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ABSTRACT 
 
Using the dislocation model of strain anisotropy in X-ray diffraction peak profile analysis it is 
shown that in nanocrystalline copper produced by inert gas condensation dislocations are 
present, at least, down to average grain sizes of the order of 20 nm. Based on the analysis of the 
dislocation contrast factors it is suggested that with decreasing grain size the proportion of 
Lomer-Cottrell type dislocations increases. 
 
INTRODUCTION 
 
 The existence  and type of dislocations in bulk nanocrystalline metals is still under debate 
[1-3]. High resolution electron microscopy indicates the presence of dislocations in the grain 
boundary regions, while the grain interior regions become clear of dislocations with decreasing 
grain size [4]. Using the method of X-ray diffracion peak profile analysis it was shown earlier 
that nanocrystalline copper produced by inert gas condensation does contain dislocations [5]. 
The previously used interpretation of X-ray data has been further developed and refined [6,7]. In 
the present work a series of  copper specimens produced by inert gas condensation and deformed 
in some cases either by tension or compression will be analysed for the grain size, the grain size-
distribution, the dislocation densities and the type of dislocations. Instead of the earlier suggested 
screw type it is found that as the grain size decreases the proportion of Lomer-Cottrell 
dislocations increases.  
 The evaluation of broadened X-ray diffraction peak profiles is based on the dislocation 
model of strain anisotropy [5]. This means that neither the FWHM (full width at half maximum) 
nor the integral breadth nor the Fourier coefficients of diffraction profiles are monotonous 
functions of the diffraction vector. A procedure has been developed to determine the crystallite 
size-distribution function and the dislocation structure in terms of the median and variance of a 
log-normal size-distribution and the density, the arrangement and the character (edge or screw 
type) of dislocations [6-8]. The FWHM, the integral breadths and the Fourier coefficients are 
analysed in terms of the modified Williamson-Hall and Warren-Averbach procedures. 
 
EVALUATION OF X-RAY DIFFRACTION EXPERIMENTS 
 
The Fourier transform of diffraction peak profiles can be written in the form of the Warren-
Averbach equation [9]: 
 
 ln A(L) ≅ ln AL

S  -  2π2L2g2 <εg,L
2> ,      (1) 
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where A(L) are the absolute values of the Fourier coefficients of the physical profiles, AL
S are the 

size Fourier coefficients, g is the absolute value of the diffraction vector and <εg,L
2> is the mean 

square strain in the g direction. L is the Fourier length, L=na3 [6], where a3=λ/2(sinθ2-sinθ1), n 
are integers starting from zero, λ is the wavelength of X-rays and (θ2-θ1) is the angular range of 
the measured diffraction profile. In a dislocated crystal, for small L values,  <εg,L

2> can be given 
as [10,11]: 
 
 <εg,L

2> ≅ (ρC b2/4π)ln(Re/L) ,       (2) 
 
where ρ, b and Re are the density, the modulus of Burgers vector and the effective outer cut-off 
radius of dislocations, respectively. Peak broadening caused by dislocations depends on the 
relative orientations between the Burgers and line vectors of dislocations and the diffraction 
vector, b, l and g, respectively. This effect is taken into account by the dislocation contrast 
factors C [6,7,10-13]. In a texture free polycrystal or if the Burgers vector population on the 
different slip systems is random the C factors can be averaged over the permutations of the hkl 
indices [6]: 
 
 C  = C h00 (1-qH2) ,        (3) 
 
where C h00 are the average dislocation contrast factors for the h00 reflections, H2=(h2k2+ h2l2+ 
k2l2)/(h2+k2+l2)2 and q is a parameters depending on the elastic constants of the crystal and on the 
edge or screw character of the dislocations [7].  
 
 ∆K = 0.9/D + α’ (KC1/2)2 + O(KC1/2)4  ,     (4) 
 
where K=2sin(θ)/λ, ∆K=2cos(θ)(∆θ)/λ, D is the apparent size parameter corresponding to the 
FWHM. It is obtained by extrapolation to K=0 in the usual manner. O stands for higher order 
terms not interpreted here [14]. A similar equation can be given for the integral breadths and the 
corresponding apparent size parameter is denoted by d [8]. The modified Warren-Averbach 
equation is [5]: 
 
 lnA(L) ≅ lnAS(L) - ρBL2ln(Re/L) (K2C) + O(K4C2) ,    (5) 
 
where B=πb2/2 and O stands for higher order terms, cf [14]. The size parameter corresponding to 
the Fourier coefficients, denoted by L0, is obtained from the size Fourier coefficients AS as 
described by Warren [9]. d and L0 give the volume- and area-weighted mean column length, 
respectively [15,16]. A simple and pragmatic method has recently been developed to obtain the 
median and the variance, m and σ, of a log-normal size distribution of crystallites from the three 
apparent size parameters, D, d and L0 [8]. For spherical crystallites with log-normal size 
distribution the area-, volume- and arithmetically-weighted mean crystallite sizes <x> are [15]: 
<x>area=mexp(2.5σ2), <x>vol=mexp(3.5σ2) and <x>arithm=mexp(0.5σ2), respectively. 
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EXPERIMENTAL 
 
Six different specimens are investigated: five specimens are bulk nanocrystalline copper 
prepared by inert gas condensation and hot compaction at Argonne National Laboratory [17]: O2, 
P2 and N2 in the as-prepared state and P2 and N2 after tensile and compression tests. The sixth 
specimen, denoted as V, has been prepared by equal channel angular compression (ECA) [18]. 
O2 was measured twice: once after mechanical polishing and a second time after additional 
chemical etching. P2 and N2 were measured in the as-prepared state soon after synthesis and 
again after natural ageing at room temperature (RT) for about 9 months. P2 and N2 were 
measured also after tensile and compression tests, respectively. The mechanically tested P2 and 
N2 specimens were also measured in a second run after natural ageing RT. After ageing at RT, 
grain growth and/or recovery has been observed, especially in the undeformed P2 and N2 
specimens. All different states of the specimens are listed in Table 1. The X-ray diffraction 
experiments were carried out by a special double crystal diffractometer with negligible 
instrumental peak broadening using a Nonius FR 591 Cu or Co rotating anode.  More details are 
found in [9].  
 
RESULTS AND DISCUSSION 
 
The FWHM of a bulk nanocrystalline (O2) and the ECA pressed (V) specimens (1a,b and 6 in 
Table 1.) are shown in the conventional Williamson-Hall plot [19] in Fig.1. The non-monotonous 
increase of the FWHM with K indicates strain anisotropy. The same data are shown in the 
modified Williamson-Hall plot according to eq. (4) in Fig. 2. The best fitting q values according 
to eq. (3) are indicated in the figure. In the case of the bulk nanocrystalline specimen (open 
circles and squares) stacking faults were also taken into account, as in [5]. The very different q 
values are in accordance with the very different strain anisotropy visualized qualitatively by the 
horizontal solid and slanted dashed lines in Fig. 1. passing through the FWHM of the 200, 220 
and 222 reflections, respectively. From the three apparent size parameters, D, d and L0, obtained 
by using eqs. (4) and (5) for the FWHM, the integral breadths and the Fourier coefficients of 
profiles, the median and the variance, m and σ, of the log-normal crystallite size-distribution 
have been determined. The values of q, σ, m and <x>vol for the investigated specimens are given 
in Table 1. Typical errors of the data are indicated in a few cases. The m and <x>vol values show 
that RT exposure of some of the samples for a period of about 9 months led to increase in the 
mean grain size. The increase of the variance in the same cases indicate the widening of size 
distribution and a heterogeneous grain growth. TEM grain size measurements of the same 
specimens are in good correlation with the present results [20].  
 The q parameter [see eq. (3)] is plotted vs. the arithmetic average crystallite size <x>arithm 
in Fig. 3. The TEM grain size measurements of the same specimens [20] have shown that the X-
ray and TEM results are in closer agreement for finer grain size. In the following the finer grain 
size region will be discussed therefore the term grain will be used instead of crystallite. In the 
figure it can be seen that as the grain size decreases the value of q increases. The line through the 
measured data is to guide the eye and the vertical line at 200 nm is a typical error bar. The values 
of q were calculated numerically as a function of the elastic anisotropy Az=2c44/(c11-c12), where 
cij are the elastic constants of the crystal, for Burgers vectors: b=a/2<110>, b=a/2<111> and 
b=a/2<100> in cubic crystals. For b=a/2<110> edge or screw dislocations, the q values are 
plotted vs. Az in Fig. 4. In the case of edge dislocations they depend slightly on the ratio c12/c44. 
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For copper Az=3.21. The vertical line in the figure shows that for dislocations with these Burgers 
vectors the q parameter values in copper vary between 1.68 and 2.37. For dislocations with 
Burgers vectors b=a/2<111> this range is between 1.60 and 2.68 [7].  
 Next the q values of <100> type dipoles will be evaluated. The displacement field between 
the two dislocations of a dipole is homogeneous. For homogeneous strain qhom is: 
 qhom = 3 - [(εxx+εyy+εzz)

2+4(εxy
2

+εyz
2
+εzx

2)]/(εxx
2
+εyy

2
+εzz

2) ,   (6) 
where εij is the strain tensor. Assuming that the dislocation lines are in the z direction in a 
cartesian coordinate system the strain tensors for the two possible dipole configurations 
perpendicular to each other are: (i) εxx= -εyy=(1+ν)b/δ ;  εzz =0 or (ii) εxx=νb/δ; εyy=-b/δ ;  
εzz=νb/δ, where ν is Poisson’s ratio and δ is the separation of the dipoles. Poisson’s ratio for the 
<100> direction in copper is: ν=0.42 [21]. Using eq. (6) it can be shown that for the two dipole 
configurations: (i) qhom=3 and (ii) qhom=2.981. In both cases, the q values for the <100> type 
dipoles are practically 3. 
 On the basis of the above considerations the following mechanism is suggested for the 
increase of the q parameter with decreasing grain size. The <100> type dipoles consist of Lomer-
Cottrell sessile locks which are well known to be present in the dislocation structure in copper. 
As long as the average grain size is above a certain limit the overwhelming fraction of the 
dislocation density is of the usual dislocations with Burgers vectors b=a/2<110>. In this case the 
value of q is in the range corresponding to these dislocations, since the few Lomer-Cottrell locks 
do not contribute much to this average value. As, however, the grain size decreases, the <110> 
type mobile dislocations move to the grain boundaries where they annihilate by the usual 
mechanisms. The sessile Lomer-Cottrell locks can more successfully survive this annihilation 
mechanism. As a result the fraction of the Lomer-Cottrell locks in the total dislocation density 
increases with decreasing grain size. The increase of the q value with decreasing grain size 
indicates the increase of the volume fraction of Lomer-Cottrell locks in the entire dislocation 
structure. The model still has to be verified by TEM investigations. 
 

Table 1. The values of q, σ, m and <x>vol for the different specimens (<x>vol is the volume 
averaged particle size) 

 
Specimen q σ m [nm] <x>vol 

[nm] 
1a. O2, mechanical polish 2.69+0.1 0.7+0.02 6.6+0.2 29 
1b. O2, +chemical etching 2.61 0.7 6.6 29 
2a. P2, as-received 2.13 0.62 22 68 
2b. P2, undeformed +9 m at RT 2.0 1.15 5.2+0.5 207 
3a. N2, as-received 2.1 0.64 22 77 
3b. N2, undeformed +9 m at RT 2.1 0.84 9.5+0.5 87 
4a. P2, tensile deformed 2.47 0.58 17 45 
4b. P2, tensile deformed +9 m at RT 2.34 0.73 9.8 49 
5a. N2, compression deformed 2.3 0.69 13.5 59 
5b. N2, compression deformed 
              + 9 m at RT 

1.9 0.79 13.5 87 

6. V, deformed by ECA 1.96 1.06 11.8 307 
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CONCLUSIONS 
 
Based on X-ray diffraction peak profile analysis of nanocrystalline and submicron grain size 
copper specimens it is suggested that with decresing grain size the surviving type of dislocations 
are most probably the <100> type Lomer-Cottrell locks. 
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Figure 1. Conventional Williamson-Hall plot 
of the FWHM of a bulk nanocrystalline (O2, 
open circles after polishing, open squares after 
additional chemical etching) and the ECA 
pressed (V, open triangles) specimens. The 
horizontal solid- and slanted dashed lines go 
through the FWHM of the 200, 220 and 222 
reflections, respectively. 

Figure 2. The same data as in Fig. 1. plotted in 
the modified Williamson-Hall plot. The best 
fitted q values in eq. (3) are indicated in the 
figure. The solid lines are the best fitted curves 
according to eq. (4). 
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Figure 3. The experimentally determined q 
values vs. the volume averaged crystallite size. 
The symbols according to Table 1. are: open 
circle and diamond: 1a, 1b; open up-triangle: 
2a, 3a, 4a, 5a; open square: 2b, 3b, 4b, 5b; 
open down-triangle: 6. S, S/E and E stand for 
screw, screw/edge and edge dislocations, 
respectively. 

Figure 4. The variation of the q parameter 
[see eq. (3)] as a function of  the elastic 
anisotropy (or the Zener constant) Az in an fcc 
crystal for dislocations with b=a/2<110> 
Burgers vectors [7]. 
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