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A b s t r a c t . This paper reviews the main methods for constructing mapping 
models for Hamiltonian systems, for the study of motion in the Solar Sys-
tem. The emphasis is given to the relation between the various mapping 
techniques, the methods to check how close is a mapping model to the orig-
inal system and the effects of an incomplete model on the evolution of the 
system. 

1. I n t r o d u c t i o n 

The evolution of a subsystem in the Solar System, as for example the motion 
of an asteroid under the gravitational attraction of the Sun and Jupiter, 
can be described by a Hamiltonian system. It is known that the flow in the 
2n-dimensional phase space, from an initial position (ço?Po) at time t = to 
to the position (91 ,Pi ) at the time t = t\ is a canonical transformation, 
where η is the number of degrees of freedom and ç , ρ are η-vectors. This 
means that the mapping in phase space from the time to to the time t\ is a 
symplectic mapping. 1 An important property of a symplectic map is that 
it conserves the volume in phase space. 

A very useful tool in the study of a Hamiltonian system is the method 
of Poincaré map on a surface of section. The continuous flow in the 2rc-
dimensional phase space is reduced to a map in a (2n—2)-dimensional phase 
space. The Poincaré map is also symplectic. This method is especially useful 
in systems with two degrees of freedom, where instead of studying the flow 

1A map Τ : M —• M is symplectic if its Jacobian matrix L = DT satisfies the 
symplectic property LT JL = J, where J is the symplectic matrix with rows (in block 
form) (0t I) and (—7,0), (I and 0 are the η χ η unit and zero matrices, respectively) and 
LT is the transpose of L. 

255 

S. Ferraz-Mello et al. (eds.), Dynamics, Ephemerides and Astrometry of the Solar System, 255-266. 
© 1996 IAU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900127500 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127500


256 JOHN D. HADJIDEMETRIOU 

in a 4-dimensional phase space we study the map in a 2-dimensional space. 
The fixed points of the Poincaré map coincide with the periodic orbits of the 
system and it is clear that their position and stability character determine 
the topology of the reduced phase space. 

By making use of the Poincaré surface of section we do not lose any 
information: the map describes completely the system. However, in order 
to find the Poincaré map we must solve the system of differential equations 
which, in general, cannot be solved in a closed form, because the system 
is nonintegrable. Thus the only way to obtain the Poincaré map is to use 
numerical integrations. 

2· Construction of mapping models 

As mentioned above, the Poincaré map involves the solution of a noninte-
grable dynamical system. In order to overcome this difficulty, we can con-
struct mapping models to study the evolution of the Hamiltonian system. 
There are several methods to do this, that will be explained in the follow-
ing. All of them are based on a perturbation method and consequently the 
series may not converge beyond a certain value of a small parameter. 

In order for a mapping model to be realistic, its phase space must have 
the same topology as that of the Poincaré map of the original Hamiltonian 
system. The necessary conditions for a realistic mapping model are: 

1. The mapping must be symplectic. 

2. The mapping model must have the same fixed points as the Poincaré 
map. 

3. The fixed points must have the correct stability character. 

Note that it is not difficult to check the correct position and stability of 
the fixed points of the mapping model, because they must coincide with the 
periodic orbits of the original Hamiltonian system and it is relatively easy 
to compute the main families of periodic orbits of a Hamiltonian system. 
This provides us with an efficient check of the validity of the mapping 
model and also of the convergence of the perturbation series involved in 
the construction of the mapping model. 

3· The averaging method 

Some important methods for the construction of a mapping model for a 
nearly integrable dynamical system are based on the method of averaging. 
For this reason we shall comment on this method and we shall discuss 
its relation to the original system on one hand and to the corresponding 
mapping model on the other. 
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We consider a Hamiltonian system with η degrees of freedom, 

H = H0 + eJTi (1) 

where Ho is the integrable part and e a small parameter. We transform 
first to action-angle variables, 0, J, of the integrable part and Ho becomes 
a function of the actions only, Ho(I). We assume that we are close to a 
resonance (of Ho) and transform further to new canonical resonant action-
angle variables. In this way we have fast and slow angles. Next, by a new 
canonical transformation through a suitable generating function, we elim-
inate the fast angles and we are left with a new, averaged Hamiltonian Η 

with (ra - 1) degrees of freedom. It is in this last step that the perturbation 
method enters and several things could go wrong, because the perturbation 
series may not converge beyond a certain value of the small parameter (in 
fact this is always the case). 

From the theory of averaging it is known that the fixed points of the 
averaged Hamiltonian Η coincide with the periodic orbits of Η (or the fixed 
points of the Poincaré map of H). If i f were integrable, the perturbation 
method would converge and the fixed points of H would be identical with 
the fixed points of the original system (Poincaré map). In a nonintegrable 
Hamiltonian however the fixed points of H may be in the wrong position, 
or may have the wrong stability, or more fixed points may appear, or some 
fixed points may be missing. In all these cases the topology of the mapping 
model is different from that of the real system and consequently the model 
is not realistic. We shall discuss all these problems in the study of actual 
dynamical systems in the Solar System that follows. 

4. Methods to construct mapping models 

We can separate the methods to obtain a mapping model for a Hamiltonian 
system of the form (1) into two main categories: 
A- Solve approximately the differential equations of motion and then use 

the approximate solution to obtain a mapping model. 

B- Construct analytically the Poincaré map of the integrable part HQ and 
express it by a generating function. Then perturb the generating func-
tion to obtain the mapping model. 
Before we present applications of these methods to the study of actual 

systems in the solar system, we shall describe the method A , as applied 
by Wisdom and the method B, as applied by Hadjidemetriou by a simple 
example, and we shall discuss their similarities and also their relation to 
the actual system they are designed to represent. Both methods are based 
on an averaged Hamiltonian H of the original Hamiltonian H of the form 
(1) . Other mapping techniques will be also presented. A review on mapping 
techniques has been presented by Froeschlé (1991). 
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5. A comparison of the methods A and Β by a simple example 

5.1. METHOD A 

We consider the time dependent Hamiltonian system 

Η = Ho(I) + (Κο/2π) cos(0) + Hhf(e,I,t), (2) 

where Ko is a constant, J is the action, θ the angle and 

#*/ = Σ *»(/)cos(0-ni) (3) 

is a 27r-periodic function of the time that represents the high frequency 
terms. By making use of the averaging method (see for example Had-
jidemetriou 1991), we obtain the averaged Hamiltonian 

Η = Ho(I) + (Κ0/2π) cos(0), (4) 

where / , θ are the averaged variables. On going from Η to Η we lose 
information (the time dependence is eliminated with the high frequency 
terms, which means that in fact we lose one degree of freedom). 

We reintroduce now the high frequency terms that were eliminated in 
the averaging process ( but not the same terms!). Instead of Hhj we add 
to Η the high frequency terms (also with period 2π) 

^ / = E ( J W 2 7 r ) c o s ( e - n O (5) 

and we have now the Hamiltonian (dropping overbars) 

Η = H0(I) + Ko cos(ö) ί3»(0. (6) 

that will be used in place of the original Hamiltonian (2) , where 

M0 = ^ ( i + 2 

oo \ 

cos(n/) J 
71=1 / 

is the 27r-periodic delta function. 

Note that this is equivalent to substituting cos(ö) in (4) by the sum 

oo / oo \ 

Σ cos(£ - nt) = cos(0) I 1 + 2 ^ cos(n/) J = 2π cos(ë)tf2ir(<), (7) 
n = - o o \ n = l / 

i.e. we replace cos(0) by 2π-ρβποάΐ€ impulses, multiplied by 2π. 
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The Hamiltonian (6) can be easily solved because it is equal to Ho(I) 

in all open intervals (0 ,2π) , (2π ,4π) , . . . The solution from 0~ to 2π~ gives 

the mapping for one period 2π of the forcing high frequency term (3) . This 

mapping is: 

Ji = I0 + Ko s in(0 o ) , θι=θ0 + 2π u ; 0 ( / i ) , (8) 

where ωο(Ι) = dHo/dl. It can be readily verified that this mapping is 
symplectic and can be obtained by the generating function 

F(e0, Ji) = / iöo + 2TT [ J T 0 ( / I ) + (Ko/2*) c o s ( 0 o ) ] . (9) 

We ask now the question what is the relation between the map (8) 
and the original system (2) . In order for the map (8) to be a realistic 
model, it must coincide with the Poincaré map of i f , i.e. its fixed points 
should coincide with the fixed points of the Poincaré map, both in position 
and in stability properties. We remind now that the fixed points of the 
Poincaré map coincide with the fixed points of the averaged Hamiltonian 
H (provided that H is a good model!). So, finally, the comparison between 
the fixed points of the map (8) and of H will provide us the test whether 
(8) is a realistic model for the original Hamiltonian H. 

The fixed points (#o, Io of the averaged Hamiltonian H, given by (4) , 
are obtained from the equations 

sin(0 o ) = O, o ; 0 ( / 0 ) = 0. (10) 

The stability index of the corresponding periodic orbit of the original Hamil^ 
tonian (2) , which has the period 2π of the forcing term if^/, defined as the 
sum of the eigenvalues of the monodromy matrix, is 

k = exp 2τ\β + exp -2τ\β, (11) 

where 

β = (Κο/2π)ω0ι(Ιο) coe(fl 0), (12) 

and ωοι = du>0/dl, (Hadjidemetriou, 1991). 

The fixed points of the mapping (8) are also given by the equations 
(10), but the stability index (defined as the sum of the eigenvalues of the 
linearized mapping at the fixed point) is different and is given by 

k = 2 + 2wKçpjoi(Io) cos (0 o ) . (13) 

From the above analysis it is clear that the position of the fixed points is the 
same in both the averaged Hamiltonian and the corresponding mapping, 
but the stability index is different, in general. However, the two stability 
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indices are close if Ko « 1, as can be seen by expanding the exponentials 

in (11) in powers of y/ß: 

k = 2 + 2πΚ0ω0ι(Ι0) cos(0 o) + 0(K%). (14) 

Thus, for small Ko the mapping model is a realistic model for the original 

system (2). 

5.2. THE METHOD Β 

In this method we solve first the integrable part of Ho(I) of Η assuming 
that Ko is small, so that the second term in the right hand side of (4) to 
be considered as a perturbation. The solution is J = Ιο, θ = u>o(Io)t and 
this gives the Poincaré map, at integral multiples of the period 2π: 

/ ι = / ο , θ1=θο + 2πω0(Ι0). (15) 

This is obtained from the generating function 

^ο(/ι,ο 0 ) = / ιο 0 + 2π^ο(/ι) (16) 

through the equations Io = dFo/dOo, θ\ = dFo/dI\. We perturb now the 
generating function (16) in such a way that the new map has the same 
topology as the Poincaré map of the original system. Note that this map 
is always symplectic by its construction. It can be proved (Hadjidemetriou, 
1991,1993) that this can be achieved by adding a perturbation term F\ to 
Fo, which is the perturbation term of Η, given by (4), multiplied by the 
period 2π, 

Fi = K0cos(e). (17) 
Thus, the generating function is F = Fo + Fi and we can verify that it 
coincides with the generating function (9) of the mapping (8). 

5.3. COMPARISON OF METHODS A AND Β 

From the previous two sections we come to the conclusion that both meth-
ods A and Β are equivalent, for the simple example we used to demon-
strate these methods, provided Ko < < 1. This may not be always the case. 
Method Β gives always a symplectic map, and it can be proved that it gives 
mapping models that are realistic (i.e they satisfy the necessary conditions 
of section 2), provided of course that the averaged Hamiltonian on which 
they are based are realistic. The map however that is obtained with method 
A may not be symplectic (Henrard, 1995), as can be seen by considering 
Ko in (2) as a function of J, Ko = Ko(I)- The mapping obtained by the 
method A is 

h = Io + Ko(Io) sin(0 o), *i = θ0 + 2πω0(Ιι) + Κ'(Ι0) cos(0 o ) , 
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which is not symplectic, while the mapping obtained by method Β is 

h = Io + K0(h) s in(0 o ) , θχ = θ0 + 2πω0(Ιι) + K\h) cos (0 o ) , 

which is symplectic. 
Finally, we remark that the above two methods that were demonstrated 

by a simple example, can be extended to systems with more degrees of 
freedom, as we shall see in the applications that follow. 

6· Application of mapping methods in the Solar System 

6.1. RESONANT ASTEROID MOTION: THE WISDOM MAPPING 

The method described in section 5.1 to obtain a mapping model for a 
Hamiltonian system has been applied by Wisdom (1982,1983,1985) for the 
study of an asteroid at the 3:1 resonance with Jupiter. The underlying 
dynamical system is the planar elliptic restricted three body problem, with 
the Sun and Jupiter as primaries. The averaged Hamiltonian used to obtain 
the mapping model is 

Η = - ^ - 3 Φ + μ ^ 2

 + ΐ ,
2 ) 

+e^Gx - μ \C(x2 - y2) + ejD + e)E^ cos φ (18) 

- μ [2Cxy + ejDy] sin 0 , 

where μι = 1 — μ, Φ = y/μ\α, φ = I - 3/j and 

χ = v/2J9coso;, y = v^psina;, (19) 

with ρ = yjμια (l — \ / l - e 2 ) . The semimajor axis of the asteroid is a, its 

eccentricity is e, its mean longitude is /, the argument of perihelion is a;, 

the subscript j refers to Jupiter and μ is the mass of Jupiter. The angle 

φ is the resonant angle (slow angle). The averaged Hamiltonian (18) is 

obtained from the Hamiltonian of the elliptic restricted three body problem 

by eliminating the high frequency terms, which in this case is the orbital 

motion of Jupiter in its orbit around the Sun, with period 2π. The high 

frequency terms are reintroduced by 27r-periodic impulses as 

c o s 0 ^ cos<^ χ 2π^2π(0? s i n 0 - > s in0 χ 2πί2π(^ - ^r/2). (20) 

The new Hamiltonian can now be solved easily from / = 0 to t = 2π 

and in this way a mapping is obtained, which is a model for the Poincaré 
map of the elliptic restricted three body problem at integral multiples of 
the period 2π of Jupiter's orbit (stroboscobic map). Note that all periodic 
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Figure Î. (a):The evolution in the xy plane. The distance from (0,0) is proportional to 
the eccentricity. (b):The time evolution of the eccentricity (from Wisdom). 

orbits in the elliptic restricted three body problem have a period equal to 

2π, or a multiple of it. It turns out that this mapping is symplectic. This is 

a four dimensional map in the space φ, Φ, y and it is not easy to present 

geometrically. In this case however, we can further reduce the map to a two 

dimensional one by taking advantage of the fact that after the averaging 

we still have a "fast" and a "slow" angle, and we eliminate the fast angle 

by a new averaging. The fast angle is the resonant angle φ, compared to 

the argument of perihelion ω which is much slower. This is equivalent to 

taking a "mapping" of the mapping, for example by the "surface of section" 

Η = constant, φ = π. In this way we finally obtain a two dimensional map 

in the space x y. 

The evolution of an asteroid at the 3:1 resonance, obtained by this 

mapping, is shown in Figure 1. We note that there is a large chaotic region 

and the asteroid may be locked in a motion with small radius (eccentricity) 

but suddenly may jump to a motion where the radius takes large values. 

This is clearly seen in Figure l b , where the eccentricity jumps to values 

higher than 0.3 at unpredictable times, showing an intermittent behaviour. 

In this way Wisdom explained the observed gap in the distribution of the 

asteroids at the 3:1 resonance, because for e > 0.3 the asteroid becomes a 

Mars crosser and the resulting perturbation will remove the asteroid from 

the 3:1 resonance region. 

The Wisdom method has been applied by Sidlichovsky (1988, 1990, 

1992, 1993) and by Murray and Fox (1984). 

6.2. RESONANT ASTEROID MOTION: HADJIDEMETRIOU'S METHOD 

The method discussed in section 5.2 has been applied by Hadjidemetriou 

(1991,1993) for the study of asteroid motion at the 3:1 resonance. The 

https://doi.org/10.1017/S0074180900127500 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127500


SYMPLECTIC MAPPINGS 263 

starting point is also the averaged Hamiltonian of the elliptic restricted 
three body problem, which is of the form 

Η = Η0(8,Ν) + μΗ1(σ,3,Ν) + μ€άΗ2(σ,3,^Ν), (21) 

where 

H o = ~ l N ^ - l { N - S ^ H1 = 2FS-b^cos2a, 

H2 = V2S[G cos(a + v) + D cos(a - ι/)] + 2μβ^Κ cos 2v. 

The resonance action-angle variables are defined by 

S = ( l - y/1 - e 2 ) σ = ^ ( 3 λ , · - λ ) - α ; , · 

Ν = (3-Vi- e 2 ) 1/ = -^(3λ, · - λ ) + ωά 

where μι = 1 — /i, ej = 0.048, λ, ω , α are the mean longitude, the longitude 
of perihelion and the semimajor axis, respectively, of the asteroid and the 
corresponding quantities with subscript j refer to Jupiter. This is in fact the 
same as the Hamiltonian (18) used by Wisdom. The mapping is obtained 
from the generating function 

F = σ η 5 η + χ + νηΝη+! + 2 π # ( 5 η + ι , Nn+U σηνη), (22) 

though the equations 

σ η + 1 = dFldSn+x, Sn = dF/dan, v n + 1 = dF/dNn+u Nn = ÔF/dun. 

and is evidently symplectic. 

We can verify that the first two equations are decoupled from the other 
two if ej = 0. The mapping in this case (circular restricted three body prob-
lem) is two dimensional, in the space σ, 5 , with Ν as a parameter. For 
different values of Ν we have different surfaces of section, but no chaotic 
regions appear. As soon however as ej φ 0, the parameter Ν varies slowly 
and as a consequence a slow drift appears from one Ν = constant plane to 
the next. This is the mechanism by which large scale chaos appears (Had-
jidemetriou 1993,1995). This mechanism is also given by Wisdom (1985) 
and Henrard (1992), using the averaged model. The evolution of an aster-
oid inside the 3:1 resonance is given in Figure 2 for different initial values of 
σ and v. The behaviour is in fact the same as that given in Figure 1. (Note 
the similarity between Figures l a and 2a). Not all motions however inside 
the resonance zone are chaotic. We also have ordered motion, as shown in 
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Figure 2. The evolution of an asteroid by the mapping obtained from the generating 
function (22) for S = 0.0116, Ν = 1.4 and σ, ν as indicated: a,b and c give the evolution 
in the x y plane, and d,e,f the corresponding time evolution of the eccentricity 

Figures 2c,f , where we have an oscillation with an amplitude which de-
pends on the initial angles and may be quite small (as is the case with 
σ = 0, ν = π ) . This means that we may have a trapping of the asteroid 
inside the 3:1 resonance. 

This method of constructing mapping models has been also used by Ji-
Liu et al.(1994) for near conservative systems and by Ferraz-Mello (1995) 
for the 2:1 resonance. 

6.3. REMARKS ON THE PREVIOUS TWO MAPPINGS 

The general behaviour of both mappings is the same, as far as the long 
term evolution is concerned. However both models have their limitations, 
as we shall explain: 

- The averaged model on which these two mapping models are based is valid 
only for values of the eccentricity smaller than 0.3. This means that the high 
eccentricity resonances that exist in the real problem (the elliptic restricted 
three body problem) at eccentricities e = 0.8 are missing (Hadjidemetriou 
1992). These high eccentricity resonances can be introduced to the system 
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through a correction term (Hadjidemetriou 1993). The corrected mapping 
behaves in a much different way and the eccentricity can jump to very high 
values of the eccentricity, 0.9 or even larger. The asteroid can become now 
an Earth crosser. 
-Both models are not realistic for the long time study of asteroid motion, 
because the orbit of Jupiter is fixed. The elements of Jupiter's orbit vary 
considerably, as shown by Laskar (1990) and Nobili et al.(1989). If this 
variation is introduced in the mapping (22), by varying ej and u>j, we find 
(Hadjidemetriou 1993, 1995) that the chaotic behaviour appears for all 
values of the angles σ and i/, including those cases where the motion was 
ordered for a fixed orbit of Jupiter, while no appreciable effect appears 
outside the resonance zone. 

Thus, we see that the gravitational effect of Saturn must also be included 
in the model in order to explain the observed gap in the distribution of the 
asteroids at the 3:1 resonance. 

6.4. OTHER MAPPING TECHNIQUES 

6.4.1. Nearly parabolic orbits 

Mapping models for nearly parabolic orbits have been developed by sev-
eral people, with the aim to study cometary motion. They are all in the 
framework of the restricted circular three body problem, with the Sun and 
Jupiter as primaries. For a nearly parabolic orbit we can assume that the 
motion is close to the separatrix. Due to the very large time scales (the 
period of the parabolic orbit is infinite), a Fourier analysis is made and the 
spectrum is assumed to be continuous. In this way Petrosky and Broucke 
(1988) transformed the nonintegrable system to an integrable one by em-
bedding the small denominators in an analytic function through a suitable 
analytic continuation. The corresponding mapping is called Keplerian map 
and is a two dimensional symplectic map in the space P, where Ρ is 
the heliocentric energy of a comet and g the phase angle of Jupiter when 
the comet is at perihelion. Similar work on the Keplerian map has been 
made by Chambers (1993), Chirikov and Vecheslavov (1988), Sagdeev and 
Zaslansky (1987) and Liu and Yi-Sui Sun (1994). 

6.4.2. Nearly circular orbits 

This technique has been developed by Duncan et al.(1989) for the study 
of a test particle in nearly circular orbit, in the framework of the circular 

restricted three body problem, with the Sun and a planet as primaries. 
The perturbation on the test particle is assumed to be significant only at 
conjunction. Under this assumption, the first order perturbation on the 
elements of the orbit are obtained by Hill's equation. In this way an ap-
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proximate solution is found, from which a mapping is obtained. 
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