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Abstract. We show that if S is the maximal ideal space of certain ultrapowers
of C0�L� spaces then: C0�S;C� allows polar decompositions while C0�S;R� does not,
which answers a question of Greim and Rajalopagan [4]. Also, S is almost homo-
geneous but not transitive, which answers a question of Wood [9].

1991 Mathematics Subject Classi®cation. 54D80, 46B08, 46M07, 46S20.

0. Introduction. A Banach space X is called transitive if the group G�X� of
(linear surjective) isometries of X acts transitively on the unit sphere S�X�. The space
X is called almost transitive if G�X� acts with dense orbits (that is, almost transi-
tively) on S�X�.

There are unexpected di�culties in deciding whether certain natural classes of
Banach spaces contain a transitive (or an almost transitive) member or not. A recent
survey on the topic is [1]. Apart from the notorious problem of S. Mazur, the most
glaring example is a problem of G. V. Wood concerning the existence of an almost
transitive C0�S� space. As usual, we denote by C0�S� or C0�S;K� the Banach space of
continuous K-valued functions on the locally compact space S vanishing at in®nity,
where K is either R or C (we assume that S is not a singleton). In this paper, `topo-
logical space' means `completely regular Hausdor� space'.

Wood conjectured in [9] that all C0�S� spaces lack almost transitive norm. Some
work has been done: in [4] it is proved that real C0�S� spaces lack almost transitive
norm; in the opposite direction, both the real and complex spaces C�0; 1� have
equivalent almost transitive renormings [2]. Moreover, it can be proved that an
almost transitive C0�S� space exists if and only if a transitive C0�S� space exists [4],
which is equivalent to the existence of a separable almost transitive C0�S� space (this
means that the one-point compacti®cation of S is metrizable [2]). Nevertheless, the
question remains open in the complex case:

Wood's problem. Does every complex-valued C0�S� lack almost transitive norm?

In [4], P. Greim and M. Rajalopagan give necessary conditions on S for the
(complex) space C0�S� to have transitive norm.

Following [4], we will say that C0�S;K� allows polar decompositions if for every
f 2 C0�S;K� there is an isometry of C0�S;K� mapping j f j to f. By the form of the
isometries of C0�S� this means that there is a continuous function � : S! K, with
j��s�j � 1 for all s 2 S such that f �s� � ��s�j f �s�j for all s 2 S.
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The existence of polar decompositions in C0�S� is related to topological prop-
erties of compact subsets of S. Recall from [7] that a topological space X is said to be
an F-space if for every continuous f : X! R there is a continuous g such that
f � gj f j. Observe that such a real-valued g exists if and only if a complex-valued g
exists. From a more topological point of view, X is an F-space if disjoint cozero sets
of X are completely separated, i.e., if given disjoint cozero sets A and B there is a
continuous g such that g�s� � 0 for all s 2 A and g�s� � 1 for all s 2 B.

Greim and Rajalopagan proved in [4] that if C0�S;K� allows polar decomposi-
tions then every compact subspace of S is an F-space (i.e., S is locally an F-space).
They posed the following questions.

Question 0.1. ([4], p. 77) Does C0�S;R� allow polar decompositions if C0�S;C�
does?

Question 0.2. ([4], p. 80) Does C0�S;R� allow polar decompositions if every
compact subset of S is an F-space?

By the results in [4], a positive answer to either of these questions would prove
the conjecture of Wood.

The organization of the paper is as follows. In Section 1 we answer in the
negative questions 0.1 and 0.2 above by showing that there even exists a compact
space K such that C�K;C� allows polar decompositions (hence all closed subspaces
of K are F-spaces) while C�K;R� does not allow polar decompositions. The basic
idea is to consider suitable ``nearly variants'' of the properties and to study how it
leads to ultraproducts.

Section 2 is a brief discussion of some topological properties of the locally
compact spaces obtained as maximal ideal spaces of ultrapowers of C0�S� spaces.

Finally, Section 3 provides simple (and ``new'') counter-examples to a question
of Wood [9, p. 181]: there are almost homogeneous connected locally compact
spaces which are almost homogeneous but not transitive (see 3.1 for precise de®nitions).

1. Nearly variant of properties and ultraproducts. For the sake of simplicity, we
use only N as ``index'' set, although the results are also true (with suitable mod-
i®cations) for every ``index'' set. We refer the reader to [5] or [6] for general infor-
mation about ultraproducts.

1.1. The Banach space ultraproduct. Let �Xn� be Banach spaces. Consider their
Banach space product

Y
Xn � f�xn� : xn 2 Xn for all n and supnjjxnjj is finiteg;

endowed with the sup norm. Let U be a non-trivial ultra®lter on N. Put
NU � f�xn� : limUjjxnjj � 0g. The Banach space

Q
Xn=NU (with the quotient norm) is

called the (Banach space) ultraproduct of fXng with respect to U and is denoted
�Xn�U. The class of �xn� in will be denoted as �xn�U. The norm of �Xn�U is given by

jj�xn�Ujj � lim
U
jjxnjj:
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If all Xn coincide with some Banach space X, the ultraproduct �Xn�U is called the
ultrapower of X with respect to U and it is denoted by �X�U. There is a canonical
isometric embedding of X into �X�U de®ned by x! �x�U.

When Xn are Banach algebras (respectively, commutative C*-algebras), their
ultraproduct �Xn�U is also a Banach algebra (respectively, a commutative C*-alge-
bra) equipped with the (well-de®ned) product

�xn�U�yn�U � �xnyn�U:

Thus, in view of the Gelfand-Naimark theorem (see [3], p. 11), when Sn are
locally compact spaces, the Banach algebra �C0�Sn��U is representable as a C0�S�
space for some locally compact space S (which is obviously compact when all Sn

are). In fact, S is the maximal ideal space of �C0�Sn��U, that is, the set of (con-
tinuous) multiplicative linear functionals on �C0�Sn��U endowed with the relative
weak* topology of (�C0�Sn��U)*.

We now introduce certain variants of the properties under consideration.

Definition 1.2. We will say that C0�S;K� allows nearly polar decompositions if
for every f 2 C0�S;K� and every " > 0 there is g 2 C0�S;K� such that jj fÿ gjj � "
and g � �jgj, being � : S! K unimodular.

Lemma 1.3. Let S be a closed bounded interval of the real line. Then:
(a) The space C0�S;K� does not allow polar decompositions for K � R;C.
(b) C0�S;C� allows nearly polar decompositions.
(c) C0�S;R� does not allow nearly polar decompositions.

Proof. Without loss of generality assume S � �ÿ1; 1�. The ®rst part is immediate
since the function de®ned by f �t� � t sin�1=t� if t 6� 0 and f �0� � 0 cannot be divided
by j f j. Parts (b) and (c) follow easily from the obvious fact that the set of con-
tinuous K-valued non-vanishing functions on S are dense in C0�S;K� if and only if
K � C. &

The connection between polar and nearly polar decompositions appears now.

Proposition 1.4. Let K be a compact space. The space C�K;K� allows nearly
polar decompositions if and only if every (or some) non-trivial ultrapower allows polar
decompositions.

Proof. We ®rst prove the ``only if'' part. Assume that C�K;K� allows nearly
polar decompositions. Let � fn�U 2 �C�K;K��U. Then there are gn 2 C�K;K� such that
jj fn ÿ gn�jj � 1=n and gn � �njgnj, where �n : S! K are unimodular. Hence (see [6]),

� fn�U � �gn�U � ��njgnj�U � ��n�U�jgnj�U � ��n�U�j fnj�U � ��n�Uj� fn�Uj:

Clearly, ��n�U is unimodular, which proves that �C�K;K��U allows polar decom-
positions.

For the converse, suppose that �C�K;K��U allows polar decompositions. Let
f 2 C�K;K�. Then one has

� f �U � ��j f j�U;
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where � is unimodular in �C�K;K��U. It is clear that � can be written as � � ��n�U,
where �n are unimodular in C�K;K�. Thus we have

lim
U
jj� fÿ �nj f j�jj � 0;

or, in other words, for each " > 0, the set fn : jj� fÿ �nj f j�jj � "g belongs to U and
therefore is non-empty. This completes the proof. &

Proposition 1.5. If K is the maximal ideal space of an ultrapower of C�I;K�,
where I is a compact interval, then:

(a) C�K;C� allows polar decompositions;
(b) every closed subset of K is an F-space;
(c) K is connected;
(d) C�K;R� does not allow polar decompositions.

Proof. Parts (a) and (b) follow immediately from the lemma and the proposi-
tion. Part (b) is a consequence of the fact that all compact spaces are normal and the
Tietze-Urysohn's extension theorem for normal spaces. Part (c) is clear, since the
maximal ideal space of an ultrapower of C0�S� is connected if and only if S is. &

Remark 1.6. Let K be as in 1.5 and let F be a closed subset of K. Then K nF is a
locally compact (not necessarily compact) space so that C0�K nF;C� allows polar
decompositions while C0�K nF;R� does not allow polar decompositions.

2.Maximal ideal spaces of ultrapowers. This section has a preparatory character.
Here we study properties of locally compact spaces obtained as maximal ideal spaces
of ultraproducts of C0�S� spaces. We need some notation. Sp�A� stands for the
maximal ideal space of a commutative C*-algebra A. By �L we will denote the one-
point compacti®cation of the locally compact space L.

The maximal ideal spaces of ultraproducts of C0�S� spaces are related to the
following construction.

2.1. The set-theoretic ultraproduct. ([5], [6]) Let fSng a countable family of sets.
Denote by

Q
Sn their direct product. Two families �sn� and �tn� are said to be

equivalent with respect to the ultra®lter U if fn : sn � tng belongs to U. This de®nes
an equivalence relation on

Q
Sn whose quotient is called the (set-theoretic) ultra-

product of �Sn� with respect to U and denoted by �Sn�U. The equivalence class of �sn�
in �Sn�U will be denoted by �sn�U.

When Sn are topological spaces, the family of (canonically embedded) sets

f�An�U � �Sn�U : An is open in Sn for all n 2 Ng

is the base of a topology on �Sn�U. We will assume that �Sn�U is equipped with this
topology.

Fix �sn�U 2 �Sn�U. The mapping

� fn�U 2 �C0�Sn��U! lim
U

fn�sn� 2 K
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is a multiplicative linear (hence continuous) functional on �C0�Sn��U which corre-
sponds to a unique point of Sp�C0�Sn��U. In this way, there is a mapping
�Sn�U ! Sp�C0�Sn��U which is injective, continuous and with dense range in
Sp�C0�Sn��U.

The proofs of the following lemmata are left to the reader.

Lemma 2.2. Let Sn be locally compact spaces and let U be an ultra®lter. The space
Sp�C��Sn��U is (canonically homeomorphic to) the one-point compacti®cation of
Sp�C0�Sn��U. &

Lemma 2.3. Let Sn be locally compact spaces. If A is a neighborhood of �sn�U in
the set-theoretic ultraproduct �Sn�U, then the closure of the image of A in Sp�C0�Sn��U
is a neighborhood of �sn�U in Sp�C0�Sn��U. &

Now let us consider the points of �Sn�U as points in Sp�C0�Sn��U. Recall from [7,
p. 37] that a point of a topological space is called a P-point if every G�-set containing
the point is a neighborhood of the point. For completely regular spaces (such as
maximal ideal spaces) one can replace `G�-set' by `zero-set'.

Proposition 2.4. Let Sn be locally compact spaces.
(a) All points of ��Sn�U are P-points in �Sp�C0�Sn��U=Sp�C��Sn��U.
(b) All points of �Sn�U are P-points in Sp�C0�Sn��U.

Proof. Clearly, it su�ces to prove the ®rst part. Let �sn�U be a point in ��Sn�U.
Choose f � � fn�U 2 �C��Sn��U so that f ��sn�U� � 0, i.e., lim

U
fn�sn� � 0. Let �"n� be a

sequence of positive numbers converging to 0. Put

An � ft 2 Sn : j fn�sn� ÿ fn�t�j < "ng:

The set �An�U is a neighborhood of �sn�U in ��Sn�U. Moreover, given �tn�U 2 �An�U,
one has

j f ��tn�U�j � lim
U

fn�tn�
���� ���� � lim

U
j fn�tn�j � lim

U
�j fn�sn�j � "n� � j f ��sn�U�j � lim

U
"n � 0:

Hence f vanishes on �An�U and also in its closure in Sp�C��Sn��U which is, by lemma
2.3, a neighborhood of �sn�U. Thus, �sn�U is a P-point and the proof is complete. &

The following proposition and corollary should be compared to corollary 4.1,
proposition 4.4 and corollary 4.2 of [4].

Proposition 2.5. If S � Sp�C0�Sn��U, then every f 2 C0�S� has compact support.

Proof. The assertion is just that the in®nity point of �S is a P-point and follows
from proposition 2.4. &

Remark 2.6. The attentive reader will have noticed that proposition 2.5 can be
derived from the fact that all functions in C0�Sn� have ``nearly compact support''
reasoning as in the ®rst section.
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From proposition 2.5 and basic general topology (see [8], p. 125±126, 17F and
17J) it follows the following.

Corollary 2.7. Let S � Sp�C0�Sn��U.
(a) Every open K� is relatively compact.
(b) The union of countably many compacts subsets of S is relatively compact.
(c) S is countably compact (i.e., each sequence has a cluster point in S).
(d) S is pseudocompact (i.e., every continuous function on S is bounded). &

3. Almost homogeneous spaces. In his study of symmetries in Banch spaces [9],
Wood introduced several homogeneity conditions on a locally compact (Hausdor�)
space S which are related to the ``size'' of the group of (linear surjective) isometries
of the Banach space C0�S�.

Definitions 3.1. (a) S is called homogeneous if, for every pair of ®nite subsets
F and E with the same number of elements, there is a homeomorphism ' of S such
that '�F � � E. (b) S is almost homogeneous if, for every ®nite F and open A, there is
a homeomorphism ' of S such that '�F � � A. (c) S is transitive (respectively, almost
transitive) if its group of homeomorphisms acts transitively (respectively, with dense
orbits) on S.

Wood raises the question of whether every almost transitive locally compact
space is transitive. The answer is negative, since N� � �NÿN (the growth of N in its
Stone-Cech compacti®cation) is almost homogeneous (immediate) and non-transitive
(delicate: Frolik, see [7, p. 92]). The abundance of homeomorphisms in N� seems to
be related to the existence of many clopen sets. There are other examples whose
nature is completely di�erent, as we show now.

The following result is somewhat surprising.

Lemma 3.2. Given locally compact spaces Sn and a non-trivial ultra®lter U, the
maximal ideal space of �C0�Sn��U is not transitive (unless it is ®nite).

Proof. Observe that homeomorphisms must preserve P-points. So, proposition
2.4 (b) implies that if Sp�C0�Sn��U is transitive then it contains only P-points.
According to [7, p. 37], every pseudocompact space in which all points are P-points
must be ®nite. &

As a preparation for the following example, let K be a compact space. The
canonical inclusion j : C�K� ! �C�K��U given by jf � � f �U is an algebra homo-
morphism. The adjoint map j� induces a continuous mapping from Sp�C�K��U onto
K. This mapping is given by j��sn�U � limU sn for points in the set-theoretic ultra-
product �K�U.

Lemma 3.3. Let s be a point of Sp�C�K��U and let j� : Sp�C�K��U !K be as above.
Let B be a neighborhood of j�s in K. Then s lies in the closure of �B�U in Sp�C�K��U. &

Example 3.4. There is a compact connected space which is almost homogeneous
but not transitive.
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Proof. Let K be a compact connected space having the following property:
(*) Given points �si�ki�1 of K there exist neighborhoods Bi of si such that, for every
open subset A of K, there is an homeomorphism ' of K satisfying '�Bi� � A for
1 � i � k.

For instance, choose K as the unit circle.
Let S be the maximal ideal space of �C�K��U. Then S has the required properties.

First of all observe that, by lemma 3.2, S cannot be transitive. That S is compact
and connected is clear.

We prove now that S is almost homogeneous. Let A be an open set of S and let
F � fsigki�1 be a ®nite subset. Let j� be as in Lemma 3.3. Choose neighborhoods Bi of
j� si �1 � i � k� so that (*) holds. Observe that, by Lemma 3.3, each si belongs to the
closure of �Bi�U in S.

Obviously, A contains the closure of a set of the form �An�U, where An are open
subsets of K. By (*), there is a sequence �'n� of homeomorphisms of K such that
'n�Bi� � An for all 1 � i � k and all n. De®ne an homeomorphism �'n�U on �K�U by
putting

�'n�U��un�U� � �'n�un��U:

Clearly, �'n�U��Bi�U� � �An�U for 1 � i � k. This homeomorphism extend to all of S
as follows: consider the operator L on �C�K��U de®ned by L� fn�U � � fn � 'ÿ1n �U. It is
evident that L is an (algebra) automorphism, hence L* de®nes an homeomorphism
on the maximal ideal space of �C�K��U which clearly extends �'n�U to the whole S.
Plainly,

L��F� � L��fsigki�1� �
[k
i�1

L���Bi�SU� �
[k
i�1
f�'n�U�Bi�SUg � �An�SU � A:

This completes the proof. &
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