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Abstract
We study a version of the Fukaya category of a symplectic 2-torus with coefficients in a locally constant sheaf
of rings. The sheaf of rings includes a globally defined Novikov parameter that plays its usual role in organising
polygon counts by area. It also includes a ring of constants whose variation around the the torus can be encoded
by a pair of commuting ring automorphisms. When these constants are perfectoid of characteristic p, one of the
holonomies is trivial and the other is the 𝑝𝑡ℎ power map, it is possible in a limited way to specialise the Novikov
parameter to 1. We prove that the Dehn twist ring defined there is isomorphic to the homogeneous coordinate ring
of a scheme introduced by Fargues and Fontaine: their ‘curve of p-adic Hodge theory’ for the local field F𝑝 ((𝑧)).

1. Introduction

1.1. The Fargues–Fontaine curve

Let E be a local field and let C be a perfectoid field of characteristic p. For each such pair (𝐸,𝐶),
Fargues and Fontaine have defined an E-scheme that we will denote by FF𝐸 (𝐶) – it is denoted by 𝑋𝐶,𝐸

in [FF, Def. 6.5.1]. It is in no sense a ‘curve over E’ or even a variety: it is not of finite type over E or
over any other field. A scheme that is not of finite type over some base cannot be smooth or proper in
the usual sense ([EGA, Vol 4, §17; Vol 2, §5]) and yet FF𝐸 (𝐶) resembles a closed Riemann surface in
some peculiar ways:

◦ It is noetherian of Krull dimension 1. Moreover, it is regular, so that the local ring at each closed
point of FF𝐸 (𝐶) has a discrete valuation.

◦ A nonzero rational function f (that is, a section of OFF over the generic point) has 𝑣( 𝑓 ) ≠ 0 for at
most finitely many of these valuations v and

∑
𝑣 𝑣( 𝑓 ) = 0.

In fact, FF𝐸 (𝐶) even resembles the Riemann sphere: one has 𝐻1 (O𝐹𝐹 ) = 0, and if C is algebraically
closed, then Pic(FF𝐸 (𝐶)) = Z.

There are some contrasts with the Riemann sphere: FF𝐸 (𝐶) has indecomposable vector bundles of
higher rank and for algebraically closed C its étale fundamental group is naturally isomorphic to the
absolute Galois group of E. Fargues has a program to apply these properties of FF𝐸 (𝐶) to the local
Langlands correspondence [Fa].

When 𝐸 = Q𝑝 , FF𝐸 (𝐶) is an important object in p-adic cohomology – it was introduced to organise
some of the structures of p-adic Hodge theory. When 𝐸 = F𝑝 ((𝑧)), the analogous structures are those of
Hartl [H]. We have nothing to say about FFQ𝑝 (𝐶), but we are able to touch FFF𝑝 ((𝑧)) (𝐶) with mirror
symmetry.
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1.2. Homological mirror symmetry

Homological mirror symmetry (HMS) is a framework for relating Lagrangian Floer theory on a sym-
plectic manifold to the homological algebra of coherent sheaves on a scheme – often, a scheme that is
seemingly unrelated to the symplectic manifold.

What symplectic structure could be mirror to FFF𝑝 ((𝑧)) (𝐶)? We suggest the answer is a 2-dimensional
torus. There is already a very well-studied mirror relationship between the symplectic torus and the Tate
elliptic curve (over Z((𝑡))), which we review in Section 2. To get the Fargues–Fontaine curve in place of
the Tate curve, we introduce two changes:

1. We couple Lagrangian Floer theory to a locally constant sheaf of rings on the torus – the fibre of this
sheaf of rings has characteristic p and going around one of the circles is the pth power map. (Going
around the other circle is the identity map.)

2. We set the Novikov parameter (this is the element 𝑡 ∈ Z((𝑡)) in the ground ring of the Tate curve) to
𝑡 = 1 – symplectically, this is sort of like studying the limit as the symplectic form goes to 0.

Both of these manoeuvres are unusual in symplectic geometry. The first turns out to be straightforward,
so that one obtains a Fukaya 𝐴∞-category with the usual properties. The second is much more delicate
and touches some folklore questions about ‘convergent power series Floer homology’.

1.3. Lagrangian Floer theory on the torus

Let T be a 2-dimensional torus, which we present as a quotient of R2 by Z2 and endow with the standard
symplectic form 𝑑𝑥 𝑑𝑦. For each integer m, let 𝐿 (𝑚) ⊂ 𝑇 denote the image of the line in R2 through the
origin of slope −𝑚. Let 𝐿 (∞) denote the image of the vertical line through the origin. We orient 𝐿 (𝑚)

from left to right and 𝐿 (∞) from top to bottom. The figure shows 𝐿 (0) , 𝐿 (∞) and 𝐿 (3) in a fundamental
domain of T:

𝐿(∞)

𝐿(0)

𝐿(3)

If 𝑚1 > 𝑚0, then 𝐿 (𝑚1) and 𝐿 (𝑚0) meet transversely in (𝑚1 −𝑚0) points. Lagrangian Floer theory gives
algebraic structures to the free modules

CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ) :=
⊕

𝑥∈𝐿(𝑚0 ) ∩𝐿(𝑚1 )

Λ, (1.3.1)

where Λ is a suitable ring, about which more in Subsection 1.6. ‘CF’ stands for ‘Floer cochains’. The
orientations of 𝐿 (𝑚0) , 𝐿 (𝑚1) endow (1.3.1) with a Z/2-grading (which can be lifted to a Z-grading by
making some additional topological choices) and CF∗(𝐿 (𝑚0) , 𝐿 (𝑚1) ) supports a differential of degree
+1 (Subsection 2.5). In the case at hand, these gradings are concentrated in a single degree 0 and the
differential is zero.
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We will return to the differential in Subsection 1.15 (and a little in Subsection 1.5), but to start we
will be very interested in the ‘triangle product’

CF(𝐿 (𝑚1) , 𝐿 (𝑚2) ) × CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ) → CF(𝐿 (𝑚0) , 𝐿 (𝑚2) ) (1.3.2)

whose value on (𝑥1, 𝑥2) ∈ (𝐿 (𝑚1) ∩ 𝐿 (𝑚2) ) × (𝐿 (𝑚0) ∩ 𝐿 (𝑚1) ) is the summation

∑
𝑦∈𝐿(𝑚0 ) ∩𝐿(𝑚2 )

𝑦
���

∑
𝑢∈M(𝑦,𝑥2 ,𝑥1)

±𝑡area(𝑢)�	
. (1.3.3)

The inner sum is infinite: it is indexed by the set of rigid pseudoholomorphic triangles

𝑢 : Δ2 → 𝑇 (1.3.4)

with vertices at 𝑥1, 𝑥2, 𝑦 and one edge each along 𝐿 (𝑚2) , 𝐿 (𝑚1) , 𝐿 (𝑚0) . The sign in ±𝑡area(𝑢) depends on
u and on the choice of a spin structure on each of the oriented 1-manifolds 𝐿 (𝑚𝑖) ; see Subsection 2.4. In
the present case it is possible to make those choices so that the signs are identically +1.

1.4. Dehn twist

There is a canonical identification of CF(𝐿 (𝑚) , 𝐿 (𝑛) ) with CF(𝐿 (0) , 𝐿 (𝑛−𝑚) ), induced by

(𝑥, 𝑦) ↦→ (𝑥, 𝑦 − 𝑚𝑥)

the m-fold Dehn twist around 𝐿 (∞) . An old suggestion of Seidel’s [Z] is to use this identification to
package the triangle products as a graded ring structure on the sum

Λ ⊕

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) ). (1.4.1)

The multiplication on (1.4.1) is associative and commutative for nontrivial reasons. The associativity
is a consequence of a very general Floer-theoretic argument that studies 1-dimensional moduli spaces
of pseudoholomorphic quadrilaterals (Subsection 2.11), and the commutativity is a consequence of a
more particular observation about the Dehn twist [Z, §3].

1.5. The Floer cohomology of (𝐿 (0) , 𝐿 (0) )

In (1.4.1), we have inserted the unit of the ring by hand (the summand Λ, which we place in degree 0),
but this can also be motivated Floer-theoretically. The definition of CF in (1.3.1) is not the right one
when 𝐿 (𝑚0) = 𝐿 (𝑚1) or for any other pair that do not meet transversely. But if 𝜙 = {𝜙𝑠}𝑠∈R is a general
Hamiltonian isotopy, then

CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ) :=
⊕

𝑥∈𝜙𝑠𝐿(0) ∩𝐿(0)

𝑥 · Λ,

together with its differential, gives a cochain complex whose cohomology groups do not depend on
𝜙. These cohomology groups are Z/2-graded, and the Λ piece of (1.4.1) is naturally identified with
HF0(𝐿 (0) , 𝐿 (0) ); cf. Subsection 2.12.
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1.6. Novikov ring Λ and Floer theory relative to a divisor

There is some flexibility in choosing the ground ring Λ, but it should contain a ring of constants (let
us use C for this ring – later on it will be the same as the C of Subsection 1.1) a parameter t and
all necessary powers of it and it should carry a topology in which all the sums (1.4.1) converge. The
conventional choice is the Novikov ring, which we will denote by Λ𝐶 :

Λ𝐶 =

{
∞∑
𝑖=0

𝑎𝑖𝑡
𝜆𝑖 | 𝑎𝑖 ∈ 𝐶, 𝜆𝑖 ∈ R and lim

𝑖→∞
𝜆𝑖 = ∞

}
. (1.6.1)

We can shrink those coefficients to 𝐶 [[𝑡]] by the following device of Seidel’s, called Floer theory
‘relative to a divisor’. Rather than computing the area of the triangles u, we fix a basepoint 𝐷 ∈ 𝑇2 (in
general, a symplectic divisor 𝐷 ⊂ 𝑇2) and use the cardinality of 𝑢−1(𝐷) in place of symplectic area.
If D is in the first quadrant and extremely close to (0, 0), then this cardinality is given by a simple
formula which is independent of D unless the triangle u is extremely acute – let us write areaZ(𝑢) for
this discretised notion of area. With some additional care, by letting 𝐷 → (0, 0) (see [LPe2, §7.2.3] and
[LPe2, Prop. 9.1]), we get a graded ring

𝐶 [[𝑡]] · 1 ⊕

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) ). (1.6.2)

1.7. Theorem [LPe2]

The 𝐶 [[𝑡]]-scheme

Proj

(
𝐶 [[𝑡]] · 1 ⊕

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) )

)
(1.7.1)

is isomorphic to 𝐸Tate ×Z[[𝑡 ]] 𝐶 [[𝑡]]; the Tate elliptic curve over 𝐶 [[𝑡]] whose Weierstrass equation is

𝑦2 + 𝑥𝑦 = 𝑥3 − 𝑏2𝑥 − 𝑏3

where 𝑏2, 𝑏3 ∈ Z[[𝑡]] are the series

𝑏2 =
∞∑
𝑛=1

5𝑛3 𝑡𝑛

1 − 𝑡𝑛
𝑏3 =

∞∑
𝑛=1

(
7𝑛5 + 5𝑛3

12

)
𝑡𝑛

1 − 𝑡𝑛
. (1.7.2)

1.8. Theta series

The relationship between (1.6.2) and functions on the Tate elliptic curve is more transparent when those
functions are described in terms of 𝜃-series. Set

𝜃𝑚,𝑘 :=
∞∑

𝑖=−∞

𝑡𝑚
𝑖 (𝑖−1)

2 +𝑘𝑖 𝑧𝑚𝑖+𝑘 ; 𝜃abs
𝑚,𝑘 :=

∞∑
𝑖=−∞

𝑡 (𝑚𝑖+𝑘)2/(2𝑚) 𝑧𝑚𝑖+𝑘 . (1.8.1)

The simplest of these series is the Jacobi function

𝜃1,0 =
∞∑

𝑖=−∞

𝑡
𝑖 (𝑖−1)

2 𝑧𝑖 = (1 + 𝑧)
∞∏
𝑖=1

[
(1 − 𝑡𝑖) (1 + 𝑡𝑖𝑧) (1 + 𝑡𝑖𝑧−1)

]
.
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The other 𝜃𝑚,𝑘 are obtained by a change of variables from 𝜃1,0. These series are doubly infinite in z, but
in formally expanding the product of two of them, the coefficient of 𝑧𝑖𝑡 𝑗 has only finitely many nonzero
contributions. The 𝐶 [[𝑡]]-linear span of the 𝜃𝑚,𝑘 (respectively the Λ𝐶 -linear span the 𝜃abs

𝑚,𝑘 ) is closed
under multiplication and graded by m and is isomorphic as a graded ring to (1.6.2) (or (1.4.1) in the
absolute case). The isomorphisms send (𝑘/𝑚, 0) ∈ 𝐿 (0) ∩ 𝐿 (𝑚) to 𝜃𝑚,𝑘 or to 𝜃abs

𝑚,𝑘 .

1.9. Fukaya category and homological mirror symmetry

The triangle product (1.3.2) resembles a composition law in a category. It is part of a sequence of
structures on the CF(𝐿, 𝐿 ′),

𝜇𝑛 : CF(𝐿𝑛−1, 𝐿𝑛) × · · · × CF(𝐿0, 𝐿1) → CF(𝐿0, 𝐿𝑛), (1.9.1)

that are obtained by summing over the (𝑛 + 1)-gons with sides along 𝐿0, 𝐿1, . . . , 𝐿𝑛 (Subsection 2.7).
When one takes extra care to treat sets of Lagrangians that are not transverse (Subsection 2.12), these
structures define an 𝐴∞-category. After passing to a triangulated envelope and splitting idempotents,
we will call any of these 𝐴∞-structures a ‘Fukaya category’ and denote it by Fuk(𝑇) (in the absolute
case) or Fuk(𝑇, 𝐷) (in the relative case).

Kontsevich’s homological mirror symmetry conjecture, specialised to T, asks for a quasi-equivalence
between Fuk(𝑇) and the derived category of coherent sheaves on an elliptic curve. A version of this for
complex elliptic curves was obtained in [PoZa]. When 𝐶 = Z, Theorem 1.7, together with a generation
result for Fuk(𝑇, 𝐷) [LPe2, §6.3], constitute ‘homological mirror symmetry over Z’:

Fuk(𝑇, 𝐷) � 𝐷𝑏 (Coh(𝐸Tate)).

The structure sheaf of 𝐸Tate is the image of 𝐿 (0) under this equivalence.

1.10. F-fields

Let Λ be a local system of rings on T, so that at each point 𝑥 ∈ 𝑇 we are given a ring Λ𝑥 and along each
path 𝛾 from x to y we are given a ring isomorphism

∇𝛾 : Λ𝑥

∼
→ Λ𝑦 . (1.10.1)

Suppose that each ring Λ𝑥 has the structures that we asked for in Subsection 1.6: it contains a ring of
constants (we can denote it by 𝐶𝑥) and distinguished elements of the form 𝑡𝑎 and carries a topology.
The maps (1.10.1) should be continuous and carry each 𝐶𝑥 to 𝐶𝑦 but leave the elements of the form 𝑡𝑎

alone (∇𝛾(𝑡𝑎) = 𝑡𝑎).
We will develop a version of Floer theory ‘with coefficients in Λ’. As in Subsection 1.6, we could

work either relative to a divisor or absolutely. In the relative case, we would take Λ := 𝐶 [[𝑡]], where 𝐶
is a locally constant sheaf of rings. In the absolute case, we would take Λ := Λ𝐶 (1.6.1).

In the example of interest to us, the sheaf of rings is pulled back from 𝑆1, along the projection map

𝔣 : 𝑇 → 𝑆1. (1.10.2)

Then Λ is determined by a ring C and an automorphism (the monodromy around the base 𝑆1) 𝜎 of C.
It induces an automorphism of 𝐶 [[𝑡]] and of Λ𝐶 that fixes each 𝑡𝑎. We are interested in the case when
C is perfect of characteristic p and 𝜎 is the pth root map.

The map (1.10.2) (and the monodromy map 𝜎) is just for book-keeping, but it also has an ‘occult’
interpretation, in a way fitting in to the old analogy between number fields and 3-manifolds and between
primes and knots. The generator in the fundamental group of the base circle 𝑆1 and the Frobenius in the
absolute Galois group of F𝑝 act on C in the same way: by pth powers. See [T] for a little bit more about
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this. There is also a natural map from the set of closed points of FF𝐸 (𝐶) (for 𝐸 = F𝑝 ((𝑧)) or any other
local field) to 𝑆1, and in some sense this article explores the idea that the SYZ mechanism for mirror
symmetry could apply (Subsection 4.5).

1.11. Lagrangian Floer theory – coupled to Λ

Let us put

CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ;Λ) :=
⊕

𝑥∈𝐿(𝑚0 ) ∩𝐿(𝑚1 )

Λ𝑥 . (1.11.1)

Lagrangian Floer theory coupled to Λ concerns algebraic structures on (1.11.1); for instance, a triangle
product

CF(𝐿 (𝑚1) , 𝐿 (𝑚2) ;Λ) × CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ;Λ) → CF(𝐿 (𝑚0) , 𝐿 (𝑚2) ;Λ). (1.11.2)

In some sense, (1.11.1) is another free Λ-module on the intersection points 𝐿 (𝑚0) ∩ 𝐿 (𝑚1) but with many
different Λ-module structures. The product (1.11.2) is not Λ-bilinear with respect to any of them. To
define it, we give its value on a pair

(𝑥2 · 𝑏, 𝑥1 · 𝑎) ∈ CF(𝐿 (𝑚1) , 𝐿 (𝑚2) ;Λ) × CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ;Λ) (1.11.3)

for any 𝑎 ∈ Λ𝑥1
and 𝑏 ∈ Λ𝑥2

and extend bi-additively (or, more precisely, ΛZ-bilinearly). The value on
(𝑥2 · 𝑏, 𝑥1 · 𝑎) is ∑

𝑦∈𝐿(𝑚0 ) ∩𝐿(𝑚2 )

𝑦
∑

𝑢∈M(𝑦,𝑥2 ,𝑥1)

±𝑡area(𝑢) or areaZ (𝑢)∇𝛾2 (𝑏∇𝛾1 (𝑎∇𝛾0 (1))) (1.11.4)

where 𝛾0 : 𝑦 → 𝑥1, 𝛾1 : 𝑥1 → 𝑥2 and 𝛾2 : 𝑥2 → 𝑦 are the three sides of the triangle u, appearing in
counterclockwise order.

𝛾0

𝛾1

𝛾2

𝑥2 · 𝑏

𝑥1 · 𝑎𝑦

The ± signs in the formula (1.11.4) are the same as they are in (1.3.3); in particular, one can arrange
that they are identically +1.

When the monodromy ofΛ around 𝐿 (∞) is trivial – equivalently, whenΛ is pulled back along (1.10.2)
– it is possible to package these triangle products into a graded ring structure:

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) ;Λ). (1.11.5)
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1.12. Theorem

For each 𝑎 ∈ 𝐶 and each pair of integers 𝑚, 𝑘 with 𝑚 > 𝑘 ≥ 0, let 𝜃𝑚,𝑘 [𝑎] denote the formal series

𝜃𝑚,𝑘 [𝑎] :=
∞∑

𝑖=−∞

𝑡𝑚
𝑖 (𝑖−1)

2 +𝑘𝑖𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎)

Let 𝜃abs
𝑚,𝑘 [𝑎] denote the formal series

𝜃abs
𝑚,𝑘 [𝑎] :=

∞∑
𝑖=−∞

𝑡
1

2𝑚 (𝑚𝑖+𝑘)2
𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎).

Then the relative (respectively absolute) version of (1.11.5) is isomorphic, as a ring-without-unit, to the
Z[[𝑡]]-linear span of the 𝜃𝑚,𝑘 [𝑎] (respectively to the ΛZ-linear span of the 𝜃abs

𝑚,𝑘 [𝑎]).

1.13. Specialisations of t

Fix a commutative ring C and an automorphism 𝜎; cf. (1.10.2). The groups (1.11.1) are linear over Λ𝜎
𝐶

in the absolute case and over 𝐶𝜎 [[𝑡]] in the relative case. We will discuss the specialisations 𝑡 = 0 and
𝑡 = 1. The case 𝑡 = 0 we treat only briefly in Subsection 4.1 – the absolute case is not of interest, while
the relative case is parallel to the ‘large volume limit’ of T and its mirror relationship with the nodal
cubic curve at the ‘large complex structure limit’.

The case 𝑡 = 1 is more delicate. There is a class of symplectic manifolds and Lagrangian submanifolds
(for instance, monotone Lagrangians in a Fano manifold, or in a genus 2 surface) for which setting 𝑡 = 1
is unproblematic, but the torus does not belong to this class. And, indeed, the series (1.3.3), (1.7.2) do
not converge, in any Archimedean or non-Archimedean ring, when 𝑡 = 1.

An F-field can repair some (but only some) of the convergence. Define

CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ;𝐶) =
⊕

𝑥∈𝐿(𝑚0 ) ∩𝐿(𝑚1 )

𝐶𝑥 . (1.13.1)

Setting 𝑡 = 1 in (1.11.4) suggests, in a formal way, a map

CF(𝐿 (𝑚1) , 𝐿 (𝑚2) ;𝐶) × CF(𝐿 (𝑚0) , 𝐿 (𝑚1) ;𝐶) � CF(𝐿 (𝑚0) , 𝐿 (𝑚2) ;𝐶).

When C is complete with respect to a norm | · |, 𝜎 is the pth root map and 𝑚0 < 𝑚1 < 𝑚2, this map has
a nontrivial domain of convergence. In particular, it defines a multiplication on⊕

𝑚>0
CF(𝐿 (0) , 𝐿 (𝑚) ;𝔪) (1.13.2)

where 𝔪 = {𝑥 ∈ 𝐶 : |𝑥 | < 1}.

1.14. The Fargues–Fontaine graded ring

A perfect field of characteristic p, complete with respect to a norm | · |, is since [Sc] known as a ‘perfectoid
field of characteristic p’. Suppose (𝐶, | · |) is such a field and suppose furthermore that C is algebraically
closed. Let 𝐸 = F𝑝 ((𝑧)) and let 𝐵 ⊃ 𝐸 be the set of bi-infinite formal series

∑
𝑖∈Z 𝑏𝑖𝑧

𝑖 ∈
∏

𝑖∈Z 𝐶𝑧𝑖 with
coefficients 𝑏𝑖 ∈ 𝐶 and which obey

∀𝑟 ∈ (0, 1) |𝑏𝑖 |𝑟
𝑖 → 0 as |𝑖 | → ∞. (1.14.1)
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This ring B coincides with what is called 𝐵 (0,1) in [FF, Ex. 1.6.5] and what is called OR1 ((0, 1)) in [KS,
Def. 21].

The automorphism 𝜑 : 𝐵 → 𝐵 given by

𝜑 :
(∑

𝑐𝑖𝑧
𝑖
)
↦→

∑
𝑐𝑝𝑖 𝑧𝑖 (i.e. 𝜑( 𝑓 (𝑧)) = 𝑓 (𝑧1/𝑝) 𝑝) (1.14.2)

cuts B into ‘eigenspaces’ 𝐵𝜑=𝑧𝑛 := { 𝑓 ∈ 𝐵 | 𝜑( 𝑓 ) = 𝑧𝑛 𝑓 }. The Fargues–Fontaine curve attached to
(𝐸,𝐶) is

FF𝐸 (𝐶) := Proj

(
∞⊕
𝑛=0

𝐵𝜑=𝑧𝑛

)
. (1.14.3)

Theorem. (1.13.2) is isomorphic as a graded-ring-without-unit to the irrelevant ideal of (1.14.3);
that is,

∞⊕
𝑛=1

CF(𝐿 (0) , 𝐿 (𝑛) ;𝔪) �
∞⊕
𝑛=1

𝐵𝜑=𝑧𝑛 . (1.14.4)

1.15. Annuli

The degree 0 piece 𝐵𝜑=1 of the Fargues–Fontaine graded ring (1.14.3) is isomorphic to E (= F𝑝 ((𝑧))
in our case). The theorem (1.14.4) does not explain how this part arises Floer-theoretically. As in
Subsection 1.5, it should come from the Floer cohomology of 𝐿 (0) against itself – a version of Floer
cohomology with the F-field turned on – but the usual rules for making sense of the nontransverse
intersection 𝐿 (0) ∩ 𝐿 (0) have to be revisited when 𝑡 = 1.

As we mentioned in Subsection 1.5 and review in Subsection 2.13, the usual rules involve choosing
a Hamiltonian isotopy {𝜙𝑠}𝑠∈R so that 𝜙𝑠𝐿 (0) and 𝐿 (0) do meet transversely. The problem that we
encounter is that the quasi-isomorphism type of CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶), with its bigon differential, is no
longer independent of 𝜙. One still has natural maps between cochain complexes for different 𝜙, but they
are not quasi-isomorphisms: the usual formula for the necessary cochain homotopies does not converge.

This is a well-known problem with ‘convergent power series Floer cohomology’. It is discussed in
print in [ChOh, p.3] and [Aur2, §4.2] and perhaps elsewhere, but there is not much theory available for
addressing it. Still, we take the following point of view (which is only heuristic):

‘Continuation’ – that is, the independence of the Hamiltonian displacement 𝜙 – fails because there
are pseudoholomorphic annuli in T that have one side on 𝜙𝑠𝐿 (0) and the other side on 𝐿 (0) .

For instance, Ozsváth and Szabó stick to ‘admissible’ Heegaard diagrams to avoid problems with
annuli like these [OzSz, §4.2.2]. The problem they pose in Lagrangian Floer theory is closely related
to the problem that closed gradient orbits pose in circle-valued Morse theory [HuLe]. There is some
speculation about incorporating them directly into Floer-theoretic invariants in [Aur2].

1.16. Loud Floer cochains

If L and 𝐿 ′ are in different homology classes, there are no annuli between them. But there are infinitely
many annuli between 𝜙𝑠𝐿 (0) and 𝐿 (0) for any 𝜙. If we fix an ‘autonomous’ 𝜙, then we can get these
under control by considering larger and larger s: for s large, all of the annuli between 𝜙𝑠𝐿 (0) and 𝐿 (0)
have large area. For instance,
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Some of the constructions of [Lee] have inspired us here. The complexes CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) for
different s do not all have the same cohomology, but there are natural cochain maps

CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) → CF(𝜙𝑠′𝐿 (0) , 𝐿 (0) ;𝐶)

whenever 𝑠′ > 𝑠. We will study the colimit of this filtered diagram. For large s, the picture of 𝜙𝑠𝐿 (0) is
a sine wave with large amplitude (wrapped up around the torus). We call

CFloud(𝐿 (0) , 𝐿 (0) ;𝐶) := lim
−−→
𝑠

CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) (1.16.1)

the loud Floer cochains on (𝐿 (0) , 𝐿 (0) ). The name was suggested to us by Johnson-Freyd. Now our point
of view is the following:

By shouting infinitely loud, all of the annuli break, along with whatever problems they posed for
noninvariance.

We will not try to make this precise, but for a somewhat analogous precedent in the setting of periodic
orbits, see what is called the ‘Latour trick’ in [Hutc]. The Latour trick breaks up the periodic orbits of a
closed 1-form by adding a large multiple of an exact 1-form. One could equivalently think of pushing the
graph of the closed 1-form, for a long time, by the Hamiltonian flow of a primitive for the exact form. A
large finite multiple of the exact form suffices to break up all the periodic orbits, while in (1.16.1) one has
to pass to the limit, but maybe ‘shouting loud’ is not a worse metaphor for one process than for the other.

We will show that the triangles with sides on 𝐿 (0) , 𝜙
𝑠𝐿 (0) , 𝜙

𝑠+𝑠′𝐿 (0) induce a multiplication on
CFloud(𝐿 (0) , 𝐿 (0) ;𝐶) and on HFloud(𝐿 (0) , 𝐿 (0) ;𝐶). Our construction of this multiplication is quite crude:
a better analysis would follow the construction of an 𝐴∞-structure on wrapped Floer cochains [AS],
which we expect to apply here and give a richer structure. But our computations give an isomorphism
of rings

HF0
loud(𝐿 (0) , 𝐿 (0) ;𝐶) � 𝐶𝜎 [𝑧, 𝑧−1] . (1.16.2)

When 𝜎 is the pth root map, this is the Laurent polynomial ring F𝑝 [𝑧, 𝑧
−1], a dense subring of F𝑝 ((𝑧)).

One can similarly define HFloud(𝐿 (𝑚) , 𝐿 (𝑚) ;𝐶) and a ring structure on it, for any 𝑚 ∈ Q. One gets
the same answer (1.16.2) when m is an integer. For 𝑚 = 𝑑/𝑟 , we expect but will not prove that HF0

loud is
a dense subring of an 𝑟2-dimensional division algebra over F𝑝 ((𝑧)) whose invariant is 𝑚+Z ∈ Q/Z. The
indecomposable vector bundles on the Fargues–Fontaine curve are classified by Q, and those division
algebras arise as their endomorphism rings [FF, Thm. 8.2.10].

2. Some Floer-theoretic background

In this section we review some of Floer theory, making what simplifications are possible when the target
manifold is a 2d torus T.

https://doi.org/10.1017/fms.2021.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.83


10 Yankı Lekili and David Treumann

2.1. J-holomorphic polygons

Let 𝐷 ⊂ C be the closed unit disk in the complex plane. We denote by 𝐷◦ the open unit disk and
𝜕𝐷 = 𝐷 − 𝐷◦ the boundary of D. Let z = (𝑧0, . . . , 𝑧𝑛) denote an ordered (𝑛 + 1)-tuple of points in 𝜕𝐷.
We require that the points of z are pairwise distinct and that the counterclockwise arc subtending 𝑧𝑖−1
and 𝑧𝑖 (or 𝑧𝑛 and 𝑧0) does not contain any other point of z.

Let 𝐿0, 𝐿1, . . . , 𝐿𝑛 be an (𝑛 + 1)-tuple of 1-dimensional submanifolds of T and let (𝑥0, . . . , 𝑥𝑛) be a
tuple of points in T with

𝑥0 ∈ 𝐿0 ∩ 𝐿𝑛, 𝑥1 ∈ 𝐿1 ∩ 𝐿0, . . . , 𝑥𝑛 ∈ 𝐿𝑛 ∩ 𝐿𝑛−1.

We write W(𝑥0, . . . , 𝑥𝑛) for the set of pairs (z, 𝑢) where 𝑢 : 𝐷 → 𝑇 is a continuous map, smooth
away from z, that carries 𝑧𝑖 to 𝑥𝑖 and that maps the counterclockwise arc between 𝑧𝑖 and 𝑧𝑖+1 into 𝐿𝑖 . It
carries a topology in which a sequence (z𝑖 , 𝑢𝑖) converges (z, 𝑢) if z𝑖 → z in (𝜕𝐷)×(𝑛+1) and 𝑢𝑖 → 𝑢 in
a suitable Sobolev space.

Fix an almost complex structure J on T. A polygon (z, 𝑢) ∈ W(𝑥0, . . . , 𝑥𝑛) is called J-holomorphic
if the differential of u is C-linear on each tangent space of the interior 𝐷◦. Write M̃(𝑥0, . . . , 𝑥𝑛) ⊂

W(𝑥0, . . . , 𝑥𝑛) for the subspace of J-holomorphic polygons. The group PSL2(R) of biholomorphisms
of 𝐷◦ acts on M̃ by reparametrisation and we denote the quotient by M(𝑥0, . . . , 𝑥𝑛).

2.2. Transversely cut criteria

Each connected component of M(𝑥0, . . . , 𝑥𝑛) is labelled by a nonnegative integer called the analytic
index of the component (or of any map in the component). In case the conditions that cut M̃ out of W
are transverse in a sense that we will not review here, each component is a topological manifold and the
analytic index coincides with the dimension of this component. A formula for this dimension is given
below (2.3.1). When the ‘transversely cut’ condition is satisfied, we call the components of dimension
0 rigid polygons.

The ‘transversely cut’ condition is satisfied whenever the (𝐿0, . . . , 𝐿𝑛) are in general position –
that is, whenever the 𝐿𝑖 are pairwise transverse and 𝐿𝑖 ∩ 𝐿 𝑗 ∩ 𝐿𝑘 is empty. On T or another surface,
this triple intersection condition can be relaxed [Se2, Lem. 13.2]; for instance, M is transversely cut
in a neighbourhood of u as soon as u is not constant. Even some constant maps u are transversely
cut; for instance, if (𝐿0, 𝐿1, 𝐿2) are pairwise transverse, then at any triple intersection point 𝑥 ∈

𝐿0 ∩ 𝐿1 ∩ 𝐿2, the tangent lines (𝑇𝑥𝐿0, 𝑇𝑥𝐿1, 𝑇𝑥𝐿2) come in either clockwise or counterclockwise order.
A constant map 𝐷 → 𝐿0 ∩ 𝐿1 ∩ 𝐿2 contributes to M(𝑥, 𝑥, 𝑥) if and only if they come in clockwise
order:

𝐿2

𝐿1
𝐿0

An example of a nontransversely cut quadrilateral in T (necessarily constant) is analyzed in [LPe1, Thm.
8]. We will encounter some nontransversely cut triangles in Subsection 4.9.

2.3. Maslov index of an intersection point

Let (𝐿, 𝐿 ′) be an ordered pair of connected 1-dimensional submanifolds of T and fix an orientation of
both L and 𝐿 ′. Suppose that L and 𝐿 ′ meet transversely at the point x; then we define mas(𝑥) ∈ Z/2 by
the rule indicated in the diagram:
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𝐿 ′𝐿

mas = 0

𝐿𝐿 ′

mas = 1

If L and 𝐿 ′ are not homologous to zero, one may lift the Maslov index to a Z-valued invariant by
equipping L and 𝐿 ′ (and T) with gradings; see [LPe2, §6]. Let us denote this Z-valued Maslov index by
masZ(𝑥). A formula for the dimension near 𝑢 ∈ M(𝑥0, . . . , 𝑥𝑛) is

masZ (𝑥0) − masZ (𝑥1) − · · · − masZ(𝑥𝑛). (2.3.1)

2.4. Sign of a rigid polygon

By making some additional choices, one may attach a sign to each rigid polygon with boundary on
(𝐿0, . . . , 𝐿𝑛) – in other words, one may define a map

M(𝑥0, . . . , 𝑥𝑛) → {1,−1}. (2.4.1)

We recall the recipe for (2.4.1) given in [Se1, §7] – it depends on the choice of orientation for each 𝐿𝑖

and on the additional data of a basepoint ★𝑖 ∈ 𝐿𝑖 in each 𝐿𝑖 . One requires that ★𝑖 ∉ 𝐿 𝑗 for any 𝑗 ≠ 𝑖.
The point ★𝑖 endows 𝐿𝑖 with a nontrivial spin structure (also known as bounding or Neveu–Schwarz
spin structure) which is trivialised away from ★𝑖 .

If 𝑢 |𝜕𝐷 : 𝜕𝐷 → ∪𝑛
𝑖=0𝐿𝑖 preserves the counterclockwise orientation of D, the sign is +1 or −1

according to whether one encounters an even or odd number of stars going around 𝜕𝐷 – that is, it is
(−1)#𝑢−1 {★0 ,...,★𝑛 }. Changing the orientation of 𝐿0 does not change this sign, changing the orientation of
𝐿𝑛 changes the signs by (−1)mas(𝑥0)+mas(𝑥𝑛) and changing the orientation of any of the other 𝐿𝑖 changes
the sign by (−1)mas(𝑥𝑖) .

For short, we will sometimes write

(−1) |𝑥 | := (−1)mas(𝑥) . (2.4.2)

2.5. Floer cochain complexes

Let t be a formal variable and let Z[𝑡R≥0 ] denote the semigroup algebra of R≥0; that is, the group of finite
Z-linear combinations of symbols of the form 𝑡𝑎, where 𝑎 ∈ R≥0, with the multiplication 𝑡𝑎𝑡𝑏 = 𝑡𝑎+𝑏 .
Let Λ be a Z[𝑡R≥0 ]-algebra. In a moment we will take Λ to be the Novikov completion of Z[𝑡R≥0 ], but the
differential in CF(𝐿, 𝐿 ′) is given by a finite sum, so that in this section it might as well be Z[𝑡R≥0 ] itself.

When L and 𝐿 ′ intersect transversely, then we let

CF(𝐿, 𝐿 ′) :=
⊕

𝑥∈𝐿∩𝐿′

Λ. (2.5.1)

The choice of orientation for L and 𝐿 ′ endows this group with a Z/2-grading,

CF = CF0 ⊕ CF1, where CF𝑖 (𝐿, 𝐿 ′) :=
⊕

𝑥 |mas(𝑥)=𝑖
Λ.

Further equipping L and 𝐿 ′ with stars (Subsection 2.4) gives us the bigon differential

𝜇1 : CF𝑖 (𝐿, 𝐿 ′) → CF𝑖+1(𝐿, 𝐿 ′) : 𝑥 ↦→
∑

𝑦 |mas(𝑦)=𝑖+1
𝑦
���

∑
𝑢∈M(𝑥,𝑦)

±𝑡area(𝑢)�	
 (2.5.2)

https://doi.org/10.1017/fms.2021.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.83


12 Yankı Lekili and David Treumann

where the sign is given in Subsection 2.4 and area(𝑢) :=
∫
𝐷

𝑢∗(𝑑𝑥 𝑑𝑦). The inner sum is finite. A general
argument using nonrigid bigons shows that 𝜇1𝜇1 = 0 – this is a case of the 𝐴∞-relations (Subsection
2.11). In T, this can be proved more simply by lifting the grading from Z/2 to Z: the Z-grading is always
concentrated in only two degrees.

We have just described the ‘absolute’ Floer cochain complex. After fixing a point 𝐷 ∈ 𝑇 , not on L
or 𝐿 ′, we also have a ‘relative to D’ complex in which Λ in (2.5.1) can be shrunk to Z[𝑡] (or another
Z[𝑡]-algebra) and the expression 𝑡area(𝑢) in is replaced by 𝑡#𝑢−1 (𝐷) .

2.6. Example – special Lagrangians

We will call a circle 𝐿 ⊂ 𝑇 a ‘special Lagrangian’ if it is the image under R2 → 𝑇 of a straight
line. If that straight line has the form 𝑦 + 𝑚𝑥 = 𝑏, then we will call m the slope of the special
Lagrangian; otherwise, we say L has slope ∞. Thus, the possible slopes are 𝑚 ∈ Q∪ {∞}. If L is special
with finite slope, let us call the orientation under the parametrisation 𝑥 ↦→ (𝑥, 𝑏 − 𝑚𝑥) the ‘default
orientation’.

If 𝐿 ≠ 𝐿 ′ are two special Lagrangians, of finite slopes m and 𝑚′, then they meet transversely in a
set of cardinality |𝑛𝑑 ′ − 𝑛′𝑑 |, if 𝑚 = 𝑛/𝑑 and 𝑚′ = 𝑛′/𝑑 ′. All of the intersection points are in a single
Maslov degree; with the default orientations, these degrees are

CF(𝐿, 𝐿 ′) =

{
CF0(𝐿, 𝐿 ′) if 𝑚′ > 𝑚

CF1(𝐿, 𝐿 ′) if 𝑚′ < 𝑚.

There are no bigons and the differential (2.5.2) is zero.

2.7. Polygon maps

Suppose that (𝐿0, . . . , 𝐿𝑛) are in sufficiently general position that all of the M(𝑥0, . . . , 𝑥𝑛) are trans-
versely cut. The (𝑛 + 1)-gon map is a multilinear map

𝜇𝑛 : CF𝑖𝑛 (𝐿𝑛−1, 𝐿𝑛) × · · · × CF𝑖1 (𝐿0, 𝐿1) → CF𝑖1+···+𝑖𝑛+2−𝑛 (𝐿0, 𝐿𝑛) (2.7.1)

which carries (𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥1) to

∑
𝑦

𝑦
���

∑
𝑢∈M(𝑦,𝑥1 ,𝑥2 ,...,𝑥𝑛)

±𝑡area(𝑢)�	
. (2.7.2)

It is not defined until the 𝐿𝑖 are equipped with orientations and stars. Furthermore, the inner sum in
(2.7.2) is usually infinite, so Λ should carry a topology in which it converges. The standard choice for
Λ is one of Λ0 or Λ0 [𝑡−1], where Λ0 is the Novikov ring

Λ0 = Λ0
Z =

{
∞∑
𝑖=0

𝑎𝑖𝑡
𝜆𝑖 | 𝑎𝑖 ∈ Z, 𝜆𝑖 ∈ R≥0 and lim

𝑖→∞
𝜆𝑖 = ∞

}
. (2.7.3)

The fact that Λ0 can be taken to have Z-coefficients is a reflection of the fact that the mod-
uli spaces M are not orbifolds – this holds for T and more generally for semipositive symplectic
manifolds.
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In the relative setting, as long as D does not lie on any 𝐿𝑖 , we replace 𝑡area(𝑢) with 𝑡#𝑢−1 (𝐷) and (2.7.1)
is multilinear over Z[[𝑡]].

2.8. Example – some triangle maps

Suppose 𝐿0, . . . , 𝐿𝑘 are special Lagrangians of slopes

𝑚0 < 𝑚1 < · · · < 𝑚𝑘 < ∞. (2.8.1)

If 𝑘 ≠ 2, then the set of rigid (𝑘 + 1)-gons with boundary on 𝐿0, . . . , 𝐿𝑘 is empty and the maps

𝜇𝑘 : CF(𝐿𝑘−1, 𝐿𝑘 ) × · · · × CF(𝐿0, 𝐿1) → CF(𝐿0, 𝐿𝑘 )

are zero – this is a consequence of Subsection 2.3.1. In other words, when (2.8.1) is satisfied, 𝜇2 is the
only interesting polygon map. In this section we explain how to compute 𝜇2 in detail for Lagrangians
of the form 𝐿 (𝑚0) , 𝐿 (𝑚1) , 𝐿 (𝑚2) (Subsection 1.3). These are the maps that can be packed into a product
structure on

⊕
CF(𝐿 (0) , 𝐿 (𝑚) ) (Subsection 1.4), and our notation is adapted to describing this product

structure.
One consequence of the vanishing of the 𝜇𝑘 for 𝑘 ≠ 2 is that this product is strictly associative

(Subsection 2.11), and we can describe the product in terms of the theta functions. If (2.8.1) is not
satisfied, then the maps 𝜇𝑘 do not all vanish for 𝑘 ≥ 3 – they can be written in terms of Hecke’s
indefinite theta series [Poli].

If 𝑚1 < 𝑚2, there are 𝑚2 −𝑚1 intersection points between 𝐿 (𝑚1) and 𝐿 (𝑚2) , each contributing a basis
element to CF(𝐿 (𝑚1) , 𝐿 (𝑚2) ). Let us index those intersection points in the following way:

𝜏𝑚1 (𝑥𝑚2−𝑚1 ,𝜅 ) := (𝜅,−𝑚2𝜅) (2.8.2)

where 𝜅 ∈ {0, 1
𝑚2−𝑚1

, . . . , 𝑚2−𝑚1−1
𝑚2−𝑚1

} and 𝜏 denotes the Dehn twist map

𝜏 : (𝑥, 𝑦) ↦→ (𝑥, 𝑦 − 𝑥)

Fix an irrational number 𝜀 and equip each 𝐿 (𝑚) with a star §2.4

★(𝑚) = ★(𝑚) , 𝜀 := (𝜀,−𝑚𝜀). (2.8.3)

The Dehn twist carries 𝐿 (𝑚) to 𝐿 (𝑚+1) and preserves the stars. As 𝜀 is irrational, the stars avoid the
intersection points 𝐿 (𝑚1) ∩ 𝐿 (𝑚2) . We will compute the triangle maps

CF(𝐿 (𝑚1) , 𝐿 (𝑚1+𝑚2) ) × CF(𝐿 (0) , 𝐿 ( (𝑚1)) ) → CF(𝐿 (0) , 𝐿 (𝑚1+𝑚2) )

by computing 𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1 ). For example,

𝜇2 (𝜏𝑥1,0, 𝑥1,0) =

⎧⎪⎪⎨⎪⎪⎩
𝑥2,0

( ∑
𝑖∈Z 𝑡𝑖

2
)
+ 𝑥2, 1

2

( ∑
𝑖∈Z 𝑡 (𝑖+

1
2 )

2
)

(absolute setting)

𝑥2,0

( ∑
𝑖∈Z 𝑡𝑖

2
)
+ 𝑥2, 1

2

( ∑
𝑖∈Z 𝑡𝑖 (𝑖+1)

)
(relative setting).

(2.8.4)

Theorem. Let

𝐸 (𝜅1, 𝜅2) = 𝐸𝑚1 ,𝑚2 (𝜅1, 𝜅2) :=
𝑚1𝜅1 + 𝑚2𝜅2

𝑚1 + 𝑚2
(2.8.5)
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(which carries 1
𝑚1

Z× 1
𝑚2

Z into 1
𝑚1+𝑚2

Z). Then in the absolute setting, 𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1) is given by

𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1) =

∑
ℓ∈Z

𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) 𝑡
(ℓ+𝜅2−𝜅1)

2/(2( 1
𝑚1

+ 1
𝑚2

))
. (2.8.6)

Let the functions 𝜙(𝑠) and 𝜆(𝑢, 𝑣) = 𝜆𝑚1 ,𝑚2 (𝑢, 𝑣) be given by (cf. [LPe2, p. 83])

𝜙(𝑠) := �𝑠�𝑠 −
1
2
�𝑠� �𝑠 + 1�; 𝜆(𝑢, 𝑣) := 𝑚1𝜙(𝑢) + 𝑚2𝜙(𝑣) − (𝑚1 + 𝑚2)𝜙(𝐸 (𝑢, 𝑣)). (2.8.7)

Then in the relative setting, 𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1) is given by

𝜇2 (𝜏
𝑚1𝑥𝑚2 ,.𝜅2 , 𝑥𝑚1 ,𝜅1) =

∑
ℓ∈Z

𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) 𝑡
𝜆(𝜅1 ,𝜅2+ℓ) , (2.8.8)

where we understand 𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) := 𝑥𝑚1+𝑚2 ,𝜅 if 𝐸 (𝜅1, 𝜅2 + ℓ) = 𝜅 modulo 1.

Proof. The index ℓ in either sum (2.8.6), (2.8.8) determines a triangle, two of whose vertices are at
𝑥𝑚1 ,𝜅1 and 𝜏𝑚1𝑥𝑚2 ,𝜅2 . In the universal cover, the coordinates of all three vertices are

(𝜅1, 0), (𝐸 (𝜅1, 𝜅2 + ℓ), 0), (𝜅2 + ℓ,−𝑚1 (𝜅2 + ℓ − 𝜅1))

as in the diagram

𝐿(0)

𝐿(𝑚1+𝑚2 )𝐿(𝑚1 )

𝑥𝑚1 ,𝜅1 = (𝜅1, 0)

𝑥𝑚2 ,𝜅2 = (𝜅2 + ℓ, −𝑚1 (𝜅2 + ℓ − 𝜅1))

(𝐸 (𝜅1, 𝜅2 + ℓ) , 0) = 𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+𝑙)

On any of these triangles there are an even number of stars (2.8.3): for each 𝑖 ∈ Z with 𝜅1 < 𝜀+ 𝑖 < 𝜅2+ℓ
there are exactly two stars whose x-coordinate (in the universal cover) is 𝜀 + 𝑖, one along 𝐿 (𝑚1) and the
other along either 𝐿 (0) or 𝐿 (𝑚1+𝑚2) . Thus, every summand in the triangle has sign +1.

The exponent of t in (2.8.6) is the area of the ℓth triangle; that is,

1
2
𝑚1 (𝜅2 + ℓ − 𝜅1) (𝐸 (𝜅1, 𝜅2 + ℓ) − 𝜅1) = (ℓ + 𝜅2 − 𝜅1)

2/(2(
1
𝑚1

+
1
𝑚2

)).

The more complicated exponent of t in (2.8.8) is the lattice area (Subsection 1.6) of the same triangle,
which coincides with the cardinality of 𝑢−1(𝐷) when D is in the first quadrant very close to (0, 0) – see
[LPe2]. �
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2.9. Theta functions

Let 𝜃𝑚,𝑘 , 𝜃abs
𝑚,𝑘 be as in (1.8.1):

𝜃𝑚,𝑘 :=
∞∑

𝑖=−∞

𝑡𝑚
𝑖 (𝑖−1)

2 +𝑘𝑖 𝑧𝑚𝑖+𝑘 , 𝜃abs
𝑚,𝑘 :=

∞∑
𝑖=−∞

𝑡 (𝑚𝑖+𝑘)2/(2𝑚) 𝑧𝑚𝑖+𝑘 .

The Jacobi theta function is 𝜃1,0 and the others are obtained by a simple change of variables:

𝜃𝑚,𝑘 (𝑡, 𝑧) = 𝑧𝑘𝜃1,0 (𝑡
𝑚, 𝑡𝑘 𝑧𝑚), 𝜃𝑚,𝑘 (𝑡, 𝑡

1
2 𝑧) = 𝑡𝑘 (𝑚−𝑘)/(2𝑚)𝜃abs

𝑚,𝑘 (𝑡, 𝑧).

Although these series are doubly infinite in z, when formally expanding the product of 𝜃𝑚,𝑘 and 𝜃𝑚′,𝑘′ ,
only finitely many terms contribute to the coefficient of any monomial 𝑧𝑒𝑡 𝑓 – the same goes for 𝜃abs

𝑚,𝑘 and
𝜃abs
𝑚′,𝑘′ . This is a consequence of the convexity of the functions 𝑖 ↦→ 𝑚

( 𝑖
2
)
+ 𝑘𝑖 and 𝑖 ↦→ (𝑚𝑖 + 𝑘)2/(2𝑚)

in the exponent of t. That the resulting series 𝜃𝑚,𝑘 · 𝜃𝑚′,𝑘′ or 𝜃abs
𝑚,𝑘 · 𝜃abs

𝑚′,𝑘′ can be written as a linear
combination of 𝜃𝑚+𝑚′,0, · · · , 𝜃𝑚+𝑚′,𝑚+𝑚′−1 is a standard but nontrivial fact about the theta functions. The
formulas for these coefficients are the same as (2.8.8) and (2.8.6): putting 𝜅1 = 𝑘1/𝑚1 and 𝜅2 = 𝑘2/𝑚2,

𝜃𝑚2 ,𝑘2 · 𝜃𝑚1 ,𝑘1 =
∑
ℓ∈Z

𝜃𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) 𝑡
𝜆(𝜅1 ,𝜅2+ℓ)

and

𝜃abs
𝑚2 ,𝑘2

· 𝜃abs
𝑚1 ,𝑘1

=
∑
ℓ∈Z

𝜃abs
𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ)

𝑡
(ℓ+𝜅2−𝜅1)

2/(2( 1
𝑚1

+ 1
𝑚2

))
.

In other words, the map 𝑥𝑚,𝑘 ↦→ 𝜃𝑚,𝑘 or 𝜃abs
𝑚,𝑘 is a ring homomorphism. One may verify this directly

(and we will do so in the next section when we turn on an F-field), but it is natural to ask what is the
Floer-theoretic origin of these series. Each summand of (1.8.1) is indexed by a right triangle, with one
vertex at 𝑥𝑚,𝑘/𝑚 and sides along 𝐿 (0) , 𝐿 (𝑚) , 𝐿 (∞) . The exponent of t carries the area (or lattice area)
of this right triangle and the exponent of z carries the number of times the vertical edge of the triangle
wraps around 𝐿 (∞) – this z can be interpreted as the monodromy of a rank 1 local system (Subsection
3.3). For instance, the right triangles contributing to 𝜃2,1 have the form (for i positive)

𝑥2,1/2

𝑧𝑚𝑖+𝑘 = 𝑧2𝑖+1

2.10. The punctured torus, the large complex structure limit

Part of the motivation for relative Floer theory is to make sense of the specialisation 𝑡 = 0 in the polygon
sums. Setting 𝑡 = 0 has the effect of discarding the polygons that contribute a positive power of t, which
in the relative case is the same as discarding the polygons that touch D. One gets the same effect by
doing Floer theory for Lagrangians in the punctured torus 𝑇 −𝐷. When 𝑇 −𝐷 is equipped with the right
symplectic structure, one with infinite area in a neighbourhood of D, this is called the ‘large volume
limit’ of Floer theory.

We can treat the Lagrangians 𝐿 (𝑚) as boundary conditions for triangles 𝑢 : Δ2 → 𝑇−𝐷 and sum over
them to obtain a map 𝜇2 as before, this time defined on the free Z-modules spanned by 𝐿 (𝑚1) ∩ 𝐿 (𝑚2) .
For instance,

𝜇2 (𝜏𝑥1,0, 𝑥1,0) = 𝑥2,0 + 𝑥2,1/2 · 2,
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where 𝑥2,0 comes from a constant map and the two copies of 𝑥2,1/2 come from the two shaded triangles
in the figure

𝐿(2) 𝐿(1)

𝐿(0)

𝐷

We also record

𝜇2 (𝜏
2𝑥1,0, 𝑥2,0) = 𝑥3,0 + 𝑥3,1/3 + 𝑥3,2/3

𝜇2 (𝜏
2𝑥1,0, 𝑥2,1/2) = 𝑥3,1/3 + 𝑥3,2/3

𝜇2 (𝜏
3𝑥3,1/3, 𝑥3,2/3) = 𝑥6,3/6

and

𝜇2(𝜏
4𝑥2,1/2, 𝜇2 (𝜏

2𝑥2,1/2, 𝑥2,1/2)) = 𝑥6,3/6.

If one sets 𝑧 = 𝑥1,0, 𝑥 = 𝑥2,1/2, 𝑦 = 𝑥3,2/3, these equation imply in particular that

𝑦2𝑧 + 𝑥3 = 𝑥𝑦𝑧.

This is the equation for a nodal plane cubic curve – the ‘large complex structure limit’ that matches the
large volume limit under mirror symmetry.

2.11. 𝐴∞-relations

The moduli spacesM that parametrise nonrigid polygons are not usually compact. For example, suppose
𝐿0, 𝐿1, 𝐿2, 𝐿3 are as in the diagram

𝐿3

𝐿0

𝐿2

𝐿1
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Denote the red-black, black-purple and purple-blue intersection points by f, g and h respectively and the
blue-red intersection point by ℎ𝑔 𝑓 . Then M(ℎ𝑔 𝑓 , 𝑓 , 𝑔, ℎ) includes the following one-parameter family
of quadrilaterals:

∗

∗
(2.11.1)

They all have the same image closure but along the boundary may back-track along either the blue or the
red line. Near the ∗s, the map u is biholomorphic to the map from the upper half-plane to C that sends
z to 𝑧2. At the extreme parameters, where the ∗ reaches all the way to the black or purple line, there is
no such J-holomorphic quadrilateral – so M is not compact – but each of those extremes is occupied
by a pair of J-holomorphic triangles.

Since the quadrilaterals are not rigid, they do not contribute to 𝜇3 (ℎ, 𝑔, 𝑓 ). But the triangles at the
extremes are rigid; at one end they contribute to 𝜇2 (𝑔, 𝑓 ) and 𝜇2 (ℎ, 𝑔 𝑓 ) and at the other end to 𝜇2 (ℎ, 𝑔)
and 𝜇2(ℎ𝑔, 𝑓 ). The interpolating family of quadrilaterals exhibits a relation between them.

More generally, there is a compactification (the Deligne–Mumford–Stasheff compactification) of M.
When everything is transversely cut (Subsection 2.2), the compactification is a topological manifold-
with-corners whose corners are indexed by tuples of rigid polygons. Equipping the 𝐿𝑖 with orientations
and stars induces an orientation on M and its compactification – (2.4.1) is a special case of this
orientation. The oriented compactification of M is used in the proof (it essentially is the proof) of the
following equations among the polygon maps 𝜇𝑛:∑

𝑖+ 𝑗=𝑛+1

∑
ℓ<𝑖

(−1) | 𝑓1 |+·· ·+ | 𝑓ℓ |−ℓ𝜇𝑖 ( 𝑓𝑛, , . . . , 𝑓ℓ+ 𝑗+1, 𝜇 𝑗 ( 𝑓ℓ+ 𝑗 , . . . , 𝑓ℓ+1), 𝑓ℓ , . . . , 𝑓1) = 0. (2.11.2)

The algebraic structure formed by the CF(𝐿, 𝐿 ′) and the maps 𝜇𝑛, subject to the relations (2.11.2),
is called an ‘𝐴∞-precategory’ in [KS, §4.3]. Each L is like an object and each 𝑓 ∈ CF(𝐿, 𝐿 ′) is
like a morphism between objects. (2.11.2) expresses the fact that these morphism spaces are cochain
complexes and that the composition law is associative up to chain homotopy in a strong sense. It falls
short of being an 𝐴∞-category; for instance, because CF(𝐿, 𝐿 ′) is defined only when L and 𝐿 ′ meet
transversely, so CF(𝐿, 𝐿) is undefined and there is no ‘morphism’ that could play the role of the identity
map. A standard way to address this problem is by analysing the sense in which CF(𝐿, 𝐿 ′) are invariant
under Hamiltonian isotopies – Floer’s theory of continuation.

2.12. Example – identity maps

There is a Floer cochain complex CF(𝐿, 𝐿 ′), well-defined up to quasi-isomorphism, even if L and 𝐿 ′

do not intersect transversely. In case 𝐿 ′ meets both 𝐿0 and 𝐿1 transversely, in the absolute setting
(respectively relative setting) any Hamiltonian isotopy (respectively any Hamiltonian isotopy supported
on the complement of D) induces a quasi-isomorphism between CF(𝐿0, 𝐿

′) and CF(𝐿1, 𝐿
′) (Subsection

2.13). One accesses CF(𝐿, 𝐿 ′) by perturbing L.
We illustrate this in an example that fills in the zeroth graded piece of (1.4.1). Let 𝜙𝑠 denote the flow

of 𝐻 (𝑥, 𝑦) = sin(2𝜋𝑥); that is,

𝜙𝑠 (𝑥, 𝑦) = (𝑥, 𝑦 − 𝑠 cos(2𝜋𝑥)). (2.12.1)

Then for 0 < 𝑠 < 1, 𝜙𝑠𝐿 (0) meets 𝐿 (0) transversely at the points 𝑥 = (.25, 0) and 𝑦 = (.75, 0), so that
CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ) = Λ𝑥 ⊕ Λ𝑦. In a suitable fundamental domain, the picture is this:
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★

★

𝑥 𝑦

𝜙𝑠𝐿 (0)

𝐿 (0)

Equipping 𝐿 (0) with its default orientation and 𝜙𝑠𝐿 (0) with the orientation induced by 𝜙𝑠 : 𝐿 (0) �
𝜙𝑠𝐿 (0) , the Maslov degrees are

CF0(𝜙𝑠𝐿 (0) , 𝐿 (0) ) = 𝑥Λ CF1 (𝜙𝑠𝐿 (0) , 𝐿 (0) ) = 𝑦Λ. (2.12.2)

There are two bigons contributing to the differential 𝜇1, of equal area A. Both bigons have input x
and output y and their signs (Subsection 2.4) are opposite to each other (no matter where the stars are
placed), so that the differential is

𝜇1 (𝑥) = 𝑦(𝑡𝐴 − 𝑡𝐴) = 0.

Some variations of this computation are made in Subsection 2.14 and Subsection 3.5.

2.13. Continuation

Let 𝑋𝐻 denote the Hamiltonian vector field of a function 𝐻 : [0, 1] × 𝑇 → R and write 𝜙𝑠 for its time
s flow, 𝜙𝑠 : 𝑇 → 𝑇 . Let us review how the quasi-isomorphism

CF(𝐿, 𝐿 ′) → CF(𝜙𝑠𝐿, 𝐿 ′) (2.13.1)

works in the absolute setting. The map (2.13.1) goes back to [Fl, Thm. 4]; our notation is closer to the
appendix of [Aur1]. It is defined in terms of a set M(𝑥, 𝑦, 𝜙, 𝛽) of maps

𝑢 : [−∞,∞] × [0, 1] → 𝑇

that obey the boundary conditions

𝑢([−∞,∞] × {0}) ⊂ 𝐿
𝑢([−∞,∞] × {1}) ⊂ 𝐿 ′ 𝑢({∞} × [0, 1]) = {𝑥} 𝑢(−∞, 𝜏) = 𝜙𝑠 ·𝜏 (𝑦)

and (with analytic index zero; Subsection 2.2) Floer’s 𝑋𝐻 -perturbed J-holomorphic curve equation:

𝜕𝑢/𝜕𝜎 + 𝐽 (𝜕𝑢/𝜕𝜏 − 𝛽(𝜎)𝑠𝑋𝐻 ) = 0. (2.13.2)

Here 𝛽 (the ‘profile function’) is a monotone decreasing R-valued function on [−∞,∞] with 𝛽(𝜎) = 1
for 𝜎 � 0 and 𝛽(𝜎) = 0 for 𝜎 � 0. The formula for (2.13.1) is

𝑥 ↦→
∑

𝑦∈𝜙𝑠𝐿∩𝐿′

𝑦
∑

𝑢∈M(𝑥,𝑦,𝜙)

±𝑡topological energy of 𝑢 (2.13.3)
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where the ‘topological energy’ is (see Lemma 14.4.5 [Oh])∫
𝑢∗𝜔 +

∫ 1

0
𝐻 (𝜏, 𝑢(∞, 𝜏))𝑑𝜏 −

∫ ∞

−∞

𝛽′(𝜎)𝑠

∫ 1

0
(𝐻𝜏 ◦ 𝑢)𝑑𝜏𝑑𝜎.

This is sometimes a negative quantity, so we must allow 𝑡−1 ∈ Λ.
The homotopy inverse to (2.13.1) is just the continuation map for the reversed flow 𝜙−𝑠 . To describe

the chain homotopy between the composite

CF(𝜙𝑠𝐿, 𝐿 ′) → CF(𝜙−𝑠𝜙𝑠𝐿, 𝐿 ′) = CF(𝐿, 𝐿 ′) → CF(𝜙𝑠𝐿, 𝐿 ′) (2.13.4)

and the identity map, let 𝐵𝑟 (𝜎) (for each 𝑟 > 0) be a function that vanishes on an interval of length r
and that agrees up to translation of 𝜎 with 𝛽(𝜎) when 𝜎 is to the left of that interval and with 𝛽(−𝜎)
when 𝜎 is to the right of that interval. Then

Δ (𝑦) =
∑
𝑥

𝑥
∑
𝑢

±𝑡topological energy of 𝑢 , (2.13.5)

where the inner sum is over strips 𝑢 : [−∞,∞] × [0, 1] → 𝑇 that solve (for some r, with index −1)

𝜕𝑢/𝜕𝜎 + 𝐽 (𝜕𝑢/𝜕𝜏 − 𝐵𝑟 (𝜎)𝑠𝑋𝐻 ) = 0 𝑟 ∈ R≥0

and that have 𝑢(−, 0) ⊂ 𝐿, 𝑢(−, 1) ⊂ 𝐿 ′ and 𝑢(−∞, 𝜏) = 𝜙𝑠 ·𝜏 (𝑥) and 𝑢(∞, 𝜏) = 𝜙𝑠 ·𝜏 (𝑦).

2.14. Example

Suppose that L and 𝐿 ′ are a pair of parallel, horizontal circles, at distance c apart. With 𝜙𝑠 as in (2.12.1),
𝜙𝑠 (𝐿) ∩ 𝐿 ′ is empty unless |𝑠 | > 𝑐. If |𝑠 | only slightly exceeds c, then 𝜙𝑠 (𝐿) ∩ 𝐿 ′ has two intersection
points, say, x and y, as in the diagram:

★

★
𝐿

𝐿 ′
★

★

𝑥 𝑦

𝜙𝑠𝐿

𝐿 ′

Thus, CF(𝐿, 𝐿 ′) = 0, while (noting that there are two bigons in the right picture, a small one of area A
and a large one of area 𝐴 + 𝑐) and CF(𝜙𝑠𝐿, 𝐿 ′) = 𝑥Λ ⊕ 𝑦Λ, with differential

𝜇1 (𝑥) = 𝑦(𝑡𝐴 − 𝑡𝐴+𝑐)

(see Subsection 2.4 for the signs).
As CF(𝐿, 𝐿 ′) = 0, the composite (2.13.4) is zero. By Floer’s theorem, the identity map on

CF(𝜙𝑠𝐿, 𝐿 ′) is chain homotopic to zero, with (2.13.5) supplying the contracting homotopy. Indeed,
the contracting homotopy is the geometric series

Δ (𝑦) = 𝑥 · (𝑡−𝐴 + 𝑡−𝐴+𝑐 + · · · + 𝑡−𝐴+𝑛𝑐 + · · · ).
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The strip 𝑢𝑛 contributing the nth term in the series (of topological energy 𝑛𝑐 − 𝐴) stretches horizontally
across 𝑛+2 fundamental domains, crossing the boundary of the fundamental domain exactly 𝑛+1 times.
Here is a picture of 𝑢0 |𝜕( [−∞,∞]×[0,1]) and 𝑢1 |𝜕( [−∞,∞]×[0,1]) :

★
𝑥 𝑦

𝜙𝑠𝐿

𝐿 ′

3. Floer theory coupled to an F-field

In this section, we go over the constructions and calculations of Section 2, coupling all of the sums
over polygons to a sheaf of rings Λ of the kind discussed in Subsection 1.10. We are interested in the
case when Λ is pulled back along the projection map 𝔣 : 𝑇 → 𝑆1 (1.10.2) and set up some notation for
dealing with that case in Subsection 3.4.

3.1. Cochain complex

If L and 𝐿 ′ are two embedded circles in T, meeting transversely, let us write (just as in (1.11.1))

CF(𝐿, 𝐿 ′;Λ) :=
⊕

𝑥∈𝐿∩𝐿′

Λ𝑥 . (3.1.1)

If 𝑎 ∈ Λ𝑥 and we wish to regard it as an element of (3.1.1), we will write it as 𝑥 · 𝑎. We equip (3.1.1)
with a Z/2-grading by equipping L and 𝐿 ′ with orientations, just as in Subsection 2.5. After further
equipping L and 𝐿 ′ with stars, we define a differential

𝜇1 : CF𝑖 (𝐿, 𝐿 ′;Λ) → CF𝑖+1(𝐿, 𝐿 ′;Λ)

by the following analog of (2.5.2):

𝑥 · 𝑎 ↦→
∑

𝑦 |mas(𝑦)=𝑖+1
𝑦
���

∑
𝑢∈M(𝑦,𝑥)

±𝑡area(𝑢)∇𝛾′
(
𝑎∇𝛾(1Λ𝑦

)
)�	
, (3.1.2)

where
◦ 𝛾 : 𝐼 → 𝐿 is the path along the L-side of the bigon u starting at y and ending at x,
◦ 𝛾′ : 𝐼 → 𝐿 ′ is the path along the 𝐿 ′-side of u starting at x and ending at y.
This differential does not obey anything like 𝜇1 (𝑥𝑎) = 𝜇1 (𝑥)𝑎 – in fact, 𝜇1 (𝑥)𝑎 is typically undefined
and, in general, 𝜇1 (𝑥𝑎) and 𝜇1 (𝑥) do not have any useful relationship with each other.

We obtain a Λ-version of the continuation map (2.13.1)

CF(𝐿, 𝐿 ′;Λ) → CF(𝜙𝑠𝐿, 𝐿 ′;Λ) (3.1.3)

by multiplying each summand of (2.13.3) by ∇𝛾′(𝑎∇𝛾(∇(𝜙−𝜏𝑠 (𝑦)) (1Λ𝑦
))), where 𝛾 = 𝑢(𝜏, 0) and

𝛾′ = 𝑢(−𝜏, 1) are the paths along L and 𝐿 ′ respectively and 𝜙−𝜏𝑠 (𝑦) is the reverse of the trajectory from
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y to 𝜙𝑠𝑦; that is, ∑
𝑦∈𝜙𝑠𝐿∩𝐿′

𝑦
∑

𝑢∈M(𝑥,𝑦,𝜙)

±𝑡topological energy of 𝑢∇𝛾′(𝑎∇𝛾(∇(𝜙−𝜏𝑠 (𝑦)) (1Λ𝑦
))). (3.1.4)

The same recipe as Subsection 2.13 gives the homotopy inverse to (3.1.3), only replacing (2.13.5) by

𝑎 · 𝑦 ↦→
∑
𝑥

𝑥
∑
𝑢

±𝑡topological energy of 𝑢∇𝛾′
(
𝑎 · ∇(𝜙𝜏𝑠 (𝑦))∇𝛾∇(𝜙−𝜏𝑠 (𝑥)) (1Λ𝑥

)
)
. (3.1.5)

3.2. Polygon maps

Let 𝐿0, 𝐿1, . . . , 𝐿𝑛 be oriented, starred submanifolds of T as in Subsection 2.7. We define a variant of
(2.7.1)

𝜇𝑛 : CF𝑖𝑛 (𝐿𝑛−1, 𝐿𝑛;Λ) × · · · × CF𝑖1 (𝐿0, 𝐿1;Λ) → CF𝑖1+···+𝑖𝑛+2−𝑛 (𝐿0, 𝐿𝑛;Λ) (3.2.1)

carrying (𝑥𝑛 · 𝑎𝑛, 𝑥𝑛−1 · 𝑎𝑛−1, . . . , 𝑥1 · 𝑎1) (with each 𝑎𝑖 ∈ Λ𝑥𝑖
) to

∑
𝑦

𝑦

(∑
𝑢

±𝑡area(𝑢)∇𝛾𝑛 (𝑎𝑛∇𝛾𝑛−1 (𝑎𝑛−1 · · · ∇𝛾2 (𝑎2∇𝛾1 (𝑎1∇(𝛾0 (1)) · · · ))))

)
, (3.2.2)

where u runs over the same set of rigid polygons as (2.7.1), the signs are just the same and 𝛾𝑖 is the path
along the boundary of u going from 𝑥𝑖 to 𝑥𝑖+1 or from 𝑥𝑛−1 to 𝑥0.

Each connected component of the Deligne–Mumford–Stasheff compactification of the space of
nonrigid polygons has the same vertices 𝑥0, . . . , 𝑥𝑛 – that is, every u in that component has those same
vertices. Moreover, the path from 𝑥𝑖 to 𝑥𝑖+1 or from 𝑥𝑛 to 𝑥0 along u belongs to the same homotopy
class, so that ∇(𝛾𝑖) : Λ𝑥𝑖 → Λ𝑥𝑖+1 is locally constant in u. Thus, the 𝐴∞-relations among the (3.2.1)
hold for the usual reasons:∑

𝑖+ 𝑗=𝑛+1

∑
ℓ<𝑖

(−1) |𝑥1 |+·· ·+ |𝑥ℓ |−ℓ𝜇𝑖 (𝑥𝑛𝑎𝑛, . . . , 𝑥ℓ+ 𝑗+1𝑎ℓ+ 𝑗+1, 𝜇 𝑗 (· · · ), 𝑥ℓ𝑎ℓ , . . . 𝑥1𝑎1) = 0. (3.2.3)

3.3. Local systems

We can put the formulas in Subsection 3.2 in context by considering local systems on the 𝐿𝑖 . For each
i, let E𝑖 be a local system of Λ|𝐿𝑖 -modules on 𝐿𝑖 . Then we define

CF((𝐿𝑖 , E𝑖), (𝐿𝑖+1, E𝑖+1);Λ) =
⊕

𝑥∈𝐿𝑖∩𝐿𝑖+1

Hom(E𝑖,𝑥 , E𝑖+1,𝑥). (3.3.1)

The differential is modified by

𝜇1 (𝑥 𝑓 : E𝑖,𝑥 → E𝑖+1,𝑥) =
∑

𝑦
∑
𝑢

±𝑡area(𝑢)∇𝛾′ ◦ 𝑓 ◦ ∇𝛾 (3.3.2)

(where 𝑥 𝑓 denotes f placed in the xth summand of (3.3.1)). In case E𝑖 = Λ|𝐿𝑖 is the trivial sheaf of
modules, then Hom(E𝑖,𝑥 , E𝑖+1,𝑥) = Hom(Λ𝑥 ,Λ𝑥) is naturally identified with Λ𝑥 and (3.3.2) coincides
with (3.1.2).

The polygon maps

𝜇𝑛 : CF((𝐿𝑛−1, E𝑛−1), (𝐿𝑛, E𝑛);Λ) × · · · × CF((𝐿0, E0), (𝐿1, E1);Λ)
→ CF((𝐿0, E0), (𝐿𝑛, E𝑛);Λ) (3.3.3)
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are defined by sending ( 𝑓𝑛, 𝑓𝑛−1, . . . , 𝑓1) to the formal expression

∑
𝑦

𝑦
���

∑
𝑢∈M(𝑦,𝑥1 ,𝑥2 ,...,𝑥𝑛)

±𝑡area(𝑢)∇𝛾𝑛 ◦ 𝑓𝑛 ◦ ∇𝛾𝑛−1 ◦ 𝑓𝑛−1 ◦ · · · ◦ ∇𝛾1 ◦ 𝑓1 ◦ ∇𝛾0
�	
. (3.3.4)

We have left the degrees in (3.3.3) off for typesetting reasons; they are the same as in (2.7.1). The
formula (3.3.4) specialises to (3.2.2) in case E𝑖 = Λ|𝐿𝑖 . In general, (3.3.4) can fail to converge, unless
the following ‘unitarity’ condition is imposed on the E𝑖:

Each fibre of E𝑖 is locally free of finite rank overΛ|𝐿𝑖 and the monodromy preserves anΛ0 |𝐿𝑖 -lattice.

3.4. F-field

We would like to package the Λ-coupled triangle products among the 𝐿 (𝑚) into a graded ring, as in
Subsection 1.4. The necessary natural isomorphism between CF(𝐿 (𝑚) , 𝐿 (𝑛) ;Λ) and CF(𝐿 (0) , 𝐿 (𝑛−𝑚) ;Λ)
exists only when Λ is pulled back along the projection map

𝔣 : 𝑇 → 𝑆1 : (𝑥, 𝑦) + Z2 ↦→ 𝑥 + Z. (3.4.1)

To make this explicit, let 𝜎 : 𝐶 → 𝐶 be a ring automorphism, where C is commutative. We also let 𝜎
denote induced automorphism of 𝐶 [[𝑡]] or of Λ𝐶 , with 𝜎(𝑡𝑎) = 𝑡𝑎. We are mainly interested in the case
that

𝐶 perfect of characteristic 𝑝, 𝜎(𝑐) = 𝑐1/𝑝 , (3.4.2)

in which case, if 𝑓 (𝑡) =
∑

𝑐𝑎𝑡
𝑎 belongs to 𝐶 [[𝑡]] or to Λ𝐶 , then we can write 𝜎( 𝑓 ) (𝑡) = 𝑓 (𝑡 𝑝)1/𝑝. The

quotient

(R × 𝐶)/∼ (3.4.3)

of R ×𝐶 by the equivalence relation (𝑥, 𝑐) ∼ (𝑥 + 1, 𝜎(𝑐)) is the étalé space of a locally constant sheaf
of rings on 𝑆1 – as are (R × 𝐶 [[𝑡]])/∼ and (R × Λ𝐶 )/∼. We denote the pullback-to-T of these sheaves
of rings by 𝐶, 𝐶 [[𝑡]] and Λ𝐶 .

We will call (3.4.1) an ‘F-field’ on T. In diagrams, we keep track of it with a red line – the inverse
image of a point close to the right edge of the fundamental domain [0, 1) of 𝑆1, as in the figure on the
left below. On the right we have drawn, in a different scale, the preimage of the red line in part of the
universal cover of T, along with a triangle that contributes to 𝜇2(𝑥2 · 𝑏, 𝑥1 · 𝑎). One understands that 𝜎
or 𝜎−1 is to be applied every time one crosses this ‘danger line’ – 𝜎 if one crosses it from right to left
and 𝜎−1 if one crosses it from left to right.

𝛾0

𝛾1

𝛾2

𝑥2 · 𝑏

𝑥1 · 𝑎𝑦
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3.5. Example

Let Λ = Λ𝐶 be as in Subsection 3.4 and let 𝐿 (0) and 𝜙𝑠𝐿 (0) be as in Subsection 2.12.

★

★

𝑥 𝑦

𝜙𝑠𝐿 (0)

𝐿 (0)

We will compute the differential on CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;Λ) – this specialises to the example of Sub-
section 2.12 in case 𝜎 is trivial. As in that example, we still have CF0(𝜙𝑠𝐿 (0) , 𝐿 (0) ;Λ) = 𝑥Λ and
CF1 (𝜙𝑠𝐿 (0) , 𝐿 (0) ;Λ) = 𝑦Λ, but the map 𝜇1 is not Λ-linear, so we must compute not just 𝜇1 (𝑥) but
𝜇1 (𝑥𝑎) for all 𝑎 ∈ Λ. The same two bigons in Subsection 2.12, of area A, contribute to 𝜇1 (𝑥𝑎), but only
of them crosses the ‘danger line’:

The left bigon contributes 𝑦 · (−𝑡𝐴𝑎) and the right bigon contributes 𝑦 · (𝑡𝐴𝜎(𝑎)), so that the differential
is given by

𝜇1 (𝑥𝑎) = 𝑦𝑡𝐴(𝜎(𝑎) − 𝑎).

If we make the change of basis (𝑥, 𝑦) → (𝑥, 𝑦𝑡𝐴), then

HF0 � ker(𝑎 ↦→ 𝜎(𝑎) − 𝑎) HF1 � coker(𝑎 ↦→ 𝜎(𝑎) − 𝑎).

More suggestively, HF𝑖 (𝜙𝑠𝐿 (0) , 𝐿 (0) ;Λ) is isomorphic to 𝐻𝑖 (𝐿 (0) ;Λ|𝐿(0) ), and the cohomology of the
circle 𝐿 (0) with coefficients in Λ.

3.6. Example

With Λ and 𝜙 as in the previous example, let us compute CF(𝜙𝑠𝐿, 𝐿 ′;Λ) when L and 𝐿 ′ are two special
Lagrangians that are parallel to 𝐿 (0) and to each other but that do not intersect. Let c be the distance
between (and therefore also the area between) L and 𝐿 ′. Suppose that |𝑠 | slightly exceed c, so that
𝜙𝑠 (𝐿) ∩ 𝐿 ′ has two intersection points that we again denote by x and y.
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★

★

𝑥 𝑦

𝜙𝑠𝐿

𝐿 ′

Then the differential on CF(𝜙𝑠𝐿, 𝐿 ′;Λ) is 𝜇1 (𝑥𝑎) = 𝑦(𝑡𝑎𝜎(𝑎) − 𝑡𝐴+𝑐𝑎). If c is not zero, the complex is
acyclic, but it is interesting to note that the formal series

𝑥 ·
∑
𝑛∈Z

𝜎−𝑛 (𝑎)𝑡𝑛𝑐 𝑎 ∈ 𝐶𝑥 (3.6.1)

is killed by 𝜇1. Since (3.6.1) has an infinite ‘tail’, it does not lie in Λ𝑥 and does not contribute to
CF(𝜙𝑠𝐿, 𝐿 ′;Λ).

Since 𝐿 ∩ 𝐿 ′ is empty, the continuation maps associated to 𝜙𝑠 and its reverse 𝜙−𝑠

CF(𝐿, 𝐿 ′;Λ) → CF(𝜙𝑠𝐿, 𝐿 ′;Λ) and CF(𝜙𝑠𝐿, 𝐿 ′;Λ) → CF(𝐿, 𝐿 ′;Λ)

both vanish. But the explicit contracting homotopy on CF1(𝜙𝑠𝐿, 𝐿 ′;Λ) → CF0(𝜙𝑠𝐿, 𝐿 ′;Λ) is interest-
ing. It is given by the series

Δ (𝑎 · 𝑦) = 𝑥(𝑡−𝐴𝜎−1(𝑎) + 𝑡−𝐴+𝑐𝜎−2(𝑎) + · · · + 𝑡−𝐴+𝑛𝑐𝜎−𝑛−1(𝑎) + · · · ). (3.6.2)

The strip 𝑢𝑛 contributing the 𝑡−𝐴+𝑛𝑐 term in this series is the same as in Subsection 2.14, but that con-
tribution is now multiplied by ∇𝛾′

(
𝑎 · ∇(𝜙𝜏𝑠 (𝑦))∇𝛾∇(𝜙−𝜏𝑠 (𝑥)) (1Λ𝑥

)
)
, which simplifies to 𝜎−𝑛−1(𝑎).

3.7. Computing the triangle maps

Let 𝐿 (𝑚) (equipped with the same orientations and stars), 𝑥𝑚,𝜅 and 𝜏 be as in Subsection 2.8. Let Λ
and 𝐶 be pulled back along 𝔣, with 𝜎 denoting the nontrivial monodromy, as in Subsection 3.4. We will
compute

CF(𝐿 (𝑚1) , 𝐿 (𝑚1+𝑚2) ;Λ) × CF(𝐿 (0) , 𝐿 (𝑚1) ;Λ) → CF(𝐿 (0) , 𝐿 (𝑚1+𝑚2) ;Λ)

by computing 𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 · 𝑏, 𝑥𝑚1 ,𝜅1 · 𝑎).

Theorem. Let E be as in (2.8.5). Then in the absolute case, 𝜇2 (𝜏
𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1) is given by∑

ℓ∈Z
𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) 𝑡

(ℓ+𝜅2−𝜅1)
2/(2( 1

𝑚1
+ 1
𝑚2

))
𝜎ℓ−�𝐸 (𝜅1 ,𝜅2+ℓ) � (𝑏)𝜎−�𝐸 (𝜅1 ,𝜅2+ℓ) � (𝑎), (3.7.1)

where we understand 𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) := 𝑥𝑚1+𝑚2 ,𝜅 if 𝐸 (𝜅1, 𝜅2 + ℓ) = 𝜅 modulo 1. In the relative case,
𝜇2 (𝜏

𝑚1𝑥𝑚2 ,𝜅2 , 𝑥𝑚1 ,𝜅1 ) is given by∑
ℓ∈Z

𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) 𝑡
𝜆(𝜅1 ,𝜅2+ℓ)𝜎ℓ−�𝐸 (𝜅1 ,𝜅2+ℓ) � (𝑏)𝜎−�𝐸 (𝜅1 ,𝜅2+ℓ) � (𝑎). (3.7.2)
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Proof. The triangles that contribute are exactly as in the proof in Subsection 2.8; we will index them
again by ℓ ∈ Z. The ± sign and the exponent of t in (1.11.4) are the same as in Subsection 2.8, but it
remains to compute ∇𝛾2 (𝑏∇𝛾1 (𝑎∇𝛾0 (1))). If I is an interval and 𝛾 : 𝐼 → 𝑇 is a path in T, write 𝔣(𝛾)
for the number of times 𝛾 crosses the ‘danger line’ (Subsection 3.4), counted with sign. Then

∇𝛾2 (𝑏∇𝛾1 (𝑎∇𝛾0 (1))) = 𝜎𝔣 (𝛾2) (𝑏𝜎𝔣 (𝛾1) (𝑎)) (3.7.3)

= 𝜎𝔣 (𝛾2) (𝑏)𝜎𝔣 (𝛾1)+𝔣 (𝛾2) (𝑎) (3.7.4)

= 𝜎𝔣 (𝛾2) (𝑏)𝜎−𝔣 (𝛾0) (𝑎). (3.7.5)

The ℓth triangle (pictured below) has 𝔣(𝛾2) = �𝐸 (𝜅1, 𝜅2 + ℓ)� and 𝔣(𝛾0) = ℓ − �𝐸 (𝜅1, 𝜅2 + ℓ)�.

𝐿(0)

𝐿(𝑚1+𝑚2 )𝐿(𝑚1 )

𝑥𝑚1 ,𝜅1 = (𝜅1 , 0)

𝑥𝑚2 ,𝜅2 = (𝜅2 + ℓ, −𝑚1 (𝜅2 + ℓ − 𝜅1))

(𝐸 (𝜅1, 𝜅2 + ℓ) , 0) = 𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+𝑙)

�

3.8. Theta functions with F-field coupling

Keeping the notation of the previous section, where Λ and 𝐶 are pulled back along 𝔣, we may give

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) ;Λ) (3.8.1)

the structure of a graded ring without unit. One may equip it with a unit by taking the degree 0 piece
to be Λ𝐶𝜎 = HF0 (𝐿 (0) , 𝐿 (0) ;Λ) (Subsection 3.5). Here is a description of (3.8.1) analogous to that of
Subsection 2.9.

Theorem (§1.12.). For each 𝑎 ∈ 𝐶 and each pair of integers 𝑚, 𝑘 with 𝑚 > 𝑘 ≥ 0, let 𝜃𝑚,𝑘 [𝑎] denote
the formal series

𝜃𝑚,𝑘 [𝑎] :=
∞∑

𝑖=−∞

𝑡𝑚
𝑖 (𝑖−1)

2 +𝑘𝑖𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎). (3.8.2)

Let 𝜃abs
𝑚,𝑘 [𝑎] denote the formal series

𝜃abs
𝑚,𝑘 [𝑎] :=

∞∑
𝑖=−∞

𝑡
1

2𝑚 (𝑚𝑖+𝑘)2
𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎). (3.8.3)
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Then the relative (respectively absolute) version of (3.8.1) is isomorphic (as a graded ring-without-unit)
to the Z[[𝑡]]-linear span of the 𝜃𝑚,𝑘 [𝑎] (respectively ΛZ-linear span of the 𝜃abs

𝑚,𝑘 [𝑎]) via the map

𝑥𝑚,𝑘/𝑚 · 𝑎 ↦→ 𝜃𝑚,𝑘 [𝑎] . (3.8.4)

As in Subsection 2.9, the summands of the 𝜃 [𝑎] are indexed by right triangles. The factor of 𝜎𝑖 (𝑎)
plays the same role as the ∇𝛾2 (𝑏∇𝛾1 (𝑎∇(𝛾0 (1))) factor in (1.11.4).

𝑎 · 𝑥2,1

𝜎2

𝑧2·2+1 = 𝑧5

This triangle contributes 𝑡9𝑧5𝜎5 (𝑎) to the relative version of 𝜃2,1 [𝑎] (3.8.2) and 𝑡6.25𝑧5𝜎5 (𝑎) to the
absolute version (3.8.3). Presumably, a ‘family Floer’ argument along these lines would prove the
theorem, but we will give a proof in terms of the explicit formulas.

Proof. Let us give the proof first in the relative case. Fix 𝑚1, 𝑚2 ∈ Z≥0, 𝑘1 ∈ {0, . . . , 𝑚1 − 1},
𝑘2 ∈ {0, . . . , 𝑚2 − 1} and 𝑎, 𝑏 ∈ 𝐶 [[𝑡]]. The product of 𝜃𝑚2 ,𝑘2 [𝑏] and 𝜃𝑚1 ,𝑘1 [𝑎] is, by definition,∑

𝑖1 ,𝑖2∈Z×Z
𝜎𝑖2 (𝑏)𝜎𝑖1 (𝑎)𝑡𝑚2(

𝑖2
2 )+𝑚1(

𝑖1
2 )+𝑘2𝑖2+𝑘1𝑖1 𝑧𝑚2𝑖2+𝑚1𝑖1+𝑘2+𝑘1 . (3.8.5)

We may also index the sum by triples (𝑟, 𝑐, 𝑑), where (𝑐, 𝑑) ∈ Z×Z and 𝑟 ∈
{
0, 1, . . . , 𝑚1+𝑚2

gcd(𝑚1 ,𝑚2)
− 1

}
.

First, for ℓ ∈ Z, we define d and r via

ℓ =
𝑚1 + 𝑚2

gcd(𝑚1, 𝑚2)
𝑑 + 𝑟.

It then follows that if we set

𝑒(𝑟) = 𝑒𝑚1 ,𝑚2 ,𝑘1 ,𝑘2 (𝑟) :=
⌊
𝑚2𝑟 + 𝑘1 + 𝑘2

𝑚1 + 𝑚2

⌋
∈

{
0, 1, . . . ,

𝑚2
gcd(𝑚1, 𝑚2)

− 1
}

and 𝜅1 = 𝑘1/𝑚1, 𝜅2 = 𝑘2/𝑚2, we have

�𝐸 (𝜅1, 𝜅2 + ℓ)� =
𝑚2𝑑

gcd(𝑚1, 𝑚2)
+ 𝑒(𝑟). (3.8.6)

The triple (𝑟, 𝑐, 𝑑) (and the integer ℓ) is determined as the unique solution to(
𝑖1
𝑖2

)
=

(
1 −𝑚2/gcd(𝑚1, 𝑚2)
1 𝑚1/gcd(𝑚1, 𝑚2)

) (
𝑐 − 𝑒(𝑟)

𝑑

)
+

(
0
𝑟

)
. (3.8.7)

To save space in the exponents, let us write 𝑔 := gcd(𝑚1, 𝑚2). After reindexing the sum (3.8.5) is∑
𝑟

∑
𝑐

∑
𝑑

𝜎𝑐−𝑒 (𝑟 )+𝑚1𝑑/𝑔+𝑟 (𝑏)𝜎𝑐−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡�1 𝑧�2 , (3.8.8)
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where

�1 = 𝑚1
(𝑐−𝑒 (𝑟 )−𝑑𝑚2/𝑔

2
)
+ 𝑘1 (𝑐 − 𝑒(𝑟) − 𝑑𝑚2/𝑔)

+𝑚2
(𝑐−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟

2
)
+ 𝑘2 (𝑐 − 𝑒(𝑟) + 𝑑𝑚1/𝑔 + 𝑟)

(3.8.9)

and

�2 = 𝑚1 (𝑐 − 𝑒(𝑟) − 𝑑𝑚2/𝑔) + 𝑚2 (𝑐 − 𝑒(𝑟) + 𝑑𝑚1/𝑔 + 𝑟) + 𝑘1 + 𝑘2. (3.8.10)

We note that �2 = (𝑚1 + 𝑚2)𝑐 + (𝑚2𝑟 + 𝑘1 + 𝑘2) − (𝑚1 + 𝑚2)𝑒(𝑟) does not depend on d and,
furthermore, that

𝑘 (𝑟) = 𝑘𝑚1 ,𝑚2 ,𝑘1 ,𝑘2 (𝑟) := 𝑚2𝑟 + 𝑘1 + 𝑘2 − (𝑚1 + 𝑚2)𝑒(𝑟)

belongs to {0, . . . , 𝑚1 +𝑚2 −1}. (Note that 𝑘 (𝑟)/(𝑚1 +𝑚2) is the fractional part of 𝐸 (𝜅1, 𝜅2 + ℓ).) Thus,
the sum (3.8.8) is the same as∑

𝑟

∑
𝑐

(∑
𝑑

𝜎𝑐−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟 (𝑏)𝜎𝑐−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡�1

)
𝑧 (𝑚1+𝑚2)𝑐+𝑘 (𝑟 ) .

Since 𝜎 acts trivially on t, this is the same as∑
𝑟

∑
𝑐

𝜎𝑐

(∑
𝑑

𝜎−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟 (𝑏)𝜎−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡�1

)
𝑧 (𝑚1+𝑚2)𝑐+𝑘 (𝑟 ) .

Now we claim

�1 = 𝜆(𝜅1, 𝜅2 + ℓ) + (𝑚1 + 𝑚2)

(
𝑐

2

)
+ 𝑘 (𝑟)𝑐, (3.8.11)

where �1 is as in (3.8.9) and 𝜆 is as in (2.8.7) and ℓ = 𝑚1+𝑚2
𝑔 𝑑 + 𝑟 .

Taking (3.8.11) for granted, we obtain that 𝜃𝑚2 ,𝑘2 [𝑏] · 𝜃𝑚1 ,𝑘1 [𝑎] is equal to

𝑚1+𝑚2
𝑔 −1∑
𝑟=0

∑
𝑐

𝜎𝑐

(∑
𝑑

𝜎−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝜎−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟 (𝑏)𝑡𝜆(𝜅1 ,𝜅2+ℓ)

)
𝑡 (𝑚1+𝑚2) (𝑐2)+𝑘 (𝑟 )𝑐𝑧 (𝑚1+𝑚2)𝑐+𝑘 (𝑟 ) ,

which is equal to ∑
𝑟

𝜃𝑚1+𝑚2 ,𝑘 (𝑟 )

[∑
𝑑

𝜎−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟 (𝑏)𝜎−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡𝜆(𝜅1 ,𝜅2+ℓ)

]
. (3.8.12)

We now compare (3.8.12) to (𝑏 · 𝑥𝑚2 ,𝑘2/𝑚2) (𝑎 · 𝑥𝑚1 ,𝑘1/𝑚1), which is given by (3.7.2)∑
ℓ∈Z

(
𝜎ℓ−�𝐸 (𝜅1 ,𝜅2+ℓ) �(𝑏) 𝜎−�𝐸 (𝜅1 ,𝜅2+ℓ) �(𝑎) 𝑡𝜆(𝜅1 ,𝜅2+ℓ)

)
𝑥𝑚1+𝑚2 ,𝐸 (𝜅1 ,𝜅2+ℓ) .

Writing ℓ = 𝑚1+𝑚2
gcd(𝑚1 ,𝑚2)

𝑑 + 𝑟 and using the formula (3.8.6), we can rewrite this as

∑
𝑟

(∑
𝑑

𝜎−𝑒 (𝑟 )+𝑑𝑚1/𝑔+𝑟 (𝑏)𝜎−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡𝜆(𝜅1 ,𝜅2+ℓ)

)
𝑥𝑚1+𝑚2 ,𝑘 (𝑟 ) . (3.8.13)

It is now evident that under our map (3.8.4), the two expressions (3.8.12) and (3.8.13) agree.
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It remains to verify the claim in (3.8.11). This will be a direct computation. We have

𝜆(𝜅1, 𝜅2 + ℓ) = 𝑚1𝜙(𝜅1) + 𝑚2𝜙(𝜅2 + ℓ) − (𝑚1 + 𝑚2)𝜙(
𝑚2𝑑

𝑔
+ 𝑒(𝑟) +

𝑘 (𝑟)

𝑚1 + 𝑚2
)

= 𝑚2 (ℓ(ℓ + 𝜅2) −
ℓ(ℓ + 1)

2
)

− (𝑚1 + 𝑚2)

(
(
𝑑𝑚2
𝑔

+ 𝑒(𝑟)) (
𝑑𝑚2
𝑔

+ 𝑒(𝑟) +
𝑘 (𝑟)

𝑚1 + 𝑚2
) −

( 𝑑𝑚2
𝑔 + 𝑒(𝑟)) ( 𝑑𝑚2

𝑔 + 𝑒(𝑟) + 1)
2

)

)
= 𝑚2 (ℓ𝜅2 +

ℓ(ℓ − 1)
2

) − (
𝑑𝑚2
𝑔

+ 𝑒(𝑟))𝑘 (𝑟) − (𝑚1 + 𝑚2)
( 𝑑𝑚2

𝑔 + 𝑒(𝑟)) ( 𝑑𝑚2
𝑔 + 𝑒(𝑟) − 1)

2

= 𝑚2𝜅2 (
𝑑 (𝑚1 + 𝑚2)

𝑔
+ 𝑟) +

𝑚2(
𝑑 (𝑚1+𝑚2)

𝑔 + 𝑟) ( 𝑑 (𝑚1+𝑚2)
𝑔 + 𝑟 − 1)

2

− (
𝑑𝑚2
𝑔

+ 𝑒(𝑟))𝑘 (𝑟) − (𝑚1 + 𝑚2)
( 𝑑𝑚2

𝑔 + 𝑒(𝑟)) ( 𝑑𝑚2
𝑔 + 𝑒(𝑟) − 1)

2
.

Substituting in 𝑘 (𝑟) = 𝑚2𝑟 + 𝑘1 + 𝑘2 − (𝑚1 + 𝑚2)𝑒(𝑟), we get

𝜆(𝜅1, 𝜅2 + ℓ) = 𝑚2𝜅2 (
𝑑 (𝑚1 + 𝑚2)

𝑔
+ 𝑟) +

𝑚2(
𝑑 (𝑚1+𝑚2)

𝑔 + 𝑟) ( 𝑑 (𝑚1+𝑚2)
𝑔 + 𝑟 − 1)

2

− (
𝑑𝑚2
𝑔

+ 𝑒(𝑟)) (𝑚1𝜅1 + 𝑚2𝜅2 + 𝑚2𝑟 − 𝑒(𝑟) (𝑚1 + 𝑚2))

− (𝑚1 + 𝑚2)
( 𝑑𝑚2

𝑔 + 𝑒(𝑟)) ( 𝑑𝑚2
𝑔 + 𝑒(𝑟) − 1)

2

=
(𝑚1 + 𝑚2)𝑚1𝑚2

2𝑔2 𝑑2 +
𝑚1𝑚2

𝑔
(𝑟 + 𝜅2 − 𝜅1)𝑑

+ 𝑚2𝜅2𝑟 +
𝑚2𝑟 (𝑟 − 1)

2
+
(𝑚1 + 𝑚2)𝑒(𝑟) (𝑒(𝑟) + 1)

2
− (𝑚1𝜅1 + 𝑚2𝜅2 + 𝑚2𝑟)𝑒(𝑟).

We can rewrite this in a symmetric form as follows:

𝜆(𝜅1, 𝜅2 + ℓ) =
(𝑚1 + 𝑚2)𝑚1𝑚2

2𝑔2 𝑑2 +
𝑚1𝑚2

𝑔
(𝑟 + 𝜅2 − 𝜅1)𝑑

+
𝑚2 (𝑒(𝑟) − 𝑟) (𝑒(𝑟) − 𝑟 + 1)

2
+

𝑚1𝑒(𝑟) (𝑒(𝑟) + 1)
2

− 𝑘2 (𝑒(𝑟) − 𝑟) − 𝑘1𝑒(𝑟),

and this in turn can be seen to be equal to

𝜆(𝜅1, 𝜅2 + ℓ) = 𝑚1

(
−𝑒(𝑟) − 𝑚2𝑑/𝑔

2

)
+ 𝑘1 (−𝑒(𝑟) − 𝑚2𝑑/𝑔)

+ 𝑚2

(
−𝑒(𝑟) + 𝑚1𝑑/𝑔 + 𝑟

2

)
+ 𝑘2 (−𝑒(𝑟) + 𝑚1𝑑/𝑔 + 𝑟).

This completes the proof of the claim (3.8.11) and hence the proof of the theorem in the relative case.
In the absolute case, the product of 𝜃abs

𝑚2 ,𝑘2
[𝑏] and 𝜃abs

𝑚1 ,𝑘1
[𝑎] is given by∑

𝑖1 ,𝑖2∈Z×Z
𝜎𝑖2 (𝑏)𝜎𝑖1 (𝑎)𝑡

(𝑚2𝑖2+𝑘2 )
2

2𝑚2
+

(𝑚1𝑖1+𝑘1 )
2

2𝑚1 𝑧𝑚2𝑖2+𝑚1𝑖1+𝑘2+𝑘1 . (3.8.14)
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Performing the same re-indexing using (3.8.7), we arrive at∑
𝑟

∑
𝑐

∑
𝑑

𝜎𝑐−𝑒 (𝑟 )+𝑚1𝑑/𝑔+𝑟 (𝑏)𝜎𝑐−𝑒 (𝑟 )−𝑑𝑚2/𝑔 (𝑎)𝑡�
𝑎𝑏𝑠
1 𝑧�

𝑎𝑏𝑠
2 , (3.8.15)

where

�𝑎𝑏𝑠1 =
(𝑚1 (𝑐 − 𝑒(𝑟) − 𝑑𝑚2/𝑔) + 𝑘1)

2

2𝑚1
+
(𝑚2 (𝑐 − 𝑒(𝑟) + 𝑑𝑚1/𝑔 + 𝑟) + 𝑘2)

2

2𝑚2
(3.8.16)

and �𝑎𝑏𝑠2 = �2 given as before by (3.8.10). Following the same steps, the only difference in the
calculation is the verification of the analogue of equation (3.8.11), which now takes the form:

�𝑎𝑏𝑠1 =
(ℓ + 𝜅2 − 𝜅1)

2𝑚1𝑚2
2(𝑚1 + 𝑚2)

+
((𝑚1 + 𝑚2)𝑐 + 𝑘 (𝑟))2

2(𝑚1 + 𝑚2)
. (3.8.17)

Recalling that ℓ = (𝑚1 +𝑚2)𝑑/𝑔 + 𝑟 , 𝑘 (𝑟) = 𝑚2𝑟 + 𝑘1 + 𝑘2 − (𝑚1 +𝑚2)𝑒(𝑟) and 𝜅𝑖 = 𝑘𝑖/𝑚𝑖 for 𝑖 = 1, 2,
we can compare the equations (3.8.16) and (3.8.17) directly to verify the claim. This completes the
proof in the absolute case. �

4. Specialising the Novikov parameter

4.1. At 𝒕 = 0

The specialisation 𝑡 = 0 renders uninteresting the absolute version of the maps 𝜇𝑛, at least if we also
set 𝑡𝑎 = 0 for every 𝑎 > 0. But it is a standard part of relative Floer theory. In fact, it is part of the
motivation for relative Floer theory – in any sum over triangles (say), the contribution from triangles
which are not disjoint from D vanishes, so that working with 𝑡 = 0 is closely related to replacing the
closed symplectic manifold T with the open 𝑇 − 𝐷. See [LPe2, §6.1] for some more context.

For short, let us write 𝑆𝑛 for the nth graded piece of (3.8.1). Let us also put 𝑆0 := 𝐶𝜎 [[𝑡]] – here 𝐶𝜎

denotes the 𝜎-fixed subring of C. Then 𝑆• is a graded 𝐶𝜎 [[𝑡]]-algebra – it is associative and commutative
by Theorem 1.12, Subsection 3.8. If C is a perfect field and 𝜎 is the pth root map, then 𝐶𝜎 = F𝑝 . In
any case, there is an isomorphism in the category of 𝐶𝜎-schemes

Proj(𝑆 ×𝐶𝜎 [[𝑡 ]] 𝐶
𝜎) = colim

[
Spec(𝐶) P1

/𝐶

𝑖0◦𝜎

𝑖∞

]
where 𝑖0 and 𝑖∞ are the inclusions of C-schemes Spec(𝐶) → P1

/𝐶
with coordinates 0 and∞, respectively.

If C is a field, then Proj(𝑆 ×𝑆0 𝐶𝜎) is a 1-dimensional scheme, which can be covered by two
affine charts. It fails to be regular at a unique point and the complement of this point is isomorphic to
Spec(𝐶 [𝑥, 𝑥−1]). For the other chart, take the complement of any other point – one obtains an affine
Zariski neighbourhood of the nonregular point that is isomorphic to the spectrum of a subring of 𝐶 [𝑦],
namely,

{ 𝑓 ∈ 𝐶 [𝑦] : 𝜎( 𝑓 (0)) = 𝑓 (1)}.

This ring is in some sense an order in a Dedekind domain, but if C has infinite degree over 𝐶𝜎 , then it
is not of finite type.

4.2. Floer cochains at 𝒕 = 1

Let C and 𝜎 be as in Subsection 3.4, with 𝐶 pulled back along 𝔣 from the sheaf whose étalé space is
(3.4.3). If L and 𝐿 ′ are 1-dimensional submanifolds that intersect transversely, we will write (similar to
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(2.5.1))

CF(𝐿, 𝐿 ′;𝐶) =
⊕

𝑥∈𝐿∩𝐿′

𝐶𝑥 . (4.2.1)

This supports a Z/2-grading and a bigon differential

𝜇1 (𝑥 · 𝑎) =
∑

𝑦 |mas(𝑦)=mas(𝑥)+1
𝑦
���

∑
𝑢∈M(𝑦,𝑥)

±∇𝛾′
(
𝑎∇𝛾(1Λ𝑦 )

)�	
 (4.2.2)

with 𝛾 and 𝛾′ as in (3.1.2). (4.2.2) is a finite sum.
If we further endow C with a topology, for which 𝜎 is continuous, we can investigate the algebraic

structures on (4.2.1) induced by (3.2.1). That is, we study the sums∑
𝑦

𝑦

(∑
𝑢

±∇𝛾𝑛 (𝑎𝑛∇𝛾𝑛−1 (𝑎𝑛−1 · · · ∇𝛾2 (𝑎2∇(𝛾1 (𝑎1∇𝛾0 (1)) · · · ))))

)
. (4.2.3)

(4.2.2) and (4.2.3) are simply the specialisations one obtains by setting t and every power 𝑡𝑎 to 1 in the
formulas from Section 3. The sums

∑
𝑢 in (4.2.3) might diverge or converge in the topological ring C,

so that at best the map

CF(𝐿𝑛−1, 𝐿𝑛;𝐶) × · · · × CF(𝐿0, 𝐿1;𝐶) � CF(𝐿0, 𝐿𝑛;𝐶) (4.2.4)

is only partially defined. In many cases, the domain of convergence is reduced to a point, but we will
see that the triangle maps are not trivial.

4.3. The triangle products at 𝒕 = 1

Suppose that C is complete with respect to a non-Archimedean norm | · | and that

𝜎(𝑐) = |𝑐 |1/𝑝

for some 𝑝 > 1. With p prime and 𝐶, 𝜎 as in (3.4.2), the pair (𝐶, | · |) is a perfectoid field of characteristic
p [Sc, §3]. The maps ∇𝛾 for the sheaf of rings 𝐶 are continuous, but (crucially) they d not preserve the
norms.

Write

O𝐶 := {𝑐 ∈ 𝐶 : |𝑐 | ≤ 1} 𝔪𝐶 := {𝑐 ∈ 𝐶 : |𝑐 | < 1};

then O𝐶 is the ring of integers in C and 𝔪 is the unique maximal ideal of O𝐶 . They are both stable by
the 𝜎-action so that they determine locally constant subsheaves of 𝐶 that we denote by O𝐶 and 𝔪𝐶 .
The fibre of 𝔪 at x is the set of topologically nilpotent elements in 𝐶𝑥 .

Following the notation of (4.2.1), set

CF(𝐿, 𝐿 ′;𝔪) :=
⊕

𝑥∈𝐿∩𝐿′

𝔪𝑥 . (4.3.1)

It is an open subgroup of CF(𝐿, 𝐿 ′;𝐶).
Suppose 𝐿0, 𝐿1 and 𝐿2 are special of finite slopes 𝑚0, 𝑚1 and 𝑚2, in the sense of Subsection 2.6.

The contribution of a triangle with vertices

𝑥1 ∈ 𝐿0 ∩ 𝐿1 𝑥2 ∈ 𝐿1 ∩ 𝐿2 𝑦 ∈ 𝐿2 ∩ 𝐿0

https://doi.org/10.1017/fms.2021.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.83


Forum of Mathematics, Sigma 31

to 𝜇2 (𝑥2 · 𝑏, 𝑥1 · 𝑎) has the form (3.7.5) 𝜎𝔣 (𝛾2) (𝑏)𝜎−𝔣 (𝛾0) (𝑎), where 𝛾0 and 𝛾2 are the two edges of u
incident with the output vertex y. If (and only if) 𝑚0 < 𝑚1 < 𝑚2, then 𝔣(𝛾2) and 𝔣(𝛾0) all have the same
sign – with perhaps finitely many exceptions where one of 𝔣(𝛾0) and 𝔣(𝛾2) is zero – so that when |𝑎 | < 1
and |𝑏 | < 1,

|𝜎𝔣 (𝛾2) (𝑏)𝜎−𝔣 (𝛾0) (𝑎) | = |𝑏 |𝑝
−𝔣 (𝛾2 )

|𝑎 |𝑝
𝔣 (𝛾0 )

is very rapidly decreasing as the side lengths of the triangles go to infinity. The triangle product

𝜇2 : CF(𝐿1, 𝐿2;𝔪) × CF(𝐿0, 𝐿1;𝔪) → CF(𝐿0, 𝐿2;𝔪)

is therefore convergent when 𝑚0 < 𝑚1 < 𝑚2. In particular, we have a graded ring (for now, without unit)

∞⊕
𝑚=1

CF(𝐿 (0) , 𝐿 (𝑚) ;𝔪). (4.3.2)

4.4. The irrelevant ideal in the Fargues–Fontaine graded ring

Let C be an algebraically closed field of characteristic p that is complete with respect to a norm | · |. Let
B and 𝜑 be as in Subsection 1.14; that is,

𝐵 =

{∑
𝑖∈Z

𝑏𝑖𝑧
𝑖 | ∀𝑟 ∈ (0, 1), |𝑏𝑖 |𝑟 𝑖 → 0 as |𝑖 | → ∞

}
. (4.4.1)

This appears in [KS, Def. 21] and in [FF, Ex. 1.6.5]. Fargues and Fontaine defined a version of B for
every local field E; (4.4.1) is the case when 𝐸 = F𝑝 ((𝑧)). Below, we are taking advantage of the fact that
when E has equal characteristic, each element of B has a unique series expansion, something that is not
clear when E has mixed characteristic [FF, Rem. 1.6.7].

Let 𝜑 be as in (1.14.2); that is, the automorphism of B given by 𝜑(
∑

𝑐𝑖𝑧
𝑖) =

∑
𝑐𝑝𝑖 𝑧𝑖 . The homogeneous

coordinate ring of FF𝐸 (𝐶) is

F𝑝 ((𝑧)) ⊕ 𝐵𝜑=𝑧 ⊕ 𝐵𝜑=𝑧2
⊕ · · · (4.4.2)

We will prove the theorem of Subsection 1.14; that is, that (4.3.2) is isomorphic to the irrelevant ideal
of this ring.

Proof of (1.14.4). Suppose that 𝑎 ∈ 𝐶 has |𝑎 | < 1. Then the sequence |𝜎𝑖 (𝑎) | = |𝑎 |𝑝
−𝑖 of real numbers

is bounded as 𝑖 → ∞ and very rapidly decreasing as 𝑖 → −∞ and 𝑟𝑚𝑖+𝑘 |𝑎 |𝑝
−𝑖
→ 0 as |𝑖 | → ∞ for any

𝑟 ∈ (0, 1). Therefore, for any m and k the expression∑
𝑖∈Z

𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎) (4.4.3)

belongs to B (1.14.1). Applying 𝜑 to (4.4.3) gives
∑

𝑖∈Z 𝑧𝑚𝑖+𝑘𝜎𝑖−1(𝑎) – re-indexing this series gives∑
𝑖∈Z

𝑧𝑚(𝑖+1)+𝑘𝜎𝑖 (𝑎) = 𝑧𝑚
∑
𝑖∈Z

𝑧𝑚𝑖+𝑘𝜎𝑖 (𝑎),

so that (4.4.3) belongs to 𝐵𝜑=𝑧𝑚 . But (4.4.3) is 𝜃𝑚,𝑘 [𝑎] |𝑡=1, so that by Subsection 3.8 the map

𝑥𝑚,𝑘/𝑚 · 𝑎 ↦→ 𝜃𝑚,𝑘 [𝑎] |𝑡=1 (4.4.4)

intertwines 𝜇2 with the ring structure on B.
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If 𝑓 =
∑

𝑏𝑖𝑧
𝑖 belongs to 𝐵𝜑=𝑧𝑚 , then 𝑏𝑚𝑖+𝑘 = 𝜎𝑚(𝑏𝑘 ), so f is determined by 𝑏0, . . . , 𝑏𝑚−1. To obey

(1.14.1), the elements 𝑏0, . . . , 𝑏𝑚−1 must all belong to 𝔪. The map

𝑓 ↦→

𝑚−1∑
𝑘=0

𝑥𝑚,𝑘/𝑚 · 𝑏𝑘

gives the inverse isomorphism to CF(𝐿 (0) , 𝐿 (𝑚) ;𝔪) � 𝐵𝜑=𝑧𝑚 . �

4.5. SYZ duality

The degree 1 part of (1.14.4) is an isomorphism

CF(𝐿 (0) , 𝐿 (1) ;𝔪) � HomFF (O,O(1)) (4.5.1)

where O(1) is the Serre line bundle on (1.14.3). In general, it seems that CF(𝐿, 𝐿 ′;𝔪) captures the set
of homomorphisms between two vector bundles on FF whenever L and 𝐿 ′ are (or are just isotopic to,
if we replace CF by HF) special Lagrangians (Subsection 2.6) of finite slopes m and 𝑚′ with m strictly
less than 𝑚′. But for other kinds of homomorphisms or Ext groups in Coh(FF), another construction
must be necessary – one that we only partially understand. In the next two subsections (Subsection 4.6
and Subsection 4.7), we illustrate this in terms of skyscraper sheaves on FF.

The closed points of FF𝐸 (𝐶) are naturally parametrised by the Z-orbits of E-untilts of the perfectoid
field C. When 𝐸 = F𝑝 ((𝑧)), an ‘E-untilt’ is just a continuous homomorphism 𝑖 : 𝐸 → 𝐶 – such a
homomorphism must carry z to a nonzero element of 𝔪 and, conversely, every nonzero element of 𝔪
extends to a map from F𝑝 ((𝑧)), and the Z-action is generated by 𝑖 ↦→ 𝜎 ◦ 𝑖. There is a map

(closed points of FF(𝐸,𝐶)) → R/Z. (4.5.2)

It is defined for any E. When 𝐸 = F𝑝 ((𝑧)), it carries the Z-orbit of 𝜄 : F𝑝 ((𝑧)) → 𝐶 to the Z-coset of
log𝑝 (log(|𝑖(𝑧) |−1)). We expect that (4.5.2) is the SYZ dual to (3.4.1) and that the skyscraper sheaves
have something to do with fibres of (3.4.1).

4.6. Skyscraper sheaves and 𝐿 (∞)

If 𝜁 ∈ 𝐶 is invertible, let us denote by 𝐿
𝜁
(∞)

the special Lagrangian 𝐿 (∞) equipped with the rank 1 local
system of 𝐶 |𝐿(∞)

-modules (i.e., a local system of C-modules) whose fibre at (0, 0) is 𝐶 (0,0) = 𝐶 and
whose monodromy (in the direction of the default orientation, top to bottom) is multiplication by 𝜁 . Let
𝑒𝑚 denote (0, 0) regarded as the unique intersection point of 𝐿 (𝑚) and 𝐿 (∞) , so that

CF(𝐿 (𝑚) , 𝐿
𝜁
(∞)

;𝐶) = CF0(𝐿 (𝑚) , 𝐿
𝜁
(∞)

;𝐶) = 𝑒𝑚 · 𝐶. (4.6.1)

If C is algebraically closed, then one also has HomFF (O(𝑚), 𝛿) � 𝐶 for any skyscraper sheaf 𝛿. If
|𝜁 | < 1 and 𝛿 is the skyscraper sheaf supported at the Z-orbit of the untilt F𝑝 ((𝑧)) → 𝐶, then we expect
that for any surjection 𝑞 : O(1) → 𝛿, there is an isomorphism making the diagram

CF(𝐿 (0) , 𝐿 (1) ;𝔪)

(4.5.1)
��

𝜇2 (𝑒1 ·1,−) �� CF(𝐿 (0) , 𝐿
𝜁
(∞)

;𝐶)

���
�
�

Hom(O,O(1))
𝑞◦

�� Hom(O, 𝛿)

(4.6.2)
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commute; instead of constructing this isomorphism here, let us verify that the two rows of (4.6.2) have
the same kernel. We may find 𝑖 : O → O(1) such that

0 → O 𝑖
−→ O(1)

𝑞
−→ 𝛿 → 0

is exact, so that the kernel of the bottom row in (4.6.2) is isomorphic to Hom(O,O) = F𝑝 ((𝑧)), the
ground field of (1.14.3). We will show that the kernel of 𝜇2(𝑒1 ·1,−) has the structure of a 1-dimensional
F𝑝 ((𝑧))-module.

In general, the triangle map 𝜇2 (𝑒1 · 𝑏, 𝑥1,0 · 𝑎) (4.2.4) is given by

𝑒0 ·
(∑

𝑖∈Z(−1)3𝑖𝑏𝜁 𝑖𝜎𝑖 (𝑎)
)

𝑥1,0 · 𝑎

𝑒1 · 𝑏

𝜎5

𝜁5 (4.6.3)

with the figure at the right illustrating the triangle that contributes the 𝑖 = 5 term (for the sign, see
Subsection 2.4). This is just 𝑏 · 𝜃1,0 [𝑎] at 𝑡 = 1 and 𝑧 = −𝜁 , and it converges whenever |𝜁 | and |𝑎 | are
both less than one.

Thus, the top row of (4.6.2) is isomorphic to the map 𝔪 → 𝐶 sending a to 𝜗(𝑎) :=
∑

𝑛∈Z (−𝜁)𝑛𝑎𝑝−𝑛 .
This map obeys

𝜗(𝑎𝑝) = (−𝜁)𝜗(𝑎);

that is, it intertwines the F𝑝 ((𝑧))-module structure on C given by the homomorphism 𝑧 ↦→ −𝜁 with the
F𝑝 ((𝑧))-module structure on 𝔪 given by (𝑧, 𝑎) ↦→ 𝑎𝑝 . The kernel is therefore an F𝑝 ((𝑧))-module. The
image of this kernel under the isomorphism 𝔪 � 𝐵𝜑=𝑧 (given by 𝑎 ↦→

∑
𝑎𝑝𝑖

𝑧−𝑖 (1.14.4)) is the set of
𝑏 ∈ 𝐵𝜑=𝑧 whose set of zeroes is exactly {(−𝜁) 𝑝

𝑛
}𝑛∈Z. The function

ℎ(𝑧) =

(∑
𝑖∈Z

𝑎𝑝𝑖
𝑧−𝑖

) (
∞∏
𝑛=0

(1 + 𝜁 𝑝𝑛
/𝑧)

)−1

(the meromorphic part of the Weierstrass factorisation [FF, Ch. 2]) belongs to 𝐶 ((𝑧)) and obeys the
functional equation ℎ(𝑧1/𝑝) 𝑝 = (𝜁 + 𝑧)ℎ(𝑧); that is, its coefficients obey the recursion

ℎ𝑝
𝑛 − 𝜁ℎ𝑛 = ℎ𝑛−1; (4.6.4)

for each ℎ𝑛−1 there are exactly p solutions in ℎ𝑛 to (4.6.4), so the set of such ℎ(𝑧) is a 1-dimensional
F𝑝 ((𝑧))-submodule of 𝐶 ((𝑧)).

4.7. Ore adjoint

Let 𝐿
𝜁
(∞)

be as in Subsection 4.6. If we swap the order of 𝐿 (∞) and 𝐿 (𝑚) in (4.6.1), the Maslov index of
the intersection point is 1, so that

CF(𝐿𝜁
(∞)

, 𝐿 (𝑚) ;𝐶) = CF1(𝐿
𝜁
(∞)

, 𝐿 (𝑚) ;𝐶) = 𝑒𝑚 · 𝐶.

The triangle sum

CF1(𝐿
𝜁
(∞)

, 𝐿 (0) ;𝐶) × CF0(𝐿 (1) , 𝐿
𝜁
(∞)

;𝐶) � CF1 (𝐿 (1) , 𝐿 (0) ;𝐶)
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is formally given by ∑
𝑛∈Z

(−1)3𝑛𝜎−𝑛 (𝑏𝜁𝑛𝑎) =
∑
𝑛∈Z

(−𝜁)𝑛𝑝
𝑛
(𝑎𝑏) 𝑝

𝑛
. (4.7.1)

It is the same triangles as (4.6.3) that contribute to (4.7.1), but they are decorated differently. For
instance, the triangle contributing the 𝑛 = 5 summand is

𝑒1 · 𝑎

𝑒0 · 𝑏
𝜎−5

𝜁5

Even if |𝜁 | < 1, the 𝑛 → −∞ tail of (4.7.1) does not converge unless 𝑎𝑏 = 0. Even so, it is interesting in
a formal way. In [Poon], Poonen following [Ore] attached to each series of the form 𝑓 (𝑎) =

∑
𝑢𝑛𝑎

𝑝𝑛 an
‘adjoint’ series 𝑓 †(𝑎) :=

∑
𝑢𝑝𝑛

−𝑛𝑎
𝑝𝑛 – let us call it the Ore adjoint. Evidently, (4.7.1) is exactly 𝜗† [𝑏𝑎].

Under some hypotheses on f, Poonen showed that the kernels of f and 𝑓 † are Pontrjagin dual to
each other in a canonical fashion. These hypotheses are not satisfied by 𝜗(𝑎), but as ker(𝜗) (being the
additive group of a local field) is Pontrjagin self-dual and as 𝜗† does not converge in any case, we are
perhaps free to speculate that ‘ker(𝜗†)’ is somehow morally isomorphic to F𝑝 ((𝑧)). This speculation is
consistent with mirror symmetry: on the Fargues–Fontaine curve there indeed is a short exact sequence

0 → Hom(O(1),O(1)) → Hom(O(1), 𝛿) → Ext1 (O(1),O) → 0 (4.7.2)

coming from the resolution O → O(1) of the skyscraper sheaf 𝛿 and the vanishing of
Ext1(O(1),O(1)) = 𝐻1(FF;O). The kernel of (4.7.2) is naturally isomorphic to 𝐻0(FF;O); that
is, to F𝑝 ((𝑧)). The middle group is isomorphic to C and to HF0(𝐿 (1) , 𝐿

𝜁
(∞)

;𝐶). But we emphasise that
Ext1(O(1),O) is not isomorphic to HF(𝐿 (1) , 𝐿 (0) ;𝐶), nor to any open subgroup of it.

4.8. Loud Floer cochains on 𝐿 (0)

Let {𝜙𝑠}𝑠∈R be as in (2.12.1):

𝜙𝑠 (𝑥, 𝑦) = (𝑥, 𝑦 − 𝑠 cos(2𝜋𝑥)). (4.8.1)

We can try to compare CF(𝐿, 𝐿 ′;𝐶) and CF(𝜙𝑠𝐿, 𝐿 ′;𝐶) by specialising to 𝑡 = 1 in (3.1.4). In some
cases – for instance, if L and 𝐿 ′ are parallel to 𝐿 (0) as in Subsection 3.6 – the summation (3.1.4) is finite
and defines a map

CF(𝐿, 𝐿 ′;𝐶) → CF(𝜙𝑠𝐿, 𝐿 ′;𝐶)

without any problems. But this map is not always a quasi-isomorphism. The series defining the homotopy
(3.1.5) may not converge at 𝑡 = 1 – (3.6.2) is a vivid example of this.

We will analyse the continuation maps between the groups CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶). If n is an integer and
𝑛 < 𝑠 < 𝑛 + 1, then 𝐿 (0) meets 𝜙𝑠𝐿 (0) in 2𝑛 + 2 points. In the fundamental domain [0, 1] × [0, 1], half
of them have x-coordinate < 0.5 and half of them have x-coordinate > 0.5. They are linearly ordered by
the x-coordinate, and after listing them in that order we will name them

𝑧 (𝑠)𝑛 , . . . , 𝑧 (𝑠)−𝑛 , 𝜉
(𝑠)
−𝑛 , . . . , 𝜉 (𝑠)

𝑛 .
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More explicitly, 𝑧 (𝑠)𝑖 and 𝜉 (𝑠)
𝑖 are the two solutions to 𝑖 − 𝑠 cos(2𝜋𝑥) = 0; that is, for a suitable branch

of the inverse cosine function,

𝑧 (𝑠)𝑖 =
1

2𝜋
arccos(𝑖/𝑠) 𝜉 (𝑠)

𝑖 = 1 −
1

2𝜋
arccos(𝑖/𝑠).

The case 1 < 𝑠 < 2 is shown in the diagram, along with orientations and stars:

★

★

𝑧
(𝑠)
1 𝑧

(𝑠)
0 𝑧

(𝑠)
−1 𝜉

(𝑠)
1𝜉

(𝑠)
0𝜉

(𝑠)
−1

The rules of Subsection 2.3 give each point 𝑧 (𝑠)𝑖 the Maslov index 0 and each 𝜉 (𝑠)
𝑖 the Maslov index 1,

so that

CF0 (𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) =
𝑛⊕

𝑖=−𝑛

𝑧 (𝑠)𝑖 · 𝐶 CF1(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) =
𝑛⊕

𝑖=−𝑛

𝜉 (𝑠)
𝑖 · 𝐶.

Each 𝜉 (𝑠)
𝑖 is the output vertex of exactly two bigons and the other vertex of both bigons in 𝑧 (𝑠)𝑖 . There is an

‘upward’ bigon whose boundary passes through (0.5, 𝑠) +Z2 and a ‘downward’ bigon whose boundary
passes through (0,−𝑠) + Z2. If one places a star at (or close to, as in the figure above) (0.5, 𝑠) + Z2 and
(0,−𝑠) + Z2, then the sign of every downward bigon is 1 and the sign of every upward bigon is −1. The
downward bigons cross the danger line exactly once and the upward bigons exactly never, so that

𝜇1 (𝑧
(𝑠)
𝑖 · 𝑎) = 𝜉 (𝑠)

𝑖 · (−𝑎 + 𝜎(𝑎)),

with the upward bigon contributing −𝑎 and the downward bigon contributing 𝜎(𝑎).
If 𝑠′ > 𝑠, then for a suitable choice of profile function 𝛽 (one that is very close to the ‘linear cascades’

limit considered in [Aur1]), the continuation map

CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶) → CF(𝜙𝑠′𝐿 (0) , 𝐿 (0) ;𝐶) (4.8.2)

simply sends 𝑧 (𝑠)𝑖 · 𝑎 to 𝑧 (𝑠
′)

𝑖 · 𝑎 and 𝜉 (𝑠)
𝑖 · 𝑎 to 𝜉 (𝑠′)

𝑖 · 𝑎. In particular, it defines a filtered diagram of
cochain complexes (indexed by 𝑠 > 0, 𝑠 ∉ Z, with respect to the usual ordering of real numbers s). Let
CFloud(𝐿 (0) , 𝐿 (0) ) denote the direct limit of this diagram

CFloud(𝐿 (0) , 𝐿 (0) ;𝐶) := lim
−−→

𝑠>0 |𝑠∉Z
CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶).

Since each map (4.8.2) is the inclusion of a direct summand of cochain complexes, CFloud is a model
for the homotopy colimit of cochain complexes as well. Explicitly,

CF0
loud =

⊕
𝑖∈Z

𝑧𝑖 · 𝐶 CF1
loud =

⊕
𝑖∈Z

𝜉𝑖 · 𝐶 𝜇1 (𝑧𝑖 · 𝑎) = 𝜉𝑖 · (−𝑎 + 𝜎(𝑎)). (4.8.3)
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4.9. Triangles between the 𝜙𝑠𝐿 (0)

Continuing with the notation of Subsection 4.8, let us suppose that none of s, 𝑠′ and 𝑠 + 𝑠′ are in Z and
describe the triangles between 𝐿 (0) , 𝜙

𝑠𝐿 (0) and 𝜙𝑠+𝑠′𝐿 (0) . The ‘output’ corners of these triangles are

𝑧 (𝑠+𝑠
′)

𝑖 and 𝜉 (𝑠+𝑠′)
𝑖 on 𝐿 (0) ∩ 𝜙𝑠+𝑠′𝐿 (0) ,

and the other two corners in counterclockwise order are

𝜙𝑠𝑧 (𝑠
′)

𝑖 , 𝜙𝑠𝜉 (𝑠′)
𝑖 ∈ 𝜙𝑠𝐿 (0) ∩ 𝜙𝑠+𝑠′𝐿 (0) , 𝑧 (𝑠)𝑖 , 𝜉 (𝑠)

𝑖 ∈ 𝐿 (0) ∩ 𝜙𝑠𝐿 (0) .

For each such triangle there is a unique pair of integers i and j so that the triangle lifts to R2 with
boundary on the x-axis, the graph of 𝑦 = 𝑖 − 𝑠 cos(2𝜋𝑥) and the graph of 𝑦 = 𝑖 + 𝑗 − (𝑠 + 𝑠′) cos(2𝜋𝑥).
The only nonempty moduli spaces of triangles are

M
(
𝑧 (𝑠+𝑠

′)
𝑖+ 𝑗 , 𝜙𝑠𝑧 (𝑠

′)
𝑗 , 𝑧 (𝑠)𝑖

)
M

(
𝜉 (𝑠+𝑠′)
𝑖+ 𝑗 , 𝜙𝑠𝑧 (𝑠

′)
𝑗 , 𝜉 (𝑠)

𝑖

)
M

(
𝜉 (𝑠+𝑠′)
𝑖+ 𝑗 , 𝜙𝑠𝜉 (𝑠′)

𝑗 , 𝑧 (𝑠)𝑖

)
(4.9.1)

with −𝑠 < 𝑖 < 𝑠 and −𝑠′ < 𝑗 < 𝑠′. When 𝑖/𝑠 = 𝑗/𝑠′, there is something tricky about the latter
two moduli spaces (they are not transversely cut; Subsection 2.2), so let us for a moment assume that
𝑖/𝑠 ≠ 𝑗/𝑠′. Then each space (4.9.1) contains exactly one triangle. The nature of this triangle depends
on which of 𝑖/𝑠 or 𝑗/𝑠′ is larger.

The triangle of M
(
𝑧 (𝑠+𝑠

′)
𝑖+ 𝑗 , 𝜙𝑠𝑧 (𝑠

′)
𝑗 , 𝑧 (𝑠)𝑖

)
is the one bounded by

max(0, (𝑖 + 𝑗) − (𝑠 + 𝑠′) cos(2𝜋𝑥)) ≤ 𝑦 ≤ 𝑖 − 𝑠 cos(2𝜋𝑥) if 𝑗/𝑠′ < 𝑖/𝑠 (4.9.2)

min(0, (𝑖 + 𝑗) − (𝑠 + 𝑠′) cos(2𝜋𝑥)) ≥ 𝑦 ≥ 𝑖 − 𝑠 cos(2𝜋𝑥) if 𝑗/𝑠′ > 𝑖/𝑠. (4.9.3)

For legibility, in the following illustration of these triangles the curves 𝜙𝑠𝐿 (0) and 𝜙𝑠+𝑠′𝐿 (0) are drawn
in a different aspect ratio than in the diagram of Subsection 4.8, vertically compressed. The figure is
drawn in a union of ∼ 𝑠 + 𝑠′ fundamental domains, stacked on top of each other.

In this and the following diagrams, 𝜙𝑠+𝑠′𝐿 (0) is purple, 𝜙𝑠𝐿 (0) is blue and 𝐿 (0) is black. The left side
shows the typical case when 𝑖/𝑠 > 𝑗/𝑠′ and the right side shows the typical case when 𝑖/𝑠 < 𝑗/𝑠′.

In M
(
𝜉 (𝑠+𝑠′)
𝑖+ 𝑗 , 𝜙𝑠𝑧 (𝑠

′)
𝑗 , 𝜉 (𝑠)

𝑖

)
, we have the triangle

(4.9.2) ∪ {min(0, 𝑖 − 𝑠 cos(2𝜋𝑥)) ≥ 𝑦 ≥ (𝑖 + 𝑗) − (𝑠 + 𝑠′) cos(2𝜋𝑥)} if 𝑗
𝑠′ < 𝑖

𝑠

(4.9.3) ∪ {max(0, 𝑖 − 𝑠 cos(2𝜋𝑥)) ≤ 𝑦 ≤ (𝑖 + 𝑗) − (𝑠 + 𝑠′) cos(2𝜋𝑥)} if 𝑗
𝑠′ > 𝑖

𝑠

(4.9.4)
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In M
(
𝜉 (𝑠+𝑠′)
𝑖+ 𝑗 , 𝜙𝑠𝜉 (𝑠′)

𝑗 , 𝑧 (𝑠)𝑖

)
, we have the triangle

(4.9.2) ∪ {min(𝑖 − 𝑠 cos(2𝜋𝑥), 𝑖 + 𝑗 − (𝑠 + 𝑠′) cos(2𝜋𝑥))) ≥ 𝑦 ≥ 0} if 𝑗
𝑠′ < 𝑖

𝑠

(4.9.3) ∪ {max(𝑖 − 𝑠 cos(2𝜋𝑥), 𝑖 + 𝑗 − (𝑠 + 𝑠′) cos(2𝜋𝑥)) ≤ 𝑦 ≤ 0} if 𝑗
𝑠′ > 𝑖

𝑠

(4.9.5)

Now we discuss the triangles with 𝑖/𝑠 = 𝑗/𝑠′. For generic s and 𝑠′, it is only possible that 𝑖/𝑠 = 𝑗/𝑠′

when 𝑖 = 𝑗 = 0. In that case, M
(
𝑧 (𝑠+𝑠

′)

0 , 𝜙𝑠𝑧 (𝑠
′)

0 , 𝑧 (𝑠)0

)
again contains a single point (the constant

map with value 𝑧0 = (.25, 0)) and is again transversely cut, but these two assertions are not true
for M

(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝑧 (𝑠
′)

0 , 𝜉 (𝑠)
0

)
or for M

(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝜉 (𝑠′)
0 , 𝑧 (𝑠)0

)
. These spaces each contain two points,

which are degenerate triangles (they are at the boundary of the Deligne–Mumford–Stasheff com-
pactification) which are not maps out of a triangle but out of a wedge sum of a triangle and a
bigon:

The degenerate maps in M
(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝑧 (𝑠
′)

0 , 𝜉 (𝑠)
0

)
and M

(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝜉 (𝑠′)
0 , 𝑧 (𝑠)0

)
collapse the triangle part

to a point (to 𝜉0 = (.75, 0)) but are nontrivial along the bigon:
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� �

� �

(4.9.6)

The top two figures indicate the two points of M
(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝑧 (𝑠
′)

0 , 𝜉 (𝑠)
0

)
and the bottom two are the two

points of M
(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝜉 (𝑠′)
0 , 𝑧 (𝑠)0

)
. Though they are not transversely cut, they have analytic index 0 –

more precisely, they have index +1 along the constant triangle and index −1 along the bigon.

4.10. Triangle products on CFloud

For short, let us put 𝐴(𝑠) := CF(𝜙𝑠𝐿 (0) , 𝐿 (0) ;𝐶). The triangles in the previous section, together with the
identification CF(𝜙𝑠+𝑠′ , 𝜙𝑠𝐿 (0) ;𝐶) of and CF(𝜙𝑠′𝐿 (0) , 𝐿 (0) ;𝐶), give a multiplication 𝐴(𝑠) × 𝐴(𝑠′) →

𝐴(𝑠+𝑠′) . Specifically,

◦ (Coming from (4.9.2) and (4.9.3))

(𝑧 (𝑠)𝑖 · 𝑎, 𝑧 (𝑠
′)

𝑗 · 𝑏) ↦→ 𝑧 (𝑠+𝑠
′)

𝑖+ 𝑗 · 𝑎𝑏

◦ (Coming from (4.9.4))

(𝜉 (𝑠)
𝑖 · 𝑎, 𝑧 (𝑠

′)
𝑗 · 𝑏) ↦→ 𝜉 (𝑠+𝑠′)

𝑖+ 𝑗 ·

{
𝑎𝜎(𝑏) if 𝑗/𝑠′ < 𝑖/𝑠

𝑎𝑏 if 𝑗/𝑠′ > 𝑖/𝑠
(4.10.1)

◦ (Coming from (4.9.5))

(𝑧 (𝑠)𝑖 · 𝑎, 𝜉 (𝑠′)
𝑗 · 𝑏) ↦→ 𝜉 (𝑠+𝑠′)

𝑖+ 𝑗 ·

{
𝑎𝑏 if 𝑗/𝑠′ < 𝑖/𝑠

𝜎(𝑎)𝑏 if 𝑗/𝑠′ > 𝑖/𝑠
(4.10.2)

Since M
(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝑧 (𝑠
′)

0 , 𝜉 (𝑠)
0

)
and M

(
𝜉 (𝑠+𝑠′)

0 , 𝜙𝑠𝜉 (𝑠′)
0 , 𝑧 (𝑠)0

)
are not transversely cut, they cannot be

oriented in the usual way (Subsection 2.4). Instead, each space carries a virtual fundamental class which
(depending on how it is constructed) may attach any integer to each of the four points of M. We will not
develop the virtual fundamental class here but (to some extent following [Se1, Section 7] addressing a
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similar issue) simply define

(𝜉 (𝑠)
0 · 𝑎, 𝑧 (𝑠

′)

0 · 𝑏) ↦→ 𝜉 (𝑠+𝑠′)
0 · 𝑎𝑏 (𝑧 (𝑠)0 𝑎, 𝜉 (𝑠′)

0 𝑏) ↦→ 𝜉 (𝑠+𝑠′)
0 · 𝜎(𝑎)𝑏 (4.10.3)

as though the left two degenerate triangles displayed in (4.9.6) contributed nothing. The definition
(4.10.3) can be justified informally by introducing a Hamiltonian perturbation 𝜓 of 𝐿 (0) (but not 𝜙𝑠𝐿 (0)
or 𝜙𝑠+𝑠′𝐿 (0) ) supported in a very small neighbourhood of 𝑧0 and 𝜉0. In that case, all moduli spaces
are transversely cut and the triangle products 𝜇2 (𝜓𝑧 (𝑠)0 · 𝑎, 𝜙𝑠𝜉 (𝑠′)

0 · 𝑏) and 𝜇2(𝜓𝜉 (𝑠)
0 · 𝑎, 𝜙𝑠𝑧 (𝑠

′)

0 · 𝑏) are
well-defined, though the specific formula will depend on 𝜓 – (4.10.3) is consistent with some of these 𝜓.

Now we use the products 𝐴(𝑠) × 𝐴(𝑠′) → 𝐴(𝑠+𝑠′) to define a multiplication on lim𝑠 𝐴(𝑠) ; that is, on
CFloud(𝐿 (0) , 𝐿 (0) ;𝐶). It is not quite straightforward, because the products (4.10.1) and (4.10.2) are not
eventually constant as s and 𝑠′ grow – it depends on which of 𝑖/𝑠 and 𝑗/𝑠′ is larger. The square

𝐴(𝑠) × 𝐴(𝑠′)

��

�� 𝐴(𝑠+𝑠′)

��
𝐴(𝑆) × 𝐴(𝑆′) �� 𝐴(𝑆+𝑆′)

(4.10.4)

does not commute for all 𝑠, 𝑠′, 𝑆, 𝑆′ with 𝑠 < 𝑆 and 𝑠′ < 𝑆′. We address this in the following crude
way: we choose an irrational number 𝑒 > 0 and note that since 𝑖/𝑠 − 𝑗/(𝑒𝑠) has constant sign for 𝑠 > 0,
(4.10.4) does commute when 𝑠′ = 𝑒𝑠 and 𝑆′ = 𝑒𝑆. The induced multiplication on the colimit is explicitly
(𝑧𝑖 · 𝑎, 𝑧 𝑗 · 𝑏) ↦→ 𝑧𝑖+ 𝑗 · 𝑎𝑏 and

(𝜉𝑖 · 𝑎, 𝑧 𝑗 · 𝑏) ↦→ 𝜉𝑖+ 𝑗 ·

{
𝑎𝜎(𝑏) if 𝑗/𝑒 < 𝑖

𝑎𝑏 if 𝑗/𝑒 ≥ 𝑖
(𝑧𝑖 · 𝑎, 𝜉 𝑗 · 𝑏) ↦→ 𝜉𝑖+ 𝑗 ·

{
𝑎𝑏 if 𝑗/𝑒 < 𝑖

𝜎(𝑎)𝑏 if 𝑗/𝑒 ≥ 𝑖.

Thus, we get one binary operation on CFloud (𝐿 (0) , 𝐿 (0) ;𝐶) for every irrational 𝑒 > 0. These multi-
plications are genuinely different for different e. Moreover, they are not associative; they do, however,
obey the Leibniz rule 𝜇1 (𝑤𝑤′) = 𝜇1(𝑤)𝑤

′ + 𝑤𝜇1 (𝑤
′), with 𝜇1 as in (4.8.3). It is likely that they can

be extended to an 𝐴∞-structure on CFloud(𝐿 (0) , 𝐿 (0) ;𝐶) (and even more likely that there is such an
𝐴∞-structure on a complex quasi-isomorphic to it, defined along the lines of [AS]), but we will not
construct it. Instead, we simply note that the induced multiplication on HF0

loud := ker(𝜇1) (and even on
HF0

loud ⊕HF1
loud, though the degree 1 part vanishes if C is algebraically closed and 𝜎 is the pth root map)

is associative and independent of e. Indeed, it is simply the Laurent polynomial ring 𝐶𝜎 [𝑧±1] under the
assignment

∑
𝑐𝑖𝑧

𝑖 ↦→
∑

𝑧𝑖 · 𝑐𝑖 .
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