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Being the metabolic syndrome a multifactorial condition, it is difficult to find adequate experimental models to study this pathology. The obese

Zucker rats, which are homozygous for the fa allele, present abnormalities similar to those seen in human metabolic syndrome and are a widely

extended model of insulin resistance. The usefulness of these rats as a model of non-insulin-dependent diabetes mellitus is nevertheless question-

able, and they neither can be considered a clear experimental model of hypertension. Some experimental models different from the obese Zucker

rats have also been used to study the metabolic syndrome. Some derive from the spontaneously hypertensive rats (SHR). In this context, the most

important are the obese SHR, usually named Koletsky rats. Hyperinsulinism, associated with either normal or slightly elevated levels of blood

glucose, is present in these animals, but SHR/N-corpulent rats are a more appropriated model of non-insulin-dependent diabetes mellitus. The

SHR/NDmc corpulent rats, a subline of SHR/N-corpulent rats, also exhibit metabolic and histopathologic characteristics associated with

human metabolic disorders. A new animal model of the metabolic syndrome, stroke-prone–SHR (SHRSP) fatty rats, was obtained by introducing

a segment of the mutant leptin receptor gene from the Zucker line heterozygous for the fa gene mutation into the genetic background of the

SHRSP. Very recently, it has been developed as a non-obese rat model with hypertension, fatty liver and characteristics of the metabolic syndrome

by transgenic overexpression of a sterol-regulatory element-binding protein in the SHR rats. The Wistar Ottawa Karlsburg W rats are also a

new strain that develops a nearly complete metabolic syndrome. Moreover, a new experimental model of low-capacity runner rats has also

been developed with elevated blood pressure levels together with the other hallmarks of the metabolic syndrome.

Zucker rats: Obesity: Metabolic syndrome: Insulin resistance

The metabolic syndrome has been recognised in the medical
literature for more than 80 years. The syndrome does not consti-
tute one single illness. Instead, it can be defined as a group of
health problems, caused by genetic and environmental factors,
whose common fundamental pathogenic component is resist-
ance to insulin. These problems may occur in one individual
simultaneously or one by one, but their appearance together in
one person is significant as these patients are more prone to
CVD in general and to coronary disease in particular.

In its Third Panel of Adult Treatment, part of the National
Program for Cholesterol Education, the U.S. National Health
Institute gave a definition of the metabolic syndrome based
on risk factors, which is straightforward to apply in epidemiolo-
gical studies and daily clinical practice(1). This definition
does not require direct demonstration of resistance to insulin,
which in clinical practice may be difficult to establish.
The metabolic syndrome is assumed to exist when three or
more of the following risk factors: abdominal obesity, high
TAG, low cholesterol in the HDL, hyperglycaemia, while
fasting and hypertension.

Being a multifactorial condition, different treatments should
be used for the different patients with the metabolic syndrome,
and it is impossible in the practice to develop animal strains
that represent all the different patients with this syndrome. It
is in fact nowadays a challenge to find adequate experimental
models to study the metabolic syndrome, but some animal
strains, and in particular some rat strains, with a profile of
anomalies quite similar to those that characterise the majority
of the patients with this syndrome, could permit nowadays to
evaluate the drugs and lifestyle interventions to treat or pre-
vent it. At the present moment, the most representative rat
strain to study the metabolic syndrome seems to be the
obese Zucker rats. These animals are mainly used as obesity
experimental model, but they also present changes similar to
those seen in human metabolic syndrome. Some experimental
models different from the obese Zucker rats have also been
used to study the pathogenesis, therapy and prevention of
obesity, and some of them can also be used to study the meta-
bolic syndrome. In the present review, we put forward a
detailed account of the changes observed in the obese
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Zucker rats, with particular regard to those which characterise
the aforementioned syndrome, and we also present other rat
strains with these abnormalities. Some of them derive from
the spontaneously hypertensive rats (SHR).

The present review is finally focused on experimental
rat models to study the metabolic syndrome, but it is
also advisable to warn that other additional animal models,
and in particular Psammomys obesus and some mouse strains,
as the leptin-deficient (ob/ob) mice, the apoE-deficient mice or
diet-induced obesity mice also present anomalies similar
to those of the metabolic human syndrome and could therefore
be used to study it.

Obese Zucker rats

Obese Zucker rats are the best known and most widely
used animal model of genetic obesity. The fa mutation was
discovered in 1961 by Lois Zucker in a cross between
Merck M-strain and Sherman rats(2). The animals that are
homozygous for the fa allele, the fa/fa Zucker rats, better
known as obese Zucker rats, become noticeably obese
between the third and the fifth week of life. These animals pre-
sent a mutation in the leptin receptor, which is the molecular
base of their characteristic phenotype(3 – 5). Leptin is produced
by adipose tissue and plays an important role in the central
regulation of energy balance(6). This hormone is released
into the circulatory system by the adipose tissue in proportion
to the amount of lipids stored and acts in the brain on
the leptin receptors, determining a decrease in food intake
and an increase in energy expenditure(7 – 9). A direct or
indirect consequence of the lack of a leptin receptors-mediated
counter-regulation is that obese Zucker rats display markedly
elevated circulating leptin levels compared with their lean
counterparts(10,11). Old classical orexigenic peptides such as
neuropeptide Y, galanin, orexins and melanin-concentrating
hormone are upregulated in obese Zucker rats(12 – 15). Con-
cretely, this strain is characterised by an increased expression
of ghrelin both at the peripheral and central levels(16,17). This
fact could be participating in the development of extra weight
in the obese Zucker rats.

The obese Zucker rats develop severe obesity associated
with hyperphagia, defective non-shivering thermogenesis
and preferential deposition of energy in adipose tissue(3).
By 14 weeks of life, body composition of the obese Zucker
rats is approximately 40 % weight lipid(18 – 20). The affected
rats develop hyperplasia and adipocyte hypertrophy(21).

In addition to their characteristic obesity, obese Zucker rats
present a range of endocrinological abnormalities. In reality,
these animals are a widely extended model of insulin resist-
ance, presenting very similar features to those characterising
human metabolic syndrome. In fact, as well as resistance
to the metabolic actions of insulin, these animals present
dyslipidaemia, mild glucose intolerance and hyperinsulinae-
mia(18 – 25). Hyperinsulinaemia is detectable at 3 weeks and
persists throughout the animals’ lives, the islets of Langer-
hans’ hypertrophy moderately and increase in number. In
addition, the animals present renal damage(26).

At 17 d, obese Zucker rats can already be seen to
eat more compared with lean animals from the same
litter(27). Hyperphagia is particularly apparent during the
growth period of the obese animals, i.e. during the first

16 weeks of life(28). Some pharmacological treatments,
naloxone(29), d-amphetamine and fenfluramine(30), acarbose(31)

and cholecystokinin(32) among others and dietary manipula-
tions have succeeded in reducing hyperphagia in these animals
to a varying degree, but have not managed to normalise the
obese body composition. Lifelong food intake restriction
results in a reduction in these animals’ body weight, but
the bodies of obese Zucker rats always continue to maintain
a proportion of lipids of approximately 50 %. This percentage
is much greater than the percentage of lipids found in the
bodies of lean littermates (20 %)(33). We also know that,
when energy intake is reduced, these animals respond with a
decrease in the number of fat cells rather than a decrease in
the volume of these cells(34).

Different studies suggest that the activity of adipose tissue
lipoprotein lipase activity, which is significantly correlated
with enhanced TAG uptake by adipose tissue, is one of the
candidates for the primary lesion produced by the presence
of the fa gene in Zucker rats. The increase in this enzyme’s
activity may correlate with enhanced TAG uptake by
adipose tissue(35). Lipase lipoprotein activity, which controls
lipid filling of adipocytes, is elevated in 12-d-old animals,
in other words well before the animals can be visually ident-
ified as obese(36). This change precedes other determining
factors of obesity, such as enhanced liver lipogenesis and
hyperinsulinaemia(37 – 39).

The amount of blood per unit of body weight in obese
Zucker rats is lower than normal. The plasma of these animals
is milky in appearance, as its fatty acid and cholesterol con-
tents are ten and four times greater than normal, respectively.
In reality, these rats present a hepatic overproduction of lipo-
proteins. The increase of lipids and lipoproteins in plasma is
also one of the first anomalies to be observed in the
rats(40 – 45). They show an increase in VLDL and in HDL but
although they present a decrease in the expression of hepatic
receptors for LDL, they show no increase in LDL-cholesterol
and cannot be used as a model of atherogenesis(46). Like other
rodents, they have larger amounts of HDL than LDL, but an
increase in LDL-cholesterol can be induced in these animals
by means of dietary supplements of saturated fats and choles-
terol(47). Thus the increase in TAG concentration in plasma
exhibited by obese Zucker rats is due to the accumulation of
VLDL, and the increase in cholesterol is due to the increase
in cholesterol in the VLDL and HDL fractions. The increase
in HDL-cholesterol is particularly manifest in the male
rats(48). In fact, in 1985, Lin described clear differences between
obese males and females. This researcher showed that the
increase in the serum cholesterol of obese females was caused
principally by its high content of non-esterified cholesterol
associated with VLDL. By contrast, in males, serum cholesterol
was chiefly transported as esters of cholesterol with HDL.

These rat glucose levels are in reality normal or only
slightly higher than normal. Therefore, these animals are not
the best model to study the effective treatments to control
alterations of glucose homeostasis. Nevertheless, some
researchers have succeeded in identifying several vascular
changes characteristic of diabetes in these rats(49). The
lipid profile of lean Zucker rats is similar to that of
Sprague–Dawley(40,41) and Wistar(42) rats. These animals are
sensitive to insulin, are normotensive and have a normal
glucose tolerance.
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The link between obesity and hypertension has been recog-
nised for some time. Several studies have reported conflicting
results about whether obese Zucker rats are hypertensive
compared with their lean controls(50 – 62). Systolic arterial
blood pressure in obese rats is lower than that in control
lean rats of between 8 and 12 weeks of life. At 24 weeks,
the phenomenon goes into reverse, and at 28 weeks, systolic
arterial blood pressure in obese rats is significantly higher
than in their lean counterparts. With these observations in
mind, Kurtz et al. (53) indicated that obese Zucker rats could
be considered a model of obesity and hypertension. These
animals could constitute an experimental model in which
hypertension was specifically associated with the genotype
for obesity. The increase in arterial blood pressure in the
obese animals is not due to an increase in renal Na
retention(62). The impaired vascular responses to acetylcholine
that has been observed in some studies in the oldest obese
Zucker rats indicate that endothelial dysfunction could justify,
at least in part, the increased arterial blood pressure in
these animals(63). There is evidence for a local angiotensin
II-generating system in adipose tissue(64 – 66), implying that
the vasoactive component angiotensin II may be produced
by adipose tissue. Angiotensin II is a powerful stimulus for
the generation of reactive oxygen species in the blood
vessels(67,68). This increased oxidative stress may interact
with NO function, leading to endothelial dysfunction(69).
Therefore, we can also assume that the increased proportion
of adipose tissue in the obese Zucker rats, and consequently
the increased production of angiotensin II and reactive
oxygen species, could facilitate the development of hyper-
tension and endothelial dysfunction in these animals.

Obesity is also associated with a state of chronic
inflammation characterised by abnormal production of proin-
flammatory mediators(70), including TNF-a(71,72)and inducible
NO synthase(73). This inflammatory state is associated with a
deficit of energy in the form of ATP(74,75)and simultaneous
overproduction of fat and leptin, which is accompanied by
leptin resistance in the brain(74,76). Recent studies have
shown that fat tissue is not a simple energy storage organ,
but exerts important endocrine and immune functions. These
are achieved predominantly through the release of several
factors termed ‘adipocytokines’, which include several
novel and highly active molecules released abundantly by
adipocytes like above-mentioned leptin, as well as some
more classical cytokines released possibly by inflammatory
cell infiltrating fat like, TNF-a, IL-6, monocyte chemotactic
protein-1 and IL-1(77). In this context, TNF-a, a proinflamma-
tory cytokine, is overexpressed in obesity and likely
mediates insulin resistance in the major animal models of
obesity(71), including obese Zucker rats(78). Both research
groups postulated that overexpression of TNF-a induces
the activation of NADPH oxidase and production of
superoxide anion leading to endothelial dysfunction in obese
Zucker rats.

Obese spontaneously hypertensive rats

The SHR, a well-known experimental model to study
hypertension, have been also proposed as a model of insulin
resistance. These rats show hypertriacylglycerolaemia,
abdominal obesity and hypertension(79,83). In the background

of SHR, different strains of corpulent SHR, such as obese
SHR named, Koletsky rats, SHR/N-corpulent rats and SHR/
NDmc-corpulent rats, seem to be even more adequate to
study the metabolic syndrome than the SHR. The leptin recep-
tor gene is also knocked out in these rats.

Obese spontaneously hypertensive rats/Koletsky rats

The obese SHR usually named Koletsky rats are considered an
animal model with phenotypic features that strongly resemble
metabolic syndrome X(84,85). This strain was originally
established in 1970 by Koletsky(86 – 88) and presents obesity,
hypertension, hyperinsulinaemia, hyperlipidaemia and nephro-
pathy superimposed on the background of SHR. The abnormal
animal was derived by mating a female SHR of the Wistar–
Kyoto strain with a normotensive Sprague–Dawley male.
The obese rat appeared after several generations of selective
inbreeding of hypertensive offspring of the original cross.
The SHROB has monogenetic obesity superimposed on
a hypertensive genetic background. The obesity mutation is
a recessive trait, designated fak, which is a non-sense mutation
of leptin receptor gene resulting in a premature stop codon in
the leptin receptor extracellular domain. The SHROB carries
two fak alleles, is leptin resistant and has circulating leptin
levels 30-fold higher that its lean siblings. This mutation
renders the SHROB incapable of central and peripheral
responses to leptin(89). Animals can be identified as genetically
obese at about 5 weeks of age. Body weight increases rapidly,
and males usually attain weight of 750–1000 g when 7–12
months old. Although both sexes are involved, males are hea-
vier that females at practically all ages. The rats uniformly
develop hyperlipidaemia even though they are fed with
standard diet, which was characterised by a marked triacylgly-
cerolaemia and a moderate rise in plasma cholesterol.
The animals exhibit hyperphagia and also have abnormal
carbohydrate and protein metabolism. Hyperinsulinism is
present in these rats and is associated with either normal or
slightly elevated level of blood glucose. Spontaneous hyper-
tension usually occurs at about 3 months of age. The arterial
blood pressure rises progressively at 8 and 12 weeks of age,
achieving more than 180 mm Hg, and rises progressively to
200 mm Hg between 20 and 30 weeks of age. These animals
also develop premature vascular disease involving especially
abdominal arteries. Microscopically, the lesions occurred
in this vessels simulate those of human atherosclerosis(88).

Spontaneoulsy hypertensive/N corpulent rats

The spontaneously hypertensive/N-corpulent rats are a
substrain of Koletsky rats that has been developed and
characterised as a model for non-insulin-dependent
diabetes mellitus(90). It has been demonstrated that obese
SHR/N-corpulent rats male rats have some metabolic and
histopathologic characteristics similar to non-insulin-dependent
diabetes mellitus(91,92). Obese rats are hyperinsulinaemic,
hyperlipidaemic, glucose intolerant and exhibit glycosuria
and proteinuria. Hyperglycaemia is observed in obese rats
following an oral glucose load or postprandially, but not in the
fasting state.
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Spontaneoulsy hypertensive/NDmc-corpulent rats

The spontaneously hypertensive/NDmc-corpulent rats are an
inbred subline of SHR/N-corpulent rats that also present obes-
ity. This strain has also been used as an animal model for the
metabolic syndrome(93,94). These animals are homozygous
for the cp gene (cp/cp) and are hyperphagous and develop
metabolic alterations, and they can be also named as
(SHR-cp), whereas homozygous normal (þ /þ) animals are
lean and hypertensive but not hyperlipidaemic and insulin
resistant. The SHR-cp exhibit, in fact, metabolic and histo-
pathologic characteristics associated with metabolic disorders
in human subjects, such as increases in body and adipose
tissue weights(95) accompanying hypertension and hyper-
cardia(96), diabetes(97,98) and hyperlipidaemia(99).

Stroke-prone–SHR fatty (fa/fa) rats

Stroke-prone SHR (SHRSP) are a rat model that develops
severe hypertension. SHRSP rats develop hypertension-related
disorders, such as nephropathy, cardiac hypertrophy and ather-
osclerosis, similar to human essential hypertension and 100 %
die to stroke(100). As SHR rats, SHRSP is also a model of insu-
lin resistance syndrome(79,101). In spite of SHRSP being a
good model of hypertension and insulin resistance, SHRSP
weigh less than their normotensive control, Wistar–Kyoto
rats, and have reduced plasma total cholesterol and NEFA
levels. Very recently, Hiraoka-Yamamoto et al. (102) have
produced a new animal model of the metabolic syndrome,
by introducing a segment of the mutant leptin receptor gene
from the Zucker line heterozygous for the fa gene mutation,
into the genetic background of the SHRSP. Therefore, a
new congenic strain, SHRSP fatty ( fa/fa) rats, was derived
by replacing the fa locus of chromosome from Zucker
( fa/fa) rats. The SHRSP fatty rats are characterised by
the spontaneous development of hypertension, obesity,
hyperleptinaemia and several metabolic disorders such as
hyperlipidaemia and hyperinsulinaemia.

Sterol-regulatory element-binding protein–spontaneously
hypertensive rats

The relationship between the metabolic syndrome and
non-alcoholic fatty liver disease has recently begun to attract
considerable attention(103 – 105). In subjects with clinical
features of the metabolic syndrome, the prevalence of non-
alcoholic fatty liver disease can be very high even in the
absence of diabetes, obesity or abnormal liver enzymes. More-
over, 50 % of subjects with pure fatty liver and up to 90 % of
subjects with non-alcoholic steatohepatitis have the metabolic
syndrome according to Adult treatment panel III criteria(104).
Although insulin resistance can be determinant of fatty liver,
it has also been suggested that hepatic steatosis may play a
role in the pathogenesis of the metabolic syndrome and pro-
mote insulin resistance in liver and skeletal muscle(106 – 108).
Some investigators have further proposed that non-alcoholic
fatty liver disease may be considered an additional feature
of the metabolic syndrome(120). Therefore, the availability of
animal models with hepatic steatosis, as well as insulin resist-
ance, dyslipidaemia and hypertension, could be valuable
for studying the pathogenesis and treatment of the metabolic

syndrome and its relationship to non-alcoholic fatty liver
disease. Very recently, Qi et al. (109) have created a non-obese
rat model with hypertension, fatty liver and characteristics of
the metabolic syndrome by transgenic overexpression of a
sterol-regulatory element-binding protein in the SHR rats.
Sterol-regulatory element-binding proteins are transcription
factors involved in the regulation of fatty acid and lipid
metabolism and can activate the expression of multiple
genes involved in the hepatic synthesis of cholesterol, TAG,
fatty acids and phospholipids(110,111). This indicates hepatic
steatosis and multiple biochemical features of the metabolic
syndrome, including hyperinsulinaemia, hyperglycaemia
and hypertriacylglycerolaemia in the absence of obesity. The
sterol-regulatory element binding protein–SHR model could
therefore provide valuable opportunities for investigating
pathogenetic mechanisms that may relate fatty liver disease
to the metabolic syndrome.

Wistar Ottawa Karlsburg W rats

In 1995, a new inbred rat strain was developed, termed Wistar
Ottawa Karlsburg W (WOKW) rats. These animals derived
from a Wistar rat outbred strain of the BioBreeding Labo-
ratories (Ottawa, Ont., Canada). The WOKW strain provides
a good animal model expressing the metabolic syndrome.
It is especially useful because their metabolic syndrome is
under polygenic control, as in human subjects, and not due
to a single-gene mutation(112). The dark agouti rats are usually
used as control animals of WOKW(113). WOKW compared
with dark agouti rats show hyperphagia, and are heavier and
fatter. Segregating populations derived from this strain and
inbred dark agouti rats have been successfully used to identify
quantitative trait loci for major components of the metabolic
syndrome, such as insulin resistance on WOKW chromosome 3
and hypertriacylglycerolaemia on WOKW chromosomes 4
and 6(114,115). The WOKW develops a nearly complete meta-
bolic syndrome with obesity, moderate hypertension,
dyslipidaemia, hyperinsulinaemia and impaired glucose
tolerance(114,116,117). A cross-sectional comparative study
indicated that the WOKW rat begins to manifest the signs
of the metabolic syndrome between 8 and 10 weeks of
age(113). Very recently, the metabolic syndrome in WOKW
rats has been also associated with coronary dysfunction(118).
The dark agouti strain does not show any of these charac-
teristics and has been considered as the control strain for the
WOKW rats(112,113).

Low-capacity runner rats

Very recently, Wisløff et al. (119) have generated an animal
model of the metabolic syndrome. To obtain this model, rats
were selectively bred based on their ability to perform on a
treadmill endurance running task. Accordingly, rats that
have a high intrinsic aerobic capacity and are capable of
running comparatively long distances are classified as high-
capacity runner rats and are bred together. On the other
hand, rats with a low intrinsic aerobic capacity that are only
capable of running relatively short distances are classified as
low-capacity runner (LCR) rats and are bred with each
other. Eleven generations of selective breeding resulted in
elevated blood pressure in LCR rats when compared with
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high-capacity runner rats. The LCR rats also show endothelial
dysfunction, insulin resistance and hyperinsulinaemia, visceral
adiposity, hypertriacylglycerolaemia and elevated plasma
NEFA. Therefore, one advantage of this new experimental
model is that elevated blood pressure in the LCR rats occurs
together with the other hallmarks of the metabolic syndrome(119).

Conclusions

All rat models included in this review could be potentially
used to study the metabolic syndrome. It is well known that
this syndrome is not only one illness, but an association of
health problems that are not coincident in all patients. The
rat strains described in this review have a profile of anomalies
quite similar to those that are present in the majority of these
patients, but it is very important to exactly know the typical
features or abnormalities of each strain, in order to correctly
use them and to obtain the adequate information in the exper-
imental trials. The obese Zucker rats have been extensively
studied and are the best known animals to study the abnorm-
alities present in the metabolic syndrome. More studies should
be performed to characterise the other strains, in particular
those that have been recently described as the LCR rats.
Table 1 summarises the main characteristics of each one and
could permit to adequately use them.
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