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Abstract

We describe a simple deterministic model for the dispersion of particulate ash which has
been ejected into the atmosphere by a volcanic eruption. In our model the atmosphere is
divided into a series of horizontal layers within which the physical parameters involved
are constant. This is an effective way to allow for the changing behaviour of the
particulate ash and atmospheric flow with height whilst retaining simplicity. From
our model we construct an analytical expression for the final deposit which could be
incorporated within hazard assessment projections. In particular we show how to allow
for variation with height of dispersion (caused by turbulence due to the wind) and
settling speed (affected by the agglomeration and fragmentation of particles).
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1. Introduction

An erupting volcano ejects rock fragments into the atmosphere and further
fragmentation produces small ash particles. This volcanic ash can travel hundreds
to thousands of kilometres, the distance travelled depending on its size, the strength
of the eruption and the physical condition of the atmosphere during the eruption. The
falling ash is a hazard within the air, posing a threat to aircraft, and it may disrupt
electricity and telephone networks as well as causing destruction and pollution when
it settles upon the ground [3]. Models of this dispersion process, both for predicting
atmospheric concentrations of ash and for predicting the eventual deposits upon the
ground (to produce so-called hazard maps), form an important part of hazard planning
and risk evaluation.

Here we describe a simple deterministic model combining advection and dispersion
and capturing some of the main physical processes following the eruption. Using
this model we find formulae for the atmospheric concentrations and final depositions.
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With these formulae, it is easy to see the relative importance and the effect of the
different physical processes. We can also readily use the formulae to predict what
would happen for different atmospheric and particulate conditions.

There has been a long history of modelling atmospheric diffusion of both buoyant
and heavier-than-air materials, for example [5, 13–16, 18, 19] and the references
in [20, 21]. Expressions for concentration containing Gaussian functions arise in many
of these earlier models.

In this paper, we consider particles which are heavier than air and which
progressively move downwards towards the ground. The descent is very rapid for large
particles. We assume that, when particles reach a particular height, there is a dominant
length scale for their dispersion. Different constants may be used with different size
particles or different times or heights of release. Stratification of the atmosphere into
layers enables this to be done. Gaussian expressions arise from our model.

In our previous work [12], we have considered several aspects of the overall
dispersion process. Here we focus upon the later stages of the ashfall and in particular
provide expressions predicting the form of the deposit upon the ground. Other
work, also using layered models, has considered the effect upon such deposits of
the variation in wind velocity with height [1]. However, our model also includes
variation with height of the dispersion due to turbulence (which is to be expected with
an elevation-dependent wind speed) and further we model the effect of fragmentation
or agglomeration of ash particles by allowing the settling speed to vary with height.

The model we present is simple. It is complementary to the more massive fluid
dynamical numerical simulations that are also used to model such events. Our aim is
to capture and understand essential features of the dispersion. However, by combining
different cohorts of particles, with different sizes, release heights or release times, our
model may be readily built up from components when necessary to model a more
complicated release.

2. The model

2.1. The layered atmosphere For the kind of volcanic eruption considered here,
particles are ejected into the atmosphere and thereafter these fall under their own
gravity, whilst being blown along by the wind [6]. The pattern and distribution of
the ash are highly dependent upon the physical conditions of the atmosphere during
the ashfall. The atmosphere is modelled as a sequence of uniform horizontal layers in
the half-space (−∞ < x , y < ∞, 0 ≤ z < ∞). This is more realistic than a uniform
atmosphere as it allows for the variation of parameters with elevation. Each layer
interface corresponds to a change in atmospheric conditions such as wind speed,
wind direction or dominant turbulent length scale (these might be sourced from
meteorological data). We number the layers downwards from 1, in which the release
occurs, to n, immediately above the ground. The interface boundary between the j th
and ( j + 1)th layers occurs at height z = Z j . We have assumed that the variation of
topography on the ground itself (z = Zn = 0) is not severe enough to influence the
average transport mechanisms.
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The effect of the initial eruption is to transport the small particles of ash to a
height H above the volcano. Falling downwards, such particles rapidly reach the
settling speed S, which is the terminal speed at which the force due to gravity is exactly
balanced by the drag. The particles will also rapidly gather momentum to move along
with the wind. For the purposes of our model, it is a reasonable approximation to
assume that the particles, both at release and thereafter, are falling at their settling
speed and are moving with the same velocity as the wind [12].

We consider an instantaneous release of volcanic ash into the atmosphere at the
point (x, y, z) = (X0, Y0, H) at time t = t0. The total mass is taken to be Q and
the particles are taken to be uniform in size. The release is into the top layer of our
layered atmosphere and so Z1 ≤ H < ∞. In Section 3 we show how the effects of
more complicated volcanic eruptions may be captured by summation over a number
of such distributions with varying release points, particle sizes or release times.

The particles are transported by the wind with a velocity u = (U, V, 0), which in
general varies in both speed and direction with height. We assume that the wind
is strictly horizontal and only dependent upon height. The components U and V
are taken to be constant within each horizontal layer, with values U j and V j in the
j th layer.

The turbulence, which is caused by the wind, also varies with height and in part this
can be attributed to differing wind speeds. At a given height, turbulence within the
air flow is modelled as having a certain characteristic length—since turbulence has a
variety of scales, the length is a typical dominant mean value for the flow. The effect
of air turbulence is incorporated using a dispersion tensor D whose components are
constant within each layer.

Experimental observations of turbulence have suggested that the effective
dispersion tensor changes with the scale of the dispersing plume. This is not allowed
for by Gaussian dispersion in its simplest form. In particular in an early paper
Sutton [16] attempts to model dispersion using an empirical formula wherein the
effective dispersion rate is given by a fractional power of the distance travelled.
Essentially, by implication, this will mean having a dominant length scale which
evolves with time. Pasquill [13] also comments that it is not unreasonable to assume
that locally, with respect to height and time, there is a near-steady homogeneous
structure. His model also allows for a change in length scale with time due to the
spread of the release. Such effects are not excluded from our model. Our particle
release falls downwards and so, as we vary the dispersion length scale and velocity
constants with height, we can also effectively allow for changes with time after
release. Releases at differing heights may also be included in such models by linearly
combining different cohorts of particles as described in Section 3.

During the process of ashfall the size of the particles may further change. In humid
regions of the atmosphere, water droplets may link up neighbouring particles, which
then agglomerate into larger particles with a larger settling speed. Alternatively, further
fragmentation of particles would create smaller particles. These processes will affect
the settling speed S of the ash and so we build variation in this also into our model.
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FIGURE 1. A schematic diagram to illustrate the deposition of particles through a layered atmosphere.

We allow settling speed to vary with height, taking a constant value S j in the j th
layer. As for the initial release, we assume that the new settling speeds are effectively
achieved very quickly.

In practice any predictions will be limited by the inherent variability between
similar releases due to turbulent dispersion. The models in this paper aim to recreate a
typical event (variability of this kind has been explored in [17]).

Figure 1 illustrates our model for the atmosphere. For each uniform horizontal layer
there may be a different wind speed, wind direction, dispersion rate and settling speed.

2.2. The advection–dispersion process The advection–dispersion equation is
derived from conservation of mass and is a well-known approach for describing the
transport of particles by wind and scattering by dispersion (see for example [21]). We
shall derive a form suitable for modelling volcanic ashfall [12].

The advection–dispersion equation is

∂c

∂t
= −∇ · q + m, (2.1)

where c is the mass concentration of the particles (mass per unit volume of
atmosphere), m is a source mass rate (this is, due to new particles introduced into
the atmosphere by the volcano and is in units of mass per unit time per unit volume)
and q is mass flux of particles per unit area (the movement of particles through
the atmosphere). This latter quantity q is composed of three distinct components:

q = cu − cSk − D∇c. (2.2)
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The advective flux cu is due to transport by the wind, while −cSk is the advective flux
due to the settling of the particles by gravity (k = (0, 0, 1) is the unit vector upwards).
The (mechanical) dispersive flux −D∇c is caused by the atmospheric turbulence.

The dispersion due to turbulence is assumed to be the same in the crosswind
direction as in the downwind direction. Previous models by volcanologists [1, 4, 8]
have also made this assumption. Under these conditions the dispersion tensor

D = diag(Dx , Dy, Dz)

will be isotropic in the xy-plane, that is Dx = Dy = Dh .
The dispersion tensor is often taken to be directly proportional to the wind speed. If

we choose axes aligned with the wind, the tensor then has the form D = |u|L, where L
is a diagonal dispersion length tensor whose elements are the dominant length scales
of atmospheric turbulence. For this form of the dispersion, if there is no wind then
there is no dispersion and the particles settle vertically to the ground. For the present,
we will not explicitly express the dispersion as a function of the wind velocity, but we
shall take it to be constant as well as horizontally isotropic in each of our layers. In
layer j the constant value of the horizontal dispersion, Dh , is denoted Dhj .

Several authors have noted that the vertical dispersion, Dz , is very small at heights
of 500 m and above and can be neglected, for example [1, 2, 7]. To further simplify
our model, we too will assume that the vertical dispersion is zero.

From (2.1) and (2.2), we obtain

∂c

∂t
+ ∇ · (cu − cSk − D∇c) = m. (2.3)

With our assumptions, in the j th layer this equation becomes

∂c

∂t
+ U j

∂c

∂x
+ V j

∂c

∂y
− S j

∂c

∂z
− Dhj

∂2c

∂x2 − Dhj
∂2c

∂y2

= Qδ(x − X0)δ(y − Y0)δ(z − H)δ(t − t0), (2.4)

where Z j < z < Z j−1. As Dz = 0, the downward flux Sc + Dz(∂c/∂z) is just Sc. We
assume that all of the source material lands on the ground eventually and the downward
flux is continuous through each interface. We have the initial condition

c(x, y, z, t) = 0

when t = t0 except at (x, y, z) = (X0, Y0, H). The boundary conditions are
c(x, y, z, t) = 0 when x → ±∞, y → ±∞ or z → +∞, and Dz(∂c/∂z) = 0 on the
ground z = Zn = 0 (there is no dispersion through the ground). However, since
Dz = 0, the latter condition is automatically satisfied.

2.3. Concentration and deposition As the z-component of dispersion is zero
(Dz = 0), the vertical motion of the particles through the atmosphere is strictly
downwards. For an instantaneous point release, the particles are transported
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horizontally both with the wind and by dispersion. However, vertically they move
downwards as a horizontal sheet, with the local settling speed, to eventually strike the
ground simultaneously. The lower layers have no influence upon the dynamics above
them: at a given height the particles’ distribution is solely dependent upon what has
happened to them at earlier times, or higher positions, in their fall.

The time t j for which the horizontal sheet of particles reaches height Z j at the
interface between layer j and layer j + 1 is given by

t1 = t0 +
H − Z1

S1
and t j = t j−1 +

Z j−1 − Z j

S j
for j ≥ 2.

With a single layer (n = 1) the concentration is [9, 11]

c(x, y, z, t) =
Qδ(z − (H − S1(t − t0)))

4π Dh1(t − t0)

× exp

[
−

(x − X0 − U1(t − t0))2

4Dh1(t − t0)
−

(y − Y0 − V1(t − t0))2

4Dh1(t − t0)

]
,

and the deposit upon the ground f (x, y) (mass per unit area at point (x, y, 0)) is
obtained by integration with respect to time:

f (x, y) =
S1 Q

4π Dh1 H
exp(−[(x − (X0 + U (H/S1)))

2/(4Dh1(H/S1))]

− [(y − (Y0 + V1(H/S1)))
2/(4Dh1(H/S1))]).

From this result, the solution with multiple layers may be constructed one layer at a
time. Let us illustrate using two layers. The ash is released in the top layer and whilst
falling as a sheet through this layer the concentration is exactly the same as for a single
layer as given above. Upon reaching the interface between the layers, at height z = Z1
and time t = t1, the distribution is given by

c(x, y, z, t1) =
Qδ(z − Z1)

4π Dh1(t1 − t0)
exp(−[(x − X0 − U1(t1 − t0))

2/(4Dh1(t1 − t0))]

− [(y − Y0 − V1(t1 − t0))
2/(4Dh1(t1 − t0))]).

Now consider a small element of this distribution at point (x, y, z) = (ξ, η, Z1) on the
interface surface:

q1(ξ, η) dξ dη

= c(ξ, η, Z1, t1) dξ dη

=
Q

4π Dh1(t1 − t0)

× exp
[
−(ξ − X0 − U1(t1 − t0))2

− (η − Y0 − V1(t1 − t0))2

4Dh1(t1 − t0)

]
dξ dη.
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This behaves like a point source for the second layer. Computing the concentration
corresponding to this source element for layer 2 and then integrating over the entire
interface surface, we have, for t1 < t < t2,

c(x, y, z, t) =

∫
∞

−∞

∫
∞

−∞

Q

4π Dh1(t1 − t0)

δ(z − (Z1 − S2(t − t1)))

4Dh2(t − t1)

× exp
[
−(ξ − X0 + U1(t1 − t0))2

− (η − Y0 − V1(t1 − t0))2

4Dh1(t1 − t0)

]
× exp

[
−(x − ξ − U2(t − t1))2

− (y − η − V2(t − t1))2

4Dh2(t − t1)

]
dξ dη

=
Qδ(z − ZW(t))

4π0W(t)
exp

[
−(x − XW(t))2

− (y − YW(t))2

40W(t)

]
where

XW(t) = X0 + U1(t1 − t0) + U2(t − t1),
YW(t) = Y0 + V1(t1 − t0) + V2(t − t1),
ZW(t) = H − Z1 − S2(t − t1)

= H − S1(t1 − t0) − S2(t − t1),
0W(t) = Dh1(t1 − t0) + Dh2(t − t1).

If we repeat this process, introducing further lower layers, we obtain the concentration
for the multilayered system. This has the same general form:

c(x, y, z, t) =
Q

4π0W(t)
exp(−[((x − XW(t))2/(40W(t)))

+ ((y − YW(t))2/(40W(t)))])δ(z − ZW(t)) (2.5)

for t j−1 < t < t j and Z j < z < Z j−1, where

XW(t) = X0 + U1(t1 − t0) + U2(t2 − t1) + · · · + U j (t − t j−1),

YW(t) = Y0 + V1(t1 − t0) + V2(t2 − t1) + · · · + V j (t − t j−1),

ZW(t) = H − S1(t1 − t0) − S2(t2 − t1) − · · · − S j (t − t j−1),

0W(t) = Dh1(t1 − t0) + Dh2(t2 − t1) + Dh3(t3 − t2) + · · · + Dhj (t − t j−1).

Again, the deposition is found by integrating the downwards flux at the ground:

f (x, y) =

∫
∞

0
Snc(x, y, 0, t) dt

=

∫
∞

0

Sn Q

4π0W(t)
exp

[
−

[(x − XW(t))2
+ (y − YW(t))2

]

40W(t)

]
δ(0 − ZW(t)) dt

=
Q

4π0W(tn)
exp

[
−

[(x − XW(tn))2
+ (y − YW(tn))2

]

40W(tn)

]
, (2.6)

where tn is the time when the particles land on the ground.
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TABLE 1. Initial data for the release shown in Figure 2.

Parameter Layer 1 Layer 2 Layer 3 Layer 4
X0 0
Y0 0
H 7500
Q 25 × 109

U 10 −10 10 −10
V 0 0 0 0
S 1 1 1 1
Dh 800 800 800 800
Dz 0 0 0 0

The expression for the deposit, the distribution upon the ground of mass per unit
area following the eruption, is a simple uncorrelated Gaussian distribution in the two
position coordinates x and y. As the dispersion is horizontally isotropic, the spread of
particles about the centre of mass is the same in all directions. As a result, the isomass
contours for this deposit are concentric circles about the centre of mass.

Our solutions for the concentration and deposition have been parameterized in
terms of the variables XW(t), YW(t), ZW(t) and 0W(t), which are all functions of
time. They incorporate the parameters from the separate layers each weighted by
the time spent in the layer. The mean horizontal displacement is given by XW(t)
and YW(t). The vertical displacement ZW(t) is the height of the horizontal sheet
of falling particles. These are also the coordinates of the position with the highest
concentration at time t , and the eventual deposition on the ground has a maximum at
(XW(tn), YW(tn)).

The weighted dispersion effect coefficient 0W(t) is a measure of the overall
effect of the dispersion due to the time spent in the different layers. The spread,
and conversely relative density, of the deposit depends only upon this coefficient.
A measure of the spread of the final deposit is the standard deviation of the
underlying normal distribution, which is

√
2σW(tn). The maximum value of the mass

concentration per unit area in the deposit is (Q/(4πσW(tn))). As is to be expected,
these measures of the deposit are related, as the total mass is fixed.

Figure 2 illustrates the mass concentration distributions arising from an
instantaneous point-source release. For this example we have a four-layered
atmosphere. The layer interfaces are at z = Z1 = 5000 m, z = Z2 = 3000 m and
z = Z3 = 1000 m. (We use SI units for all measurements except where explicitly
stated otherwise.) The mass concentration distributions shown at the interfaces
may also be interpreted as the deposit which would occur were the ground to
be at this height. Other release parameters are given in Table 1. We can see
from the figures how the different wind directions in the layers blow the particle
distribution along with them. As time is spent falling towards the ground, the spread
of the mass concentration becomes progressively wider and consequently the mass
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FIGURE 2. The mass distribution of ashfall for an instantaneous point-source release into a four-layered
atmosphere (details are given in the text). The release point, (X0, Y0, H) = (0, 0, 7500) m, is marked ∗.

concentration reduces. The figure also illustrates the circularity of isomass contours
predicted for an instantaneous point-source release by our model.

3. Modelling more complicated eruption events

As the particles in our simple model move and spread independently, we may
add together linear combinations of many such instantaneous point releases. By this
means we may model the initial conditions, deposition and concentration for a more

https://doi.org/10.1017/S1446181108000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000047


334 L. L. Lim et al. [10]

TABLE 2. Layer parameters for the two sources of Figure 3.

Source Parameter Layer 1 Layer 2 Layer 3
a U 10 −5 10

V 0 0 0
S 1 1 1
Dh 800 800 800

b U 10 10 10
V 0 0 0
S 1.5 1.5 1.5
Dh 800 800 800

FIGURE 3. The mass distribution of ashfall for a multiple point release into a three-layered atmosphere
(details are given in the text). The two point-source release points, (X0, Y0, H) = (0, 0, 7000) m
(source a) and (X0, Y0, H) = (0, 0, 5000) m (source b), are marked ∗. In the upper graph the distribution
profile is shown at each of the layer interfaces as well as for the eventual deposit on the ground. In the
lower graph equally spaced isomass contours are shown for this deposit.

complicated eruption profile. This approach is required to obtain the noncircular
deposition contours that occur in reality. Our model contains the parameters X0,
Y0, H , Z1, . . . , Zn , t0, U1, . . . , Un , V1, . . . , Vn , S1, . . . , Sn , Dh1, . . . , Dhn . It is
these which we can vary and sum or integrate over. For example, we may integrate
(X0, Y0, H) over a range to obtain a dispersed source or integrate t0 over a range
for a noninstantaneous eruption. Alternatively, by adding results for different values
of S j , we can include different local settling speeds which would be necessary for a
range of particle sizes. Results with different values of Dhj can capture changes in the
atmospheric conditions or the evolution of the effective dispersion length scale.
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Figure 3 is an illustration of a combined release with two instantaneous point
sources. The release points are (X0, Y0, H) = (0, 0, 7000) m for source a and
(X0, Y0, H) = (0, 0, 5000) m for source b. The atmosphere has three layers with
layer interfaces at z = 3000 m and z = 1000 m. We have chosen the same combined
total mass overall as in the previous example (25 × 109 kg); however, for this example
it is divided equally between the two sources. The layer parameters for this combined
release are given in Table 2. It might be easiest to interpret this deposition as the
result of two successive eruptions. The layer parameters for source b differ from those
for source a for the wind velocity in layer 2 and the settling speed (which could be
due to a change in atmospheric humidity). Our resulting deposit is elongated rather
than circular.

Elsewhere, we have presented some further examples of linear combinations
of point releases [10]. These examples are for a single-layered atmosphere and
illustrate how in some conditions different shapes of the source can result in virtually
identical deposits. This is an indication of the difficulty presented by the inverse prob-
lem to deduce facts about an initial atmospheric release from deposits on the ground.

4. Conclusions

We have presented a simple deterministic model for volcanic ashfall which can be
used to predict mass concentration in the atmosphere and the final deposition of ash on
the ground. By dividing the atmosphere into a number of uniform horizontal layers,
we allow the physical conditions, such as wind speed and dispersion rate, to vary with
height whilst maintaining the essential simplicity of the model. These horizontal layers
enable us to present a more realistic transport model for the atmosphere than would be
given by assuming it to be uniform.

The analytical solutions presented for an instantaneous point mass release may
be easily combined linearly. By this approach we may produce deposition and
atmospheric mass concentration predictions for possibly much more complicated
initial conditions arising after a volcanic eruption.
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