TRIPLES AND LOCALIZATIONS(1)

BY A. G. HEINICKE

1. Introduction. Let A be a ring (associative) with unity, and let ${}_{A}\mathcal{M}$ denote the category of unital left A-modules. If \mathscr{G} is a strongly complete Serre class in ${}_{A}\mathcal{M}$, then (see [3], and also [6]) there is an exact functor $S: {}_{A}\mathcal{M} \to \mathscr{C}$, where \mathscr{C} is the quotient category ${}_{A}\mathcal{M}/\mathscr{G}$, and \mathscr{C} is an abelian category. Denoting the opposite ring of Hom $_{\mathscr{C}}(SA, SA)$ by C, the localization functor $L: {}_{A}\mathcal{M} \to {}_{C}\mathcal{M}$ is defined by $L = \operatorname{Hom}_{\mathscr{C}}(SA, S_{-})$. The functor S induces a ring homomorphism from A to C, and this in turn induces a forgetful functor $V: {}_{C}\mathcal{M} \to {}_{A}\mathcal{M}$. It is shown in [3] that S is left adjoint to $V \cdot \operatorname{Hom}_{\mathscr{C}}(SA, \ldots)$, and that the natural transformation from $S \cdot V \cdot \operatorname{Hom}_{\mathscr{C}}(SA, \ldots)$ to $I_{\mathscr{C}}$ associated with adjointness is in fact an equivalence. Furthermore, if $T': \mathscr{B} \to {}_{A}\mathcal{M}$ and $S': {}_{A}\mathcal{M} \to \mathscr{B}$ are functors, where (i) \mathscr{B} is abelian, (ii) S' is exact and left adjoint to T', and (iii) the associated natural transformation from S'T' to $I_{\mathscr{B}}$ is an equivalence, then \mathscr{B} is equivalent to \mathscr{C} .

The purpose of this paper is to give an alternative account of this theory which is more "module-theoretic", i.e. free of reference to the category ${}_{A}\mathcal{M}/\mathcal{G}$. We shall see that a category defined by Eilenberg and Moore in [2] serves as a suitable replacement for ${}_{A}\mathcal{M}/\mathcal{G}$. This category has the advantage of being isomorphic (not just equivalent) to an easily defined full subcategory of ${}_{A}\mathcal{M}$.

The account of localization theory presented here is completely independent of the results of Gabriel [3] and of Walker and Walker [6], except when we consider the equivalence of the two approaches. However, familiarity with §3 and §4 of Goldman [4], and with §2 of Eilenberg and Moore [2] is assumed.

2. Quotient modules. A class \mathscr{G} of modules is called a *strongly complete Serre* class [6] if it is closed under formation of submodules, homomorphic images, extensions, and arbitrary direct sums. (These classes are also called *hereditary* torsion classes—see [1].) Given a strongly complete Serre class, for any module X define σX to be the (unique) largest submodule X' of X for which X' is in \mathscr{G} . Then σ gives rise to an idempotent kernel functor (as defined in [4]). Conversely, if σ is an idempotent kernel functor, the class \mathscr{G} of modules X satisfying $\sigma X = X$ is a strongly complete Serre class.

Suppose we are given a strongly complete Serre class \mathscr{G} . Denoting $X/\sigma X$ by \overline{X} for any module X, let $Q_{\sigma}(X)$ be the largest submodule of an injective hull $E(\overline{X})$ of \overline{X} which satisfies $Q_{\sigma}(X) \supseteq \overline{X}$ and $Q_{\sigma}(X)/\overline{X} = \sigma(E(\overline{X})/\overline{X})$. Then $Q_{\sigma}(X)$ is a faithfully σ -injective module ([4], §3). We have a map $\eta X \colon X \to Q_{\sigma}(X)$, defined as the

Received by the editors July 22, 1970 and, in revised form, November 4, 1970.

⁽¹⁾ This work was partially supported by the National Research Council of Canada.

composition of the canonical map from X to \overline{X} with the embedding map of \overline{X} into $Q_{\sigma}(X)$. Also, given a map $f: X \to Y$, there is a unique map $Q_{\sigma}(f)$ from $Q_{\sigma}(X)$ to $Q_{\sigma}(X)$ satisfying $\eta Y \cdot f = Q_{\sigma}(f) \cdot \eta X$. In this way we obtain a covariant functor $Q_{\sigma}: {}_{A}\mathscr{M} \to {}_{A}\mathscr{M}$ and a natural transformations $\eta: I_{A}\mathscr{M} \to Q_{\sigma}$. It is easily verified that the map $\eta Q_{\sigma}(X)$ from $Q_{\sigma}(X)$ to $Q_{\sigma}^{2}(X)$ is an isomorphism, and that this map coincides with the map $Q_{\sigma}(\eta X)$. Also [4, Theorem 3.9], the functor Q_{σ} is left exact. Furthermore, for any module $X, \sigma(X) = \ker \eta X$ and \mathscr{G} is the class of modules for which $Q_{\sigma}(X) = 0$.

We shall define (G, η) to be a *localization functor* on ${}_{A}\mathcal{M}$ if $G: {}_{A}\mathcal{M} \to {}_{A}\mathcal{M}$ is a covariant left exact functor, and η is a natural transformation from $I_{A\mathcal{M}}$ to G satisfying the condition that the natural transformations $G\eta$ and ηG from G to G^2 are the same, and are in fact natural equivalences. With this definition, the results from [4] cited above can be summarized as

THEOREM 2.1. If σ is an idempotent kernel functor, then there is a localization functor (G, η) for which $\sigma(X) = \ker \eta X$, and for which \mathscr{G} is the class of modules X for which GX=0.

We now show that every localization functor can be realized in this fashion.

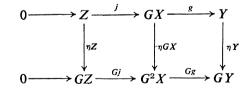
In any category with kernels, define a morphism $f: X \to Y$ to be an *essential* morphism if, given a morphism $g: Y \to Z$, g is a monomorphism if ker f = ker gf. For the category _A*M*, this is equivalent to: im f is an essential submodule of Y.

LEMMA 2.2. If (G, η) is a localization functor, $X \xrightarrow{\eta X} GX$ is an essential morphism for every X.

Proof. Suppose that $g:GX \to Y$ satisfies ker $\eta X = \ker g \cdot \eta X$, and let this kernel be $i: K \to X$. Since G is left exact,

$$Gi = \ker G(\eta X) = \ker Gg \cdot G\eta X.$$

However, $G\eta$ is an equivalence, so it follows that ker Gg=0, and Gg is a monomorphism. Suppose that $j: Z \to GX$ is ker g. We then have the following commutative diagram whose rows are exact:



Since $G_{j=0}$ and ηG is an equivalence, j=0 and hence g is a monomorphism.

COROLLARY 2.3. If (G, η) is a localization functor, then GX=0 if and only if $\eta X=0$.

Proof. This follows trivially from the fact that im ηX is an essential submodule of GX.

THEOREM 2.4. Let (G, η) be a localization functor. Then

(1) the class \mathscr{G} of modules X for which GX=0 is a strongly complete Serre class; (2) if σ is the corresponding idempotent kernel functor, then $\sigma(X)=\ker \eta X$ for each module X;

(3) for each X, $GX \cong Q_{\sigma}(X)$ in a natural way.

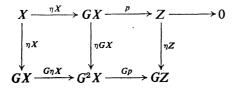
Proof. (1) We must show that \mathscr{G} is closed under (a) homomorphic images, (b) submodules, (c) extensions, and (d) arbitrary direct sums. Now (b) and (c) follow immediately from the left exactness of G. To establish (a), suppose $X \xrightarrow{f} Y \to 0$ is exact, and that X is in \mathscr{G} . Then $\eta Y \cdot f = Gf \cdot \eta X = 0$, and so (since f is epic) $\eta Y = 0$. By the above corollary, GY = 0 as desired. Finally, let $Y = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$, where each M_{α} is in \mathscr{G} , and let $q_{\alpha} : M_{\alpha} \to Y$ be the canonical embedding. For each α , $\eta Y \cdot q_{\alpha} = Gq_{\alpha} \cdot \eta M_{\alpha} = 0$, and so, by the universal property of direct sums, $\eta Y = 0$ and Y is in \mathscr{G} .

(2) Let $i: K \to X$ be ker ηX . Since G is left exact, ker $G\eta X$ is $Gi: GK \to GX$, and so, since $G\eta$ is an equivalence, GK=0 and K is in \mathscr{G} . Thus im $i \subseteq \sigma(X)$. Now let $j: \sigma(X) \to X$ be the inclusion mapping. Since $\sigma(X)$ is in \mathscr{G} , $\eta\sigma(X)=0$, so $0=Gj\cdot\eta\sigma(X)=\eta X\cdot j$. Therefore $\sigma(X)\subseteq \ker \eta X=\operatorname{im} i$, and the desired equality results.

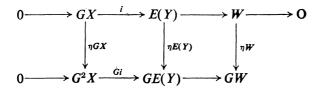
(3) Let $Y = im \eta X$. In view of Lemma 2.2, we have

$$Y \subseteq GX \subseteq E(Y)$$

where E(Y) is an injective hull of Y. Recalling Goldman's construction of $Q_{\sigma}(X)$, the desired isomorphism will follow if we can show $GX/Y = \sigma(E(Y)/Y)$, and this in turn will follow if we can prove (i) GX/Y is in \mathscr{G} , and (ii) $\sigma(E(Y)/GX) = 0$. Let Z = GX/Y, and let $p: GX \to Z$ be the canonical epimorphism. Then we have the commutative diagram



whose first row is exact. Then $0=G(p\cdot\eta X)=Gp\cdot G\eta X$ and, since $G\eta$ is 'an equivalence, Gp=0. Thus $\eta Z \cdot p = Gp \cdot \eta GX = 0$ and so $\eta Z = 0$ and Z is in \mathscr{G} . This establishes (i). To prove (ii), let W=E(Y)/GX. The following diagram is commutative and has exact rows:



1971]

[September

The first column is an isomorphism, so $\eta E(Y) \cdot i$ is a monomorphism. Since *i* is an essential monomorphism, $\eta E(Y)$ is a monomorphism. Since E(Y) is injective and $\eta E(Y)$ is an essential morphism, $\eta E(Y)$ is in fact an isomorphism. A standard diagram chase reveals ηW to be a monomorphism. Hence $\sigma(W) = \ker \eta W = 0$.

3. The ring of quotients. Suppose σ is an idempotent kernel functor, and (G, η) is a corresponding localization functor. In [4], it was shown that GA has a unique ring structure for which ηA is a ring homomorphism. It was also shown in [4] that each GX can be given a (unique) GA-module structure extending the A-module structure of GX. We shall show now how GA has a ring structure.

We write endomorphisms on the opposite side to scalars, and thus avoid talking about opposite rings. Since A is an A-A bimodule, GA has a right A-module structure given by $g \cdot a = (g)G\rho_a$, where $\rho_a : A \to A$ maps a' to a'a for all a' in A.

THEOREM 3.1. The left A-module GA is isomorphic to $Hom_A(_AGA_A, _AGA)$.

Proof. For g in GA, the map $\rho_g: A \to GA$ where $(a)\rho_g = ag$ induces a map ρ_g from im ηA to GA. Since $GA/\text{im }\eta A$ is in \mathscr{G} , and GA is faithfully σ -injective, $\overline{\rho_g}$ lifts to a unique map θ_g from GA to GA. We define $\delta: GA \to \text{Hom}_A(_AGA, _AGA)$ by $(g)\delta = \theta_g$. Let 1 denote $(1)\eta_A$, and let $\epsilon: \text{Hom}_A(_AGA, _AGA) \to GA$ be defined by $(f)\epsilon = (1)f$. It is easily verified that ϵ is an A-homomorphism, and that $(g)\delta\epsilon = g$ for all g in GA. Furthermore, if f is in Hom_A ($_AGA, _AGA$), the restrictions of f and $(f)\epsilon\delta$ to im ηA coincide. Since GA is faithfully σ -injective, $f = (f)\epsilon\delta$, so δ and ϵ are inverses of one another.

The maps δ and ϵ are in fact bimodule homomorphisms. If we use Theorem 3.1 to define a ring structure on GA, ηA is seen to be a ring homomorphism. Denoting GA by C, the ring C is the double centralizer of the module ${}_{A}C$.

Let L' be the functor from $_{A}\mathcal{M}$ to $_{C}\mathcal{M}$ defined as

 ${}_{A}\mathcal{M} \xrightarrow{G} {}_{A}\mathcal{M} \xrightarrow{\operatorname{Hom}_{A}({}_{A}C_{C}, -)} {}_{C}\mathcal{M}$

and let $V = \operatorname{Hom}_{C}(_{C}C_{A}, _)$ be the forgetful functor from $_{A}\mathcal{M}$ to $_{C}\mathcal{M}$.

THEOREM 3.2. If (G, η) is a localization functor, and L' and V are as defined above, then G is naturally equivalent to VL'.

Proof. There is a natural transformation from VL' to G given by

$$VL'X = \operatorname{Hom}_{C} ({}_{C}C_{A}, \operatorname{Hom}_{A} ({}_{A}C_{C}, GX))$$
$$\cong \operatorname{Hom}_{A} ({}_{A}C_{A}, GX) \xrightarrow{\operatorname{Hom}(\eta A, 1)} \operatorname{Hom}_{A} ({}_{A}A_{A}, GX) \cong GX.$$

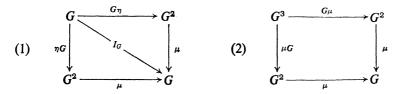
To show this is an equivalence, it suffices to show $\operatorname{Hom}_A(\eta A, 1_{GX})$ is an isomorphism. Let f be in $\operatorname{Hom}_A(A, GX)$. Since $f(\sigma A) \subseteq \sigma(GX) = 0$, and $\sigma(A) = \ker \eta A$, f factors uniquely through $\operatorname{im} \eta A$. Since GX is faithfully σ -injective, the map from $\operatorname{im} \eta A$ to GX lifts uniquely to a map f' from C = GA to GX. Thus, given f in

336

Hom_A (A, GX), there is a unique f' in Hom_A (C, GX) such that $f=f' \cdot \eta A$. Thus Hom_A (ηA , l_{gx}) is an isomorphism.

REMARK. The ring C described here is isomorphic (over A) to the ring of quotients defined in [3] and in [6]. If we identify these rings, then the functor VL (see Introduction), which gives the module of quotients as an A-module, is equivalent to Q_{σ} . (See [6, the remark following Proposition 2.3.]) Since, for any A-module X, LX and L'X are (essentially) C-modules with the same A-module structure, Goldman's remark [4] about the uniqueness of the C-module structure on $Q_{\sigma}(X)$ shows L and L' are equivalent functors. This comment (or rather a rigorous version thereof) shows that, if L is a localization functor in the sense of [6], VL gives a localization functor in the present sense, and if (G, η) is a localization functor in the present sense, $\text{Hom}_A(_AC_C, G_-)$ is equivalent to a localization functor in the sense of [6].

4. Triples. We begin this section with a review of §2 of [2]. For an arbitrary category \mathscr{A} , a triple $\overline{T} = (G, \eta, \mu)$ consists of a covariant functor $G : \mathscr{A} \to \mathscr{A}$, and natural transformations $\eta : I_{\mathscr{A}} \to G$ and $\mu : G^2 \to G$ for which the following diagrams commute:



If $S: \mathscr{A} \to \mathscr{B}$ and $T: \mathscr{B} \to \mathscr{A}$ are functors for which S is left adjoint to T, and $\alpha: ST \to I_{\mathscr{B}}$ and $\beta: I_{\mathscr{A}} \to TS$ are the associated natural transformations, then $(TS, \beta, T\alpha S)$ is a triple, and we say S and T generate the triple. Also, any triple (G, η, μ) in \mathscr{A} has a generator. To see this, define \mathscr{A}^G to be the category whose objects are pairs (X, ϕ) , where X is an object in \mathscr{A} , and $\phi: GX \to X$ is a morphism in \mathscr{A} for which $\phi \cdot \eta X = 1_X$ and $\phi \cdot \mu X = \phi \cdot G\phi$. A morphism $[f]: (X, \phi) \to (X', \phi')$ in \mathscr{A}^G is given by a morphism $f: X \to X'$ in \mathscr{A} for which $f\phi = \phi' \cdot Gf$, and composition of morphisms in \mathscr{A}^G is given by $[f] \cdot [g] = [fg]$. We define a functor S^G from \mathscr{A} to \mathscr{A}^G by $S^G X = (GX, \mu X), S^G f = [Gf]$, and a functor T^G from \mathscr{A}^G to \mathscr{A} by $T^G(X, \phi) = X, T^G[f] = f$.

It is shown in [2] that S^G is left adjoint to T^G , and the natural transformations associated with adjointness, $\alpha^G : S^G T^G \to I_{\mathscr{A}^G}$ and $\mathscr{B}^G : I_{\mathscr{A}} \to T^G S^G$ are given by $\alpha^G(X, \phi) = [\phi]$ and $\beta^G X = \mathscr{N} X$. The triple generated by S^G and T^G is

$$(T^GS^G, \beta^G, T^G\alpha^GS^G) = (G, \eta, \mu).$$

Furthermore, it is shown that, if $S: \mathscr{A} \to \mathscr{B}$ and $T: \mathscr{B} \to \mathscr{A}$ is another generator of the triple (G, η, μ) , there is a unique functor $\Gamma: \mathscr{B} \to \mathscr{A}^G$ satisfying (i) $\Gamma S = S^G$, (ii) $\Gamma \cdot \alpha = \alpha^G \cdot \Gamma$, and (iii) $T^G \Gamma = T$.

[September

THEOREM 4.1. If (G, η) is a localization functor, there is a (unique) equivalence $\mu: G^2 \to G$ for which (G, η, μ) is a triple. Conversely, if (G, η, μ) is a triple on ${}_{A}\mathcal{M}$ for which G is left exact and μ is an equivalence, (G, η) is a localization functor.

Proof. If (G, η) is a localization functor, choose $\mu = (G\eta)^{-1} = (\eta G)^{-1}$. The verification of the conditions for (G, η, μ) to be a triple is easy. Conversely, if (G, η, μ) is a triple, and μ is an equivalence, condition (1) for triples guarantees $G\eta = \eta G = \mu^{-1}$. Thus, if G is, in addition, left exact, (G, η) is a localization functor.

A triple (G, η, μ) for which G is left exact and μ is an equivalence will be called *localizing*. Combining Theorems 2.1, 2.4, and 4.1 we have

THEOREM 4.2. Every localizing triple (G, η, μ) on ${}_{A}\mathcal{M}$ has an associated idempotent kernel functor σ given by $\sigma(X) = \ker \eta X$, and every idempotent kernel functor on ${}_{A}\mathcal{M}$ arises in this way from a unique (up to equivalence) localizing triple.

The next theorem shows that, for a localizing triple (G, η, μ) , the category $({}_{\mathcal{A}}\mathcal{M})^G$ is a suitable replacement for Gabriel's quotient category.

THEOREM 4.3. Let \mathscr{G} be a strongly complete Serre class, and let (G, η, μ) be an associated localizing triple. Let $S^G: {}_{A}\mathscr{M} \to ({}_{A}\mathscr{M})^G$ and $T^G: ({}_{A}\mathscr{M})^G \to {}_{A}\mathscr{M}$ be the Eilenberg–Moore universal generator for the triple, and let α^G and β^G be the associated natural transformations. Then

(1) $({}_{A}\mathcal{M})^{G}$ is isomorphic (not just equivalent) to the full subcategory of ${}_{A}\mathcal{M}$ whose objects are all modules X for which ηX is an isomorphism,

(2) S^G is an exact functor, α^G is an equivalence, and $({}_A\mathcal{M})^G$ is an abelian category,

(3) if \mathscr{B} is any category, and $S: {}_{A}\mathscr{M} \to \mathscr{B}$ a left adjoint to $T: \mathscr{B} \to {}_{A}\mathscr{M}$ such that S and T generate (G, η, μ) , and if the associated natural transformation $\alpha: ST \to I_{\mathscr{B}}$ is an equivalence, then the functor $\Gamma: \mathscr{B} \to ({}_{A}\mathscr{M})^{G}$ is an equivalence.

Proof. (1) Let (G, η, μ) be a localizing triple. Then $\mu = (G\eta)^{-1} = (\eta G)^{-1}$. If (X, ϕ) is an object in $({}_{A}\mathscr{M})^{G}$, $\phi\eta X = 1_{X}$, so ηX is a monomorphism. Since ηX is an essential morphism (Lemma 2.2), ηX must in fact be an isomorphism. This being the case, ϕ must be ηX^{-1} , so every object of $({}_{A}\mathscr{M})^{G}$ is of the form $(X, \eta X^{-1})$. Conversely, if ηX is an isomorphism, $(X, \eta X^{-1})$ will be an object of $({}_{A}\mathscr{M})^{G}$ provided $\eta X^{-1} \cdot \mu X = \eta X^{-1} \cdot G(\eta X^{-1})$. But since $\mu = (G\eta)^{-1} = (\eta G)^{-1}$, this is always satisfied when ηX is an isomorphism. Thus the objects of $({}_{A}\mathscr{M})^{G}$ are all pairs $(X, \eta X^{-1})$ where ηX is an isomorphism. The functor T^{G} is faithful (2), and, in this case, is also full. Therefore T^{G} induces an isomorphism between $({}_{A}\mathscr{M})^{G}$ and the full subcategory \mathcal{D} whose objects are A-modules X for which ηX is an isomorphism.

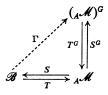
(2) Since T^{G} has a left adjoint S^{G} , \mathscr{D} is a full coreflective subcategory of ${}_{A}\mathscr{M}$. In order to show \mathscr{D} (or $({}_{A}\mathscr{M})^{G}$) is abelian, it is sufficient [5, Proposition V.5.3] to show that S^{G} is kernel preserving. Let $f: K \to X$ be a kernel of $g: X \to Y$ in ${}_{A}\mathscr{M}$. Then $S^{G}g \cdot S^{G}f = S^{G}(gf) = S^{G}0 = [0]$. If $[w]: (Z, \phi) \to S^{G}X$ satisfies $S^{G}g \cdot [w] = 0$, then

338

 $Gg \cdot w = 0$. Since G is left exact, Gf is the kernel of Gg, so there is a unique $h: Z \to GK$ such that $Gf \cdot h = w$. Since T^G is full, [h] is the desired morphism in $({}_{A}\mathcal{M})^G$ satisfying $[w] = [Gf] \cdot [h]$. Thus $[Gf] = S^G f$ is a kernel of S^G , as desired.

The functor S^G is a left adjoint, and so preserves cokernels. Since it also preserves kernels, and since ${}_{A}\mathcal{M}$ and $({}_{A}\mathcal{M})^G$ are abelian categories, S^G is an exact functor. Finally, α^G is an equivalence, since $\alpha^G(X, \eta X^{-1}) = [\eta X^{-1}]$, which is invertible.

(3) Suppose the hypotheses of [3] hold. Then we have



where $T^G \Gamma = T$, $\Gamma S = S^G$, and $\Gamma \cdot \alpha = \alpha^G \cdot \Gamma$. Then $\alpha : (ST^G) \Gamma = ST \to I_{\mathscr{B}}$ and $\alpha^G : \Gamma(ST^G) = S^G T^G \to I_{(\mathscr{A},\mathscr{M})^G}$ are equivalences.

COROLLARY 4.4. Let \mathscr{B} be an abelian category, and let $S: {}_{A}\mathscr{M} \to \mathscr{B}$ be an exact covariant functor which is left adjoint to $T: \mathscr{B} \to {}_{A}\mathscr{M}$. If, in addition, the associated natural transformation α from ST to $I_{\mathscr{B}}$ is an equivalence, then \mathscr{B} is equivalent to $({}_{A}\mathscr{M})^{TS}$ for the localizing triple (TS, β , $T\alpha S$) generated by S and T.

Proof. S is exact, and T, being a right adjoint, is left exact. Therefore, TS is left exact. Since α is an equivalence, $(TS, \beta, T\alpha S)$ is a localizing triple. The conclusion follows from (3) of the theorem.

REFERENCES

1. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 123-235.

2. S. Eilenberg and J. C. Moore, Adjoint functors and triples, Illinois J. Math. 9 (1965), 381-398.

3. P. Gabriel, Des categories abeliennes, Bull. Soc. Math., France, 90 (1962), 323-448.

4. O. Goldman, Rings and modules of quotients, J. Algebra, 13 (1969), 10-47.

5. B. Mitchell, Theory of categories, Academic Press, New York, 1965.

6. C. L. Walker and E. A. Walker, Quotient categories and rings of quotients (to appear).

UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO