aim of an amplifier is to amplify the input signal, so the gain is its most character-
istic FOM. Before elaborating on the gain, it is also important to note that an amplifier
should act as an isolator, or at least as a strong attenuator, in the reverse direction.
Or, in other words, an excitation at its output, e.g., caused by a malfunctioning subse-
quent block in the chain, should not propagate to its input because this may damage the
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Table 1.3 Amplifier datasheet, electrical characteristics (specified at 25 ◦C and 50 mA)

Parameter Minimum Typical Maximum Units
Frequency range DC 10 GHz
Gain f = 0.1 GHz 11.5 12.5 13 dB

f = 1 GHz 12.3
f = 2 GHz 10 11.5 12.9
f = 6 GHz 11.1
f = 10 GHz 10.8

Gain versus temperature f = 0.1 GHz 0.001 0.002 dB/ ◦C
f = 1 GHz 0.001 0.003
f = 2 GHz 0.0015 0.0035
f = 6 GHz 0.0019 0.0038
f = 10 GHz 0.0022 0.004

Input return loss f = 0.1 GHz 30 dB
f = 1 GHz 25
f = 2 GHz 20
f = 6 GHz 19
f = 10 GHz 17

Output return loss f = 0.1 GHz 26 dB
f = 1 GHz 23
f = 2 GHz 21
f = 6 GHz 16
f = 10 GHz 15

Reverse isolation f = 2 GHz 12 18 dB
Output 1-dB-compression point f = 0.1 GHz 15 dBm

f = 1 GHz 15
f = 2 GHz 15
f = 6 GHz 15
f = 10 GHz 11

Saturated output power f = 0.1 GHz 16 dBm
(at 3 dB compression) f = 1 GHz 16

f = 2 GHz 16
f = 6 GHz 15
f = 10 GHz 14

Output IP3 f = 0.1 GHz 24 30 dBm
f = 1 GHz 24 30
f = 2 GHz 24 30
f = 6 GHz 24 29
f = 10 GHz 23 27

Noise figure f = 0.1 GHz 4 5 dB
f = 1 GHz 4.2 5
f = 2 GHz 4.2 5
f = 6 GHz 4.4 5.2
f = 10 GHz 4.6 5.5

Group delay f = 2 GHz 60 ps
Operating current 50 mA
Operating voltage 3 3.3 4 V
Voltage variation with temperature −2 mV/ ◦C
Voltage variation with current 9 mV/mA
Thermal resistance 180 ◦C/W
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Figure 1.30 Power gain definitions.

preceding blocks. The corresponding FOM is the isolation. It is related to S12 since this
is the reverse transmission coefficient (see Section 1.2):

isolation = ∣∣20 log10

∣∣S12
∣∣∣∣ dB (1.81)

So intuitively one may think that the gain of an amplifier is expressed by its S21. It
is a more complex matter, though. In fact, there are three power gain definitions, which
are the transducer power gain GT, the operating power gain G, and the available power
gain GA. The three definitions are applicable to any amplifier, but a given type of power
gain may be more suitable for particular cases, as we will describe below [1, 2].

Before introducing the definitions of these power gains, we first should introduce
some other definitions, explained by means of Fig. 1.30.

Figure 1.30 shows a microwave amplifier that is excited by a source with source
impedance ZS and terminated with a load ZL. In a system design, the load represents
the input impedance of the circuit block following the amplifier, such as the antenna
in a transmitter. Similarly, ZS may represent the output impedance of the circuit block
preceding the amplifier. In the subsequent equations, the amplifier is represented by its
S-parameters. The source impedance ZS corresponds to the reflection coefficient �S,
and similarly the load ZL corresponds to the reflection coefficient �L.

Two other reflection coefficients are indicated in Fig. 1.30, namely �IN and �OUT.
The reflection coefficient �IN is the input reflection coefficient of the amplifier followed
by the load. Similarly, the reflection coefficient �OUT is the output reflection coefficient
of the amplifier preceded by the source impedance. �IN and �OUT can be expressed in
terms of the blocks’ parameters, as follows (see also Eq. (1.10)):

�IN = S11 + S12S21�L

1 − S22�L
(1.82)

�OUT = S22 + S12S21�S

1 − S11�S

Note that �IN becomes independent of the load if the amplifier is unilateral. This
means that there is no feedback from output to input, which corresponds to S12 equal
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to zero. The measure is the isolation FOM (Eq. (1.81)). Similarly, �OUT is independent
of the reflection coefficient of the source network, �S, if the amplifier is unilateral.
Also, �IN reduces to S11 if �L is equal to zero, or in other words ZL is equal to 50 �.
Similarly, �OUT reduces to S22 if �S is equal to zero, or, in other words, the source
impedance is 50 �.

Before proceeding to the power gain definitions, we still need to define several pow-
ers. The power available from the source is denoted as PAVS. The power effectively
going into the amplifier is PIN. PIN is lower than PAVS if there is a mismatch between
the source and the input of the amplifier. If there is no mismatch, PIN is equal to PAVS.
Similarly, at the output PAVN stands for the output power available from the amplifier,
while PL is the power delivered to the load. PL is smaller than PAVN unless there is no
mismatch between the amplifier output and the load.

The first power gain definition is the transducer power gain (GT).

D E F I N I T I O N 1.13 The transducer power gain (GT) is the ratio of the power delivered
to the load to the power available at the source.

GT is expressed by the following equation:

GT = PL

PAVS

= (1 − |�S|)2

|1 − �S�IN|2 |S21|2 (1 − |�L|)2

|1 − S22�L|2 (1.83)

= GSG0GL (1.84)

The expression has been written as a product of three factors in order to be able
to better evaluate the contribution of each block. The first factor, GS, relates to the
interaction between the source network and the input of the amplifier, G0 stands for
the contribution of the amplifier itself, and GL is related to the interaction between
the output of the amplifier and the load. If the source and load are perfect, meaning
ZS = ZL = 50 �, or �S = �L = 0, then GT reduces to |S21|2. In other words, the
power gain definitions take into account the mismatches between the amplifier and its
preceding and following blocks. In the case of GT, the mismatches both at the input and
at the output are taken into account. The transducer power gain is the best applicable in
the real situation when one wants to know how much power effectively gets delivered
to the load when the source generates a certain power level. As we will see next, the
operating power gain stresses the mismatch at the output, while the available power gain
relates to the mismatch at the input. So the aim of the various power gain definitions
is to express the actual power gain when the amplifier is embedded in a system. In the
limit when there are no mismatches at input and output, the three power gains reach
their maximal values and are equal to each other, GT,max = GA,max = Gmax.

The next definition is the operating power gain G.

D E F I N I T I O N 1.14 The operating power gain (G) is the ratio of the power delivered
to the load to the power going into the amplifier.
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Figure 1.31 The general scheme for amplifier design.

The corresponding expression is

G = PL

PIN

= 1

1 − |�IN|2 |S21|2 1 − |�L|2
|1 − S22�L|2 (1.85)

We note that G is a function of �L, while it is independent of �S. In systems, Zload
is usually close to 50 �, and therefore the differences between the various power gain
values are small.

However, the definitions of power gain are generally applicable to two-port networks,
and are therefore also made use of during amplifier design. In such cases, Fig. 1.31 is ap-
propriate. The amplifier is now represented as a cascade of three blocks: a central block
that includes the active part, namely one or more transistors enabling the amplification,
while the other two blocks are the passive input and output matching networks. Note
that an actual amplifier design may be more complicated than this general scheme. Here
again, the central block is represented by its S-parameters. The input matching network
is represented by its reflection coefficient �S, and similarly the output matching network
is represented by its reflection coefficient �L. It is assumed in the calculations that the
source has no mismatch, or, in other words, that its impedance is Z0. The same applies
to the output, where it is assumed that the terminating load is a Z0 impedance. So the op-
erating power gain is typically of interest for power amplifiers, because in such designs
the load ZL is optimized for high power. Usually this value is not matched to the output
impedance of the central active block, and therefore it reduces the operating power gain.

Finally, the available power gain GA is defined as follows.

D E F I N I T I O N 1.15 The available power gain (GA) is the ratio of the power available
from the amplifier to the power available from the source.

The corresponding expression is

GA = PAVN

PAVS

= (1 − |�S|)2

|1 − S11�S|2 |S21|2 1

(1 − |�OUT|)2
(1.86)
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We note that GA is a function of �S while it is independent of �L. So, in amplifier
design (according to Fig. 1.31), the available power gain is typically of interest for low-
noise amplifiers, because in such designs �S is designed to be �OPT in order to achieve
low-noise performance (see Section 1.3.2). Usually this value is not matched to the
input impedance of the central active block, and therefore the available power gain is
compromised.

The next FOMs gain in importance, due to the global drive for less energy consump-
tion. They are a measure of the efficiency, namely how efficiently the amplifier converts
the supplied DC power and RF input power into RF output power. We make the dis-
tinction between efficiency (η) and power added efficiency (PAE). Note that we are
referring now to the actual use of the amplifier, or, in other words, to the scheme in
Fig. 1.30.

D E F I N I T I O N 1.16 The efficiency (η) of an amplifier is defined as the ratio between
the output power at the fundamental frequency and the supplied DC power.

The corresponding expression is

η = PL

PDC
(1.87)

This efficiency is also called the drain efficiency if the active part consists of FETs (or
derived devices such as HEMTs), or the collector efficiency if the amplifier is based on
BJTs (or derived devices such as HBTs). It is named in this way because this definition
does not take into account the RF input power injected in to the amplifier.

The second FOM in terms of efficiency is the power added efficiency or PAE. It
is more complete than η because it does take into account the RF input power. The
definition is as follows.

D E F I N I T I O N 1.17 The power added efficiency (PAE) of an amplifier is defined as the
net increase in RF power divided by the DC power supplied.

The corresponding expression is

PAE = PL − PIN

PDC

= PL

PDC

(
1 − 1

G

)

= η

(
1 − 1

G

)
(1.88)

As we can deduce from Eq. (1.88), the PAE converges to η in the case of high power
gain levels.

1.8.2 Nonlinear FOMs

Here again, since amplifiers are two-port networks, the nonlinear FOMs as described
in Section 1.5 are generally applicable. The most common FOMs that are listed in
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amplifier datasheets are the 1-dB-compression point P1dB, the third-order intercept point
IP3, the saturated output power Psat, the efficiency, and the power added efficiency, of
which P1dB and IP3 have already been described extensively in Section 1.5.

When considering Fig. 1.11, we see that the output power saturates at high input
power. The reason, as already explained in Section 1.4, is that the output power can-
not be higher than the supplied power, this being the sum of PDC and PIN. Since the
power-transfer characteristic at high input powers is not perfectly flat in practical cases,
the saturated power is usually determined at a certain compression point, beyond the
1-dB-compression point. A typical approach is to take the output power at the 3-dB-
compression point as Psat.

1.8.3 Transient FOMs

The final set of FOMs is related to the transient behavior of amplifiers. It primarily
applies to VGAs, which are amplifiers whose gain can be varied by means of a DC
control signal. Depending on the design architecture, this control signal can be part of
the DC bias supply feeding the transistors within the VGA, or can be applied to a DC
bias-dependent component in the matching network (e.g., a diode). In certain cases a
VGA can also be composed of a GA followed by a variable attenuator. So the gain of
the GA is constant and the attenuation is being changed. Figure 1.32 illustrates how the
gain changes on varying the control voltage.

In addition to the amplifier FOMs already discussed, the range of variability of the
amplifier gain and the speed of change are key points when describing VGAs. The latter
means that the FOMs become dependent on the dynamic behavior of the control signal.
For this reason, some typical FOMs from control theory can be applied, such as the slew
rate, rise time, settling time, ringing, and overshoot.

1.8.3.1 Slew rate
D E F I N I T I O N 1.18 The slew rate of an amplifier is the maximum rate of change of the
output, usually quoted in volts per second.
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Figure 1.32 A variable-gain amplifier controlled by a DC control bias voltage.
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Many amplifiers are ultimately slew-rate-limited (typically by the impedance of a
drive current having to overcome capacitive effects at some point in the circuit), which
sometimes limits the full-power bandwidth to frequencies well below the amplifier’s
small-signal frequency response.

1.8.3.2 Rise time
D E F I N I T I O N 1.19 The rise time (tr) of an amplifier is the time taken for the output to
change from 10% to 90% of its final level when driven by a step input.

1.8.3.3 Settling time and ringing
D E F I N I T I O N 1.20 The settling time is the time taken for the output to settle to within
a certain percentage of the final value (for instance 0.1%).

The next definition is ringing. Ringing is the result of overshoot caused by an under-
damped circuit.

D E F I N I T I O N 1.21 Ringing refers to an output variation that cycles above and below
an amplifier’s final value, and leads to a delay in reaching a stable output.

1.8.3.4 Overshoot
D E F I N I T I O N 1.22 The overshoot is the amount by which the output exceeds its final,
steady-state value, in response to a step input.

Table 1.4 presents a typical datasheet of a VGA. The main difference from a typical
amplifier datasheet is related to the range of gain variability and the speed of this change.
In case of the example shown in Fig. 1.32, we see that the response time (10% to 90%)
is 25 μs and the control range is 30 dB.

1.9 Mixers

As we can deduce from Fig. 1.1, mixers are essential components in wireless trans-
ceivers since they up-convert the modulated signal from baseband to RF for wireless
transmission, and then also down-convert the received RF signal back to baseband.
There are several up-conversion/down-conversion configurations (e.g., homodyne,
superheterodyne, . . . ), among which the most important ones will be described in
Chapter 2 in connection to the internal architecture of measurement instrumentation.
There are also various design topologies (e.g., single-ended, balanced, double-balanced,
. . . ), the description of which is beyond the scope of this book. The note to make in
connection with FOMs, though, is that mixers can be based either on diodes (passive
mixers) or on transistors (active mixers). The choice depends on the requirements of the
particular transceiver design.

Figure 1.33 represents a down-converting mixer. A mixer is a three-port circuit,
with as ports the radio-frequency (RF) port, the local oscillator (LO) port, and the
intermediate-frequency (IF) port. The RF signal enters the RF port and gets down-
converted to baseband, and then the corresponding baseband (or IF) signal exists at
the IF port. The mixer is driven into nonlinear operation by a pump signal, this being
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Table 1.4 The variable-gain amplifier. The datasheet for a
broadband amplifier. The electrical characteristics are response
time (10% to 50%) 25 μs, and control voltage 0 to 5 V.

Parameter Value Units
Frequency fL 10 MHz

fU 1200
Gain Minimum 24 dB

Typical 34
Flatness ±1.5

Control range 30
Maximum power Output 1-dB CP +13 dBm

Input (no damage) +10
Dynamic range NF (typical) 15 dB

IP3 (typical) +25 dBm
VSWR In 2.2 dB

Out 2.0
DC power Voltage 15 V

Current 170 mA
Maximum ratings

Operating temperature −20 ◦C to 71 ◦C
Storage temperature −55 ◦C to 100 ◦C

DC voltage 17 V

Figure 1.33 The general mixer symbol, where the three ports are identified.

the local oscillator. In the case of an up-converting mixer, the IF port is the input and
the RF port acts as the output.

Table 1.5 shows an example datasheet of a mixer. The mixer FOMs will be clarified
in the next sections. We make the distinction between two-port and three-port FOMs.
Throughout the FOM definitions and expressions, we assume that the mixer is a down-
converter. Similar expressions for an up-converting mixer can easily be deduced.

1.9.1 Two-port FOMs

In terms of FOMs, a mixer is often considered as a two-port circuit, because the
operation of interest is happening between the RF and IF ports. The modulated signal is
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Table 1.5 A mixer datasheet

Parameter Value Units
Frequency RF/LO 250–3250 MHz

IF DC–800
Conversion loss Typical 6.5 dB

Maximum 8.5
Isolation LO/RF Typical 30 dB

Minimum 15
Isolation LO/IF Typical 10 dB

Minimum 5
Isolation RF/IF Typical 30 dB

Minimum 15
LO power Nominal +17 dBm
1-dB-compression point Typical +10 dBm
Input IP3 Typical +18 dBm
RF input power Maximum 100 mW
Impedance Nominal 50 �

Operating temperature −40 to 85 ◦C

down-converted between the RF port and IF port, or up-converted between the IF and
RF ports, while the signal entering the LO port is kept constant at a high power level.
For this reason, the concepts introduced in Section 1.5 are applicable to mixers.

The first FOM is the conversion loss L.

D E F I N I T I O N 1.23 The conversion loss (L) of a down-converting mixer is the ratio of
the RF input power and the IF output power.

Mathematically,

L = PAVS,RF

PAVN,IF
(1.89)

where PAVS,RF is the power of the modulated input signal at the RF carrier frequency,
and PAVN,IF is the output power of the down-converted signal at IF.

In the case of a diode-based mixer, there is always a conversion loss since diodes
have no gain. Even using transistors as the nonlinear element in the mixer, there is a
conversion loss or at most a small conversion gain. The reason is that the transistors
have to be operated in a strongly nonlinear condition, e.g., near to pinch-off operating
conditions, which corresponds to low gain. Owing to losses in the matching networks,
the overall conversion is often a loss.

The FOMs which are a measure for the linearity of the mixer are the input 1-dB-
compression point InP1dB and the input third-order intercept point IIP3. These two
FOMs have already been introduced in Sections 1.5.1 and 1.5.2, but in the case of
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mixers they are usually referred to the input, as opposed to what is done in the case of
amplifiers, where P1dB and IP3 are usually referred to the output.

Mixers also have a noise contribution. The corresponding FOM is the single-sideband
noise figure (SSBNF). It is defined in an analogous way to the noise figure NF of a linear
two-port device (see Section 1.3.2), but now taking into account that the frequency at
the output of a mixer is different from the frequency at the input of the mixer.

D E F I N I T I O N 1.24 The single-sideband noise figure (SSBNF ) for a mixer is the deci-
bel value of the signal-to-noise ratio at the input of the mixer at RF divided by the
signal-to-noise ratio at the output of the mixer at IF.

Mathematically, the noise factor for a mixer Fmixer is

Fmixer = SI,RF/NI,RF

SO,IF/NO,IF

= NO,IF

NI,RFL
(1.90)

where SI,RF = PAVS,RF is the signal power at the input of the mixer at RF, SO,IF =
PAVS,IF is the signal power at the output of the mixer at IF, NI,RF is the available noise
power at the input of the mixer at RF, NO,IF is the available noise power at the output
of the mixer at IF, and L is the conversion loss.

Consequently, the noise figure is given by

SSBNF = 10 log10 Fmixer (1.91)

1.9.2 Three-port FOMs

The next set of FOMs consists of FOMs that are related to the three-port nature of the
mixer.

In general, a mixer has mismatches at each of its ports, like any other microwave
circuit. As in the case of linear two-port networks (see Section 1.2), the port mismatches
of a mixer are represented by the VSWR or return loss RL. Even though the mixer is
a nonlinear circuit, and thus the reflection coefficients at each of the three ports may
be dependent on the input power, a constant value corresponding to normal operating
conditions is listed in mixer datasheets.

The aim of a down-converting mixer is to convert the signal at RF to a signal at IF.
Any other frequency components in the signal’s spectrum are unwanted, and therefore
should be avoided. A distinction is made between on the one hand the leakage of the
LO and IF signals to the other ports (see later) and on the other hand the harmonics and
intermodulation products generated due to the nonlinear operating mode of the mixer.
Owing to the small frequency offset between the RF and LO signals, the out-of-band
unwanted spectral components can easily be filtered out. Commercial mixers usually
have such filters included in the package already.

Since the LO power is high in order to drive the mixer in nonlinear operation, one
should avoid having part of this signal leak to the RF and IF ports, because such signal
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may damage the circuit block preceding or following the mixer. Similarly, one wants
to avoid having part of the IF output power couple back to the RF port. The possibility
of leakage from the IF port to the LO port is usually ignored, since the IF power is
very small compared with the LO power. In the case of passive circuits and amplifiers,
such unwanted coupling between ports is called isolation (see Section 1.8.1). In mixer
datasheets, both “isolation” and “leakage” are used. The various leakages are defined as
follows.

D E F I N I T I O N 1.25 The LO/RF leakage of a mixer is equal to the ratio of the power at
LO frequency at the RF port and the LO power.

Mathematically,

LO/RF leakage = PRF,LOfreq

PLO
(1.92)

with PLO the input power at the LO port and at LO frequency, and PRF,LOfreq the output
power at the RF port and at LO frequency.

D E F I N I T I O N 1.26 The LO/IF leakage of a mixer is equal to the ratio of the power at
LO frequency at the IF port and the LO power.

Mathematically,

LO/IF leakage = PIF,LOfreq

PLO
(1.93)

with PIF,LOfreq the output power at the IF port and at LO frequency.

D E F I N I T I O N 1.27 The RF/IF leakage of a mixer is equal to the ratio of the power at
IF frequency at the RF port and the IF power.

Mathematically,

IF/RF leakage = PRF,IFfreq

PIF
(1.94)

with PIF the input power at the IF port and at IF, and PRF,IFfreq the output power at the
RF port and at IF.

The final thing to note is that all of these FOMs are temperature-dependent.

1.10 Oscillators

1.10.1 Oscillator FOMs

Oscillators can come in various forms, so we will include in this chapter various of
these flavors. They can be free-running oscillators, voltage-controlled oscillators, and
synthesized ones. For all of those types, the oscillator characteristic to be considered as
the first and most important FOM is the frequency of operation.

Actually, oscillators are produced to generate a typical signal waveform. In the case
of microwave and RF circuits, this waveform is most of the time a sinusoidal signal.
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Figure 1.34 A sine-wave oscillator, where the period definition is marked.
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Figure 1.35 Frequency stability, where the change in signal frequency over time can be seen.

A sine-wave signal generator produces nothing other than a voltage that changes as a
function of time in a sinusoidal manner, as shown in Fig. 1.34.

In this sine wave we can define a frequency, which is the number of cycles per second
at which the waveform repeats itself, and the amplitude of the waveform. Mathemati-
cally, it is represented by

V (t) = A sin

(
2π

t

T
+ θ

)
= A sin(2πf + θ) (1.95)

It is expected that an oscillator is a pure sine wave, but most of the time this is not
true. The generator is corrupted by other factors that will have a significant impact on
the output waveform. For instance, on considering Fig. 1.35, it is clear that an important
characteristic of the oscillator is the frequency stability, that is how well the frequency
is maintained over time. In fact the term frequency stability encompasses the concepts
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of random noise, intended and incidental modulation, and any other fluctuations of the
output frequency of a device.

1.10.1.1 Frequency stability
D E F I N I T I O N 1.28 Frequency stability is in general the degree to which an oscillat-
ing source produces the same frequency value throughout a specified period of time. It
is implicit in this general definition of frequency stability that the stability of a given
frequency decreases if the wave shape of the signal is anything other than a perfect sine
function.

We can also further present the short-term and long-term stability, which are usually
expressed in terms of parts per million per hour, day, week, month, or year. Long-term
stability represents phenomena caused by the aging of circuit elements and of the mate-
rial used in the frequency-determining element. Short-term stability relates to frequency
changes of duration less than a few seconds about the nominal frequency. The reader is
directed to [10] for more information.

Since we are dealing with an electronic generator, that is, one based on a strong
nonlinearity, the generation of harmonics, as explained in Section 1.4.1, is also very
important, since it can create harmonic components in the output signal.

1.10.1.2 Phase noise
The presence of noise in the electronic components can also create another non-ideal
behavior of the sine wave. This is most of the time accounted for using the FOM called
phase noise (Fig. 1.36), since the noise will behave as a corrupted phase in the output
signal. In this case the output sine wave can be represented as

V (t) = [A + ε(t)]sin(2πf + φ(t)) (1.96)

This phase-noise FOM is the term most widely used to describe the frequency sta-
bility’s characteristic randomness. There are also other terms, such as spectral purity,
which refers to the ratio of signal power to phase-noise sideband power.

A

f f

Figure 1.36 Phase-noise representation.
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Table 1.6 An oscillator data sheet

Parameter Test condition Minimum Typical Maximum Units

Nominal frequencya LVDS/CML/LVPECL 10 945 MHz
CMOS 10 160

Temperature stability TA = −40 to +85 ◦C
−20 +20

ppm−50 +50
−100 +100

Absolute pull range ±25 ±345 ppm

Aging Frequency drift over first year ±3 ppm
Frequency drift over 15-year life ±10

Power-up timeb 10 ms

aNominal output frequency set by VCNOM = VDD/2.
bTime from power-up or tri-state mode to f0.

For a correct evaluation of frequency stability, and thus of phase noise, we should
calculate the power spectral density of the waveform. In this case, for the waveform
presented by Eq. (1.96), the power spectral density is

Gsideband =
∫ +∞

−∞
Sg(f )df (1.97)

where Sg(f ) represents the two-sided spectral density of fluctuations of the output
waveform.

Actually Glaze, in his chapters in [10], discussed a possible definition of frequency
stability that relates the sideband power of phase fluctuations to the carrier power level.
This quantity is called £(f ).

D E F I N I T I O N 1.29 £(f ) is defined as the ratio of the power in one sideband, referred
to the input carrier frequency on a per-hertz-of-bandwidth spectral-density basis, to
the total signal power, at Fourier frequency difference δf from the carrier, per device.
In fact, it is a normalized frequency-domain measure of phase-fluctuation sidebands,
expressed in decibels relative to the carrier per hertz:

£(f ) = power density (one phase-modulation sideband)
carrier power

(1.98)

On looking at a typical oscillator datasheet from a manufacturer, it is clear that most
of the FOMs explained here are represented in the datasheet, as depicted in Table 1.6.

1.11 Frequency-multiplier FOMs

Frequency multipliers are circuits that convert an input signal at frequency f0 into an
output signal at a frequency that is a multiple of f0. Their use in wireless transceivers is
usually in combination with oscillators. The higher the required LO frequency, the more
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f0 f0 2f0 3f0
X2

Figure 1.37 Frequency doubling, showing the input and output spectrum components.

difficult it is to design and fabricate oscillators with low phase noise. So the approach
used is to take a very good oscillator at a lower LO frequency and then up-convert this
frequency by means of a frequency multiplier. Typical multiplication factors in practical
designs are in the range 2–4, because the higher the multiplication factor the higher the
conversion loss (see later for the definition). Using a frequency multiplier does increase
the phase noise, by a factor equal to the multiplication factor, but the resulting phase
noise is still typically lower than that of an oscillator at the higher frequency.

Figure 1.37 shows schematically a frequency doubler. In this example, the input sig-
nal is a single-tone signal at frequency f0, and the intended output signal is at 2f0.
Since the output signal of a linear circuit is by definition at the same frequency as the
frequency of the input signal (see also Section 1.2), any frequency-converting circuit
(frequency multipliers but also mixers) is a nonlinear circuit, and therefore unwanted
spectral components are generated at the output as well, e.g., at f0 and 3f0. The latter
are characterized by the frequency-multiplier FOMs which we will define next.

The first FOM of a frequency multiplier is the conversion loss, which is defined
similarly to that in the case of mixers (see Section 1.9.1). The definition, with n the
multiplication factor, is as follows.

D E F I N I T I O N 1.30 The conversion loss (L) of an n times frequency multiplier is the
ratio of the input power at frequency f0 and the output power at frequency nf0.

Mathematically,

L = PAVS,f0

PAVN,nf0

(1.99)

As in the case of mixers, there is usually no conversion gain, even when the frequency
multiplier is based on transistors.

At the output, we want to have a clear output signal at the multiplied frequency.
So both the f0 spectral component and unwanted harmonics (mf0|m�=n) should be
suppressed. This is achieved by design, e.g., by using a circuit architecture that
automatically suppresses the f0 component, and/or by incorporating dedicated filters
in the circuit’s package. The corresponding FOMs are the fundamental and harmonic
rejections.
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Table 1.7 A frequency-multiplier datasheet

Frequency (GHz) Harmonic output

Multiplication f1 f2 Input power Conversion loss f1 f3 f4
factor

In Out Min. Max. Typ. Max. Typ. Min. Typ. Min. Typ. Min.

2

13 16 11.5 15 30 18 35 23 25 15
5–8 10–16 10 13 15 18 21 14 30 18 20 13
8–10 16–20 13 16 12 15 33 20 27 17 50 35

10 13 15 18.5 30 16 23 16 40 30

Min., minimum; Max., maximum; Typ., typical.

D E F I N I T I O N 1.31 The fundamental rejection is the ratio of the output power at fre-
quency nf0 and the output power at frequency f0.

Mathematically,

fundamental rejection = PAVN,nf0

PAVN,f0

(1.100)

The rejection is usually expressed in dBc, which is the difference, expressed in deci-
bels, relative to the wanted signal, or carrier.

D E F I N I T I O N 1.32 The harmonic rejection is the ratio of the output power at fre-
quency nf0 and the output power at frequency fm0|m�=n �=0.

Mathematically,

harmonic rejection = PAVN,nf0

PAVN,mf0

∣∣
m�=n �=0

(1.101)

Finally, as with all electronic circuits, the characteristics of a frequency multiplier are
temperature dependent.

An example datasheet of a frequency doubler is presented in Table 1.7.

1.12 Digital converters

Finally, this chapter would not be complete if digital converters were not included.
Digital converters, either analog to digital (ADC) or digital to analog (DAC), are

becoming a key component in radio and wireless communication circuits and systems.
Actually, the advent of software-defined radio (SDR) and/or cognitive radio (CR) is
moving this technology faster to higher frequencies and thus to new characterization
procedures.

An ADC converts an analog signal to digital quantities, by operation in two axes over
the continuous time-domain analog signal. These two axes correspond to a sampling in
time and a sampling in amplitude, usually called quantization [11].

Sampling in time corresponds to sampling the time-domain signal at some discrete
points with a sampling frequency that should obey the Nyquist frequency. Sampling in
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Figure 1.38 Sampling and quantization procedures.

amplitude corresponds to sampling the amplitude axis at discrete points also. Quantiza-
tion and sampling at the same time corresponds to picking up the sampled points both
in time and amplitude and constraining them to fit a pre-determined matrix. This fact
leads to several important FOMs, since the time sample can and will generate aliasing
errors, while the quantization will generate a minimum-noise floor that will severely
degrade the output digital signal, by adding quantization noise to it. This is illustrated
in Fig. 1.38.

The study of sampling and quantization noise is beyond the scope of this book, but
the reader is directed to reference [11] for more information.

Traditional ADC/DAC applications are at low frequencies, and thus some of the char-
acterizations and FOMs used are low-frequency-related ones. For instance, we can have
offset errors, gain errors, integral nonlinearities, differential nonlinearities, and special
FOMs related to the quantization noise.

1.12.1 Figures of merit

The more traditional FOMs can be defined as follows.

D E F I N I T I O N 1.33 The gain error is the difference between the measured and ideal
full-scale input voltage range of the ADC.

D E F I N I T I O N 1.34 The offset error is the DC offset imposed on the input signal by the
ADC, reported in terms of LSB (codes).
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1.12.1.1 ADC time behavior
Some of the FOMs related to the time behavior of the ADC include the following:

D E F I N I T I O N 1.35 The aperture uncertainty is related to the signal jitter, which is the
sample-to-sample variation in aperture delay.

D E F I N I T I O N 1.36 The Encode pulse width/duty cycle. Pulse width high stands for
the minimum amount of time the Encode pulse should be left in the Logic 1 state to
achieve the rated performance, while pulse width low is the minimum time the Encode
pulse should be left in the low state.

D E F I N I T I O N 1.37 The maximum conversion rate is the maximum Encode rate at
which the image spur calibration degrades by no more than 1 dB.

D E F I N I T I O N 1.38 The minimum conversion rate is the minimum Encode rate at
which the image spur calibration degrades by no more than 1 dB.

D E F I N I T I O N 1.39 The output propagation delay is the delay between a differen-
tial crossing of one Encode and another Encode (or zero crossing of a single-ended
Encode).

D E F I N I T I O N 1.40 The pipeline latency is the number of clock cycles by which the
output data lags relative to the corresponding clock cycle.

D E F I N I T I O N 1.41 The signal-to-noise ratio for ADCs (SNRADC) is the ratio of the
RMS signal amplitude (set at 1 dB below full scale) to the RMS value of the sum of all
other spectral components, excluding harmonics and DC.

For an ideal ADC one can represent this value as

SNRADC = 6.02N + 1.76 dB (1.102)

where N is the number of bits of the ADC.

D E F I N I T I O N 1.42 The effective number of bits (ENOB) corresponds to the number
of bits that we can have when considering not the ideal but the measured SNR.

The ENOB is calculated from the measured SNR as follows:

ENOB = SNRMEASURED − 1.76

6.02
(1.103)

1.12.1.2 ADC nonlinear behavior
Some FOMs are also related to the nonlinear behavior of the ADC.

D E F I N I T I O N 1.43 The differential nonlinearity is the type of nonlinearity that corre-
sponds to the deviation of any code width from an ideal one-least-significant-bit (LSB)
step.

D E F I N I T I O N 1.44 The integral nonlinearity is the deviation of the transfer function
from a reference line measured in fractions of 1 LSB using a best straight line deter-
mined by a least-square-curve fit.
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Figure 1.39 The impact of nonlinear behavior on the ADC quantization curves.

These two FOMs can be seen in Fig. 1.39.
From a wireless point of view, nonlinearity can also be characterized by using typical

measures of intermodulation and harmonics as previously presented in Section 1.5.

D E F I N I T I O N 1.45 The second-harmonic distortion is the ratio of the RMS signal
amplitude to the RMS value of the second-harmonic component, reported in dBFS
(dBFS means dB full scale, which means x dB below the full scale).

D E F I N I T I O N 1.46 The third-harmonic distortion is the ratio of the RMS signal am-
plitude to the RMS value of the third-harmonic component, reported in dBFS.

D E F I N I T I O N 1.47 The signal-to-noise-and-distortion (SINAD) ratio is the ratio of
the RMS signal amplitude (set 1 dB below full scale) to the RMS value of the sum of all
other spectral components, including harmonics, but excluding DC and image spur.

D E F I N I T I O N 1.48 The two-tone intermodulation distortion rejection is the ratio of
the RMS value of either input tone to the RMS value of the worst third-order intermod-
ulation product, reported in dBc.

Sometimes the characterization of analog converters also includes several FOMs
related to any spurious signals that are visible at the output signal. Those FOMs include
the following.

D E F I N I T I O N 1.49 The spurious-free dynamic range (SFDR) is the ratio of the RMS
signal amplitude to the RMS value of the peak spurious spectral component, except the
image spur. The peak spurious component may, but need not, be a harmonic. It can be
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Table 1.8 An ADC datasheet (for V A = 3.7 V, V C = 1.5 V, ENCODE = 400 MSPS, and 0 ◦C ≤ T ≤ 60 ◦C,
unless specified otherwise)

Parameter Case T Minimum Typical Maximum Units
Dynamic performance
SNR
Analog input 10 MHz Full 62 64 dBFS

at −1.0 dBFS
70 MHz Full 61.5 63.5 dBFS
128 MHz Full 61.5 63.5 dBFS
175 MHz Full 61.5 63.5 dBFS

SINAD ratio
Analog input 10 MHz Full 59 63.5 dBFS

at −1.0 dBFS
70 MHz Full 58.5 63 dBFS
128 MHz Full 57.5 61.5 dBFS
175 MHz Full 55 60 dBFS

SFDR
Analog input 10 MHz Full 69 85 dBFS

at −1.0 dBFS
70 MHz Full 69 80 dBFS
128 MHz Full 66 72 dBFS
175 MHz Full 62 68 dBFS

Image Spur
Analog input 10 MHz Full 60 75 dBFS

at −1.0 dBFS
70 MHz Full 60 72 dBFS
128 MHz Full 60 66 dBFS
175 MHz Full 57 63 dBFS

Offset spur
Analog input at −1.0 dBFS 60 ◦C 65 dBFS
Two-tone IMD
F1, F2 at −6 dBFS 60 ◦C −75 dBc
Analog input
Frequency range Full 10 175 MHz
Digital Input DREN
Minimum time, low Full 5.0 ns
Switching specifications
Conversion rate Full 396 400 404 MSPS
Encode pulse width high 60 ◦C 1.25 ns
Encode pulse width low 60 ◦C 1.25 ns

reported in dBc (that is, it degrades as the signal level is lowered) or dBFS (always
related back to converter full-scale).

Other FOMs consider the VSWR, IMR, ACPR, NPR, etc. which were presented in
Sections 1.3 and 1.5 on linear and nonlinear FOMs.

Table 1.8 presents a typical ADC datasheet. From the datasheet it is clear that the
FOMs of an ADC related to the RF part are focused specifically on the signal-to-noise
ratio (SNR), or, if we include distortion, the signal-to-noise-and-distortion (SINAD)
ratio, or, if we include all types of possible spurious we can have the spurious–free
dynamic range, which is related not only to the noise, but also to the maximum signal
allowed before clipping. All these characteristics are expressed in dBFS.
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Problems

1.1 Prove the expressions for �IN and �OUT in Eq. (1.82).
1.2 Knowing that a receiver has a sensitivity of −100 dBm, what should be the max-
imum power an out-of-band interferer can have in order to maintain signal quality?
Consider that the receiver has a gain of 10 dB, that the useful signal has a bandwidth of
100 KHz, an NF of 2 dB, 1-dB-compression point of 30 dBm, and an IP3 of 47 dBm,
and that signals out of band have an extra 50 dB rejection due to the use of an input
filter.
1.3 In your view, what is preferable in a transceiver: to have high gain and low NF at
the first stage of the receiver, or to have high gain and high IP3?
1.4 In a receiver chain, the first block is a cable, followed by an amplifier and a mixer.
Considering that the loss in the cable is 3 dB, the amplifier gain is 10 dB with an NF of
2 dB, and the mixer has an insertion loss of 10 dB, calculate the overall NF.
1.5 Explain why we use a low-noise amplifier in the receiver chain and a power
amplifier in the transmitter chain.
1.6 What is the main impact of phase noise?
1.7 How can you evaluate the impact of phase noise on digital systems?
1.8 What is the difference between gain and underlying linear gain?
1.9 Comment on the relationship between the 1-dB-compression point and IP3.
1.10 Explain why the EVM can be calculated using the SNR, not the ACPR.
1.11 What are the main limitations of digital converters?
1.12 If we have a system with NPR = 10 dB, what will the EVM be?
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