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WHEN IS A DISTRIBUTION OF SIGNS 
LOCALLY COMPLETABLE? 

Dedicated to the memory of our friend Mario Raimondo 

F. ACQUISTAPACE, F. BROGLIA AND E. FORTUNA 

ABSTRACT. Let V be an irreducible nonsingular algebraic surface, Yd V be an 
algebraic curve and P a point of Y. Suppose a sign distribution is given locally in a 
neighbourhood of P on some connected components of V — Y. We give an algorithmic 
criterion to decide whether this sign distribution is induced by a regular function or not. 
As an application, this criterion enables one to decide whether two semialgebraic sets 
can be locally separated or not. 

Introduction. Let V be a 2-dimensional, non-singular, compact, real affine alge
braic variety and Y C V an algebraic curve. To give a partial distribution of signs on 
V — Y means to fix a sign on some of the connected components of V — Y. 

We consider the problem to know whether a given partial distribution of signs o is 
completable or not, i.e. whether it is the restriction of the distribution of signs induced 
by a polynomial function. In the case V — R2, in [F] it is shown that a is completable 
if and only if no irreducible component of Y is type changing (see Definition 1.1) and 
a is locally completable at any point of Y, included "the point at infinity". This result is 
suitably generalized to the case of a surface V as above. 

It is so natural to look for a criterion of local completability: this is the goal of this 
paper. 

As a matter of fact the local obstructions to completability are due to the presence of 
type changing components, but these components are hidden. More precisely, a distribu
tion of signs a on V — Y without type changing components is not locally completable at 
a point P if and only if it is obtained from a non-completable distribution by contracting 
to P a type changing curve. 

By using this characterization, in the second section we give a procedure, taking as 
an input the Puiseux expansions of the branches of the germ (Y, P), which allows us to 
decide if a is locally completable at P without blowing up. 

As an application, this result yields a criterion to decide whether two given semialge
braic subsets of V (or of 1R2, via a stereographic projection from S2) can be polynomially 
separated or not. 
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We have to mention that similar problems concerning distributions of signs and signa
tures have already been studied by other authors, following an algebraic approach based 
on the use of the real spectrum, fans and valuations. We deal with the subject from a 
different, more geometrical, point of view, which can be interesting also because of the 
algorithmic aspect of the answers. 

1. Visible and hidden type changing components. Let V be a non-singular real 
affine algebraic surface. Denote by ^(V) (resp. (P(V)) the ring of regular (resp. polyno
mial) functions on V. Let Y C V be an algebraic curve. 

DEFINITION 1.1. a) A (partial) distribution of signs a on V — Y is a continuous map 

<7:AiU---UA r—>{-l,l}. 

where A\,...,At are some of the connected components of V — Y. (Sometimes 
we will denote A i U • • • U At by ©(a)). 

b) An irreducible component Y of Y is called type changing with respect to cr if 
there exist non-empty open sets Q, £1' C Yl — Sing Y such that 

i) Q C a - ' O j n o - ^ - l ) 
o o 

ii) Q,' C a~l(1) or Q C o ^ - l ) . 
c) We say that a is completable if there exists/ G ^HJY) which induces cr. 
d) We say that a is locally completable at y G Y if there exist an open euclidean 

neighbourhood U of y in V and/ G %iV) which induces cr on U. 
In [F] similar definitions are given using polynomial functions instead of regular func

tions. However they are clearly equivalent to those given in Definition 1.1, because every 
/ £ %Sy) c a n be written as £ with P, Q G (P(V), Q never vanishing on V; so Q2 • / is a 
polynomial function having the same signs as / . 

The completability of a distribution of signs is a property which is invariant under 
biregular isomorphisms, i.e. if TT: V' —> V is a biregular isomorphism, a distribution of 
signs cr on V — F is completable if and only if the distribution a' — a o TT on V — 7r_1 (F) 
is completable. 

As a matter of fact, the same result is true for a wider class of regular maps; in partic
ular we shall be interested in the case of contractions: 

PROPOSITION 1.2. Suppose that V is obtained from a non-singular algebraic surface 
V' by contracting an algebraic curve Z C V to a point O G Y C V (i.e. there exists a 
regular surjective map ix\V —> V such that ix{Z) = O and TT\ y/_z: V

f — Z —> V— {0} is a 
biregular isomorphism). Let a be a partial distribution of signs onV —Y and a' — croix 
be the lifted distribution of signs on V' — TT~](Y). Then cr is completable (resp. locally 
completable in O) if and only if a' is completable (resp. completable in a neighbourhood 
ofZ=K-l(0). 

PROOF. Clearly if/ G ^(V0 induces or, then/ o TT induces cr'. Conversely suppose 
that/7 G ${.(Vf) induces a'. The function/? = f o (7r|y/_z)

-1 induces a and is regular 
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on V — {0}. Since p = h/g, wi th / , g G fP(V), g nowhere vanishing on V — {0}, then 

p • g2 G ^P(V) and induces <7. 

The local case is proved in the same way. • 

[F] contains a result which relates local and global completability when V = R2; we 

can state that result as follows: 

PROPOSITION 1.3. Let G be a distribution of signs on S2 — Y and assume that no 

irreducible component of Y is type changing with respect to a. Then G is completable if 

and only if G is locally completable at any point ofY. 

PROOF. If Y U Œ>(à) = S2, the result is true ([B-T]). Otherwise choose a point P0 in 

a connected component of S2 — {Y U 2)(a)V Clearly a is completable if and only if so is 

its restriction to S2 — {Po}- But S2 — {Po} is biregularly isomorphic to R2 and here the 

distribution of signs has a compact domain, so the proposition follows from 4.1 in [F]. • 

Proposition 1.3 does not hold for any compact surface, unless one adds a condi

tion (Proposition 1.4ii)) always satisfied in S2. Recall that an irreducible component Yl 

of y, which is not type changing, is called a change component if there exists an open 

set Q ^ 0 in Y[ - Sing Y such that Q c r ' ^ n r ^ - l ) . 

PROPOSITION 1.4. Let V be a compact non-singular real affine algebraic surface, 

Y C V an algebraic curve. Let a be a partial distribution of signs onV—Y. Denote by 

Yc the union of the change components of Y with respect to G. Then G is completable if 

and only if the following three conditions are satisfied: 

i) no irreducible component of Y is type changing with respect to G; 

ii) there exists an algebraic set A, contained in the closure ofV— (D(a), such that 

[AUF] = 0m//,(V,Z2); 
iii) a is locally completable at any point of Y. 

PROOF. The conditions are necessary because, if r completes G and is induced by 

/ G $SV), then with respect to r there are no type changing components ([A-B2]) and 

the union of the change components bounds the set {f > 0}. 

If the conditions hold, multiply a by the distribution of signs induced by a generator 

of the ideal I(YC U A). The new distribution of signs G' has neither type changing nor 

change components and the sets G'~ (1) and G'~ (—1) are disjoint open semialgebraic 

sets with compact closures intersecting only in a finite number of points. So we can apply 

Proposition 3.2 and Remark 3.3 in [F] and separate them by a regular function. • 

In a sense, Propositions 1.3 and 1.4 reduce the problem of deciding whether a distri

bution of signs is completable to a local problem in a neighbourhood of finitely many 

points of Y, namely, the points y G Y where the germ (F, y) is not normal crossing. In fact 

any distribution without type changing components is completable in a neighbourhood 

of any regular point or where two branches of Y meet transversally. 

A necessary and sufficient condition for the local completability can be found by using 

the following remarks: 

- if (Y, y) is not normal crossing, we can resolve the singularity by a finite sequence 

of blowings-up; 
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- the property of being completable is not altered by performing a blowing-up, 
because of Proposition 1.2. 

PROPOSITION 1.5. Let G be a partial distribution of signs on S2 — Y such that no 
irreducible component of Y is type changing with respect to the germ of a at P E Y. Let 
7r: M —> S2 be the blowing-up ofS2 at P; define a1 — a o n and D = TT~](P). If a is not 
locally completable at P, then one of the following conditions is satisfied: 

a) D is type changing with respect to G', 
b) there is at least one point in D where a' is not locally completable. 

PROOF. Let D(P, e) be the ball in R3 centered at P with radius e. Choose £0 > 0 
such that for any e < eç, the boundary of B(P, e) — D(P, e) Pi S2 is transversal to Y. Let 
B = B(P, e) for a fixed e < e0. 

Denote by a8 the partial distribution of signs on S2 — (YU dB) which does not fix any 
sign outside B and such that a8\B — (J\B- Clearly no irreducible component of Y U dB is 
type changing with respect to a8 and, by construction, a8 is locally completable at any 
point different from P. So, by Proposition 1.3, aB is completable if and only if a is locally 
completable at P. 

Then, because of the hypothesis, a8 is not completable and, by Proposition 1.2, also 
(aBY = a8 o 7T is not completable on M —7r-1(FU3#). Since M is biregularly isomorphic 
to P2, we can assume M = P2TO. 

We can choose an algebraic curve A in S2 passing through P, transversal to each branch 
of (Y,P) and such that the strict transform A' of A is a line in P2W. In particular A1 

intersects D in a point which does not belong to the strict transform Y' of F; we can 
suppose, by shrinking B if necessary, that A' Pi TT~1(B) D Y' = 0. Let LU be the contraction 
of A! C P 2W to a point Q\ the image ^(P2(IR)) = I 2 is biregularly isomorphic to S2 

because A' is the image of D through a linear change of coordinates in P2W. 
Consider the distribution of signs a" induced by (a8)' on I? — Z, where Z = 

(jj{7r~l(YUdB)). It is easy to see that: 
i) no irreducible component of Z different from UJ(D) is type changing with respect 

to a"; 
ii) a" is locally completable at any point of Z — uu(D)\ 

iii) a" is locally completable at the point Q. 
The distribution <jh', by Proposition 1.2, is not completable; therefore, by Proposition 1.3, 
it must happen that either UJ(D) is type changing or a" is not locally completable at some 
point of uu(D) Pi UJ(Y'). This implies immediately the thesis. • 

The next two theorems are the main results of this section. 

THEOREM 1.6. Let a be a partial distribution of signs on S2 — Y such that no irre
ducible component of Y through P G Y is type changing with respect to the germ of a 
at P. 

Then a is not locally completable at P if and only if the following conditions are 
satisfied: 
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1 ) there exist a non-singular algebraic surface V' and a regular surjective map 
7r: V' —> S2 such that 7r is the contraction of an algebraic curve E C V' to P; 

2) at least one irreducible component of E is type changing with respect to a' — 
G O 7T. 

PROOF. The "if" part is a consequence of Proposition 1.2. 
Conversely assume that a is not locally completable at P. Consider the distribution 

of signs aB defined in the proof of Proposition 1.5; replace a by cr8 but, by an abuse of 
language, again call it a. In particular we have that a is locally completable at any point 
different from P and that no irreducible component of Y is type changing with respect 
to a. 

Denote by ix\ V —> S2 the composition of the blowings-up of the standard resolution 
of the singularity (7, P) C (S2, P) ([B-K]), by Y' the strict transform of Y and by E the 
exceptional curve. We want to show that 7r and E satisfy the conditions 1) and 2). 

Let us start by considering the first blowing-up 7ri : M —• S2, that is, the blowing-up of 
S2 at P, and let D be the exceptional curve. If D is type changing, we are done because its 
strict transform in V is a type changing irreducible component of E. Otherwise, because 
of Proposition 1.5, D must contain at least one point Pi where G\ = a o TT] is not locally 
completable. 

In order to reduce ourselves to work again in S2, arguing as in the proof of Propo
sition 1.5 and with the same notations, we can consider the regular map UJ:M —-> S2, 
which contracts the line A' to a point Q. The distribution of signs a" induced by o\ on 
S2 — LO(TT~1(Y{J dB)) is not locally completable at the point LJ(P\), and there are no ir
reducible components type changing with respect to it. So we can start again, localizing 
a" at LO(P\) and blowing up S2 at that point. 

It is necessary to make the following remarks. 
i) If the exceptional divisor obtained by blowing up S2 at u(P\ ) is type changing, the 

same is true for the exceptional divisor obtained by blowing up M at Pi. The reason is 
that the property of being biregularly isomorphic varieties is preserved by blowing up 
corresponding points. 

ii) The blowing-up of M at Pi is actually one among the blowings-up of the standard 
resolution of (F, P); in fact either the strict transform Y\ of Y is singular in P\ or Y\ and 
D are not normal crossings in Pi, otherwise a\ would be locally completable at Pi. 

iii) The recursive process described so far stops if one finds a type changing compo
nent of the exceptional curve (in that case the theorem is proved); otherwise it produces 
a point to blow up. So the process stops at least when, after a finite number of steps, the 
strict transform of Y becomes non-singular and normal crossings with the exceptional 
curve. In fact at this moment the lifted distribution is locally completable everywhere; 
since it is not completable by Proposition 1.2, one irreducible component of E must be 
type changing by Proposition 1.5. • 

THEOREM 1.7. Let a be a partial distribution of signs onV — Y, where V is a non-
singular, compact real algebraic surface, V C l ^ C P«(fK0. Suppose that no irreducible 
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component of Y through P G Y is type changing with respect to the germ of a at P. Then 
a is not locally completable at P if and only if the following conditions are satisfied: 

1) there exist a non-singular algebraic surface V' and a regular surjective map 
7T: V' —> V such that IT is the contraction of an algebraic curve E C V' to P; 

2) at least one irreducible component of E is type changing with respect to a' — 
a O 7T. 

PROOF. We start by projecting the surface V in P2(1R). To do that, if n > 3, we can 
choose a linear subspace L in Pn(IR), dimL = n — 4, such that the projection with center 
L, 7Ti : Pn(R) - L —> P3(R) has the following properties: 

i) ir\ induces abiregular isomorphism between a Zariski open set Q Ç V containing 
P and a Zariski open set in the algebraic surface V\ — i\\{V) (where denotes the 
Zariski closure); 

ii) 7Ti induces a biregular isomorphism between Y and its image Y\, which is an al
gebraic curve in P^(R). 

In fact, by the theorem of minimal embedding of algebraic singularities (see, for in
stance, 8.6.15 in [B-C-R]), we can choose L in such a way that i) is satisfied. Moreover, 
by a transversality argument, L can be taken not intersecting any chord of Y, even the 
real chords joining two complex conjugate points of Y. 

We have, in particular, that V\ is non-singular at Pi = TT\ (P) and the dimension of the 
Zariski tangent space to Y\ at Pi is 2; so we can choose a point Q G P3W — Vi such that 

1) Q does not belong to any chord of Y\ through Pi, 
2) at most finitely many lines through Q are chords of Y\, including the real chords 

with complex conjugate intersections with Y\, 
3) the line QP\ is not tangent to Vi. 

Therefore the projection ix2 with center Q to P2W has the following properties: 
i) TT2\YX is a finite morphism such that ^ ( P i ) = P2 is not a critical value for ixi 

and does not belong to the image of Sing Vi ; in particular TT2 induces an analytic 
isomorphism between a neighbourhood U\ C V\ of Pi and a neighbourhood U2 
o f P 2 € P 2 W . 

ii) There exists a Zariski open set £l\ of Y\ such that ^ Q , is a biregular isomorphism 
with its image. 

Z -. rZ 

Define Z = 772(̂ 1) = IÏ2[^[(Y)) . Z is an algebraic plane projective curve, TT2 O TTJ 

induces a 1-1 correspondence between the irreducible components of Y and those ones 
of Z, and the germ of Z at P2 is isomorphic to the germ of Y at P. 

Consider the partial distribution of signs 02 in the neighbourhood U2 of P2, which is 
induced by a through 7^071-1. We can think C/2 ^ ^2> by contracting a suitable line in 
P2(R). 

If a is not locally completable, then so is GI. By Theorem 1.6, we know that there 
exists a type changing component of the exceptional curve E' of the standard resolution 
of (Z,P2). But this resolution is isomorphic to the standard resolution of (F, P), since 
7T2 o TT\ induces an isomorphism between the two germs. So there exists a type changing 
component in the exceptional curve relative to (Y, P) too. 
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The "if" part of the theorem is a consequence of Proposition 1.2. • 
From the proofs of Theorems 1.6 and 1.7 it follows, in particular, that a distribution 

of signs a on V — Y without type changing components is not locally completable at P if 
and only if the exceptional curve of the standard resolution of (F, P) contains at least one 
type changing component. At this point a natural question arises: is it possible to check 
the existence of such a component without performing the blowings-up of the resolution 
process? 

Note that a component D of E is type changing if and only if it contains two non
empty open sets Q and Q! such that, roughly speaking, a' = von changes its sign across 
Q and does not change across Q!. In this case, there is a family fa of smooth analytic 
arcs which meet D transversally at the points of £1 and a family fa of arcs of the same 
kind, meeting D at the points of Qf. 

The projections of the arcs of the families Jx and fc form two families Q\ and Ç2 of 
analytic arcs through P G V with the following properties: 

- every arc in Q\ joins two connected components A/, Ay of V — Y, such that P G 
A, fl Ay and a(A() = cr(A/), 

- every arc in Ç2 joins two connected components Ah, Ak of V — Y9 such that P G 
Th r\Tk and a(Ah) = a(Ak). 

It is also clear that our problem of investigating the existence of a type changing D 
will be solved if we can solve the following two problems, which will be made precise 
later: 

PROBLEM 1. For each fixed irreducible component D of the exceptional curve £", 
find a family A of analytic arcs through P G V such that: 

1) V7 G J3, 7T -1(7) is a smooth arc, which meets D transversally; 
2) {n~l(l) H D I 7 G X) is a dense set in D. 

PROBLEM 2. For any connected components A and B of V — Y with P G Â n É, find 
all the analytic arcs through P joining A and #. 

In the next section we shall give a solution to these problems, and this solution will 
be effectively constructed in terms of the Puiseux expansions of the branches of (Y,P). 
By the proof of Theorem 1.7, we can suppose that (7, P) is a plane curve germ. 

2. A procedure to test the local completability. Let us start with some results 
about a germ (Y, O) of a complex plane curve with an isolated singularity at 0\ we will 
come back to the real case later. 

Consider the standard resolution of (Y, O) as described in [E-C] or [B-K]; we will use 
the notation of the latter. It consists of a sequence of maps 

XN —> XN-\ —> XN-2 —> ' ' ' —> %2 —> X\ —> Xo = U C C 

where U is a neighbourhood of O G C and, if we denote 
- </>/ = 7i"i o • • • o 717: Xi —> U, </>o = i d 

- Ei — (j>yl(0) (the exceptional curve in X/), 
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- Yi = (l>r\Y- {0}) (the strict transform of F in Xt), 
7T;+i is recursively defined as the blowing-up of X/ in all the points of £/ Pi F, where F, is 
singular or does not intersect Et transversally. Note that every singular point of Yi belongs 
to Et because O is the only singularity of Y in U. In particular, if F 1 , . . . , Yr are the analytic 
irreducible components, or branches, of (7,0), 7Ti+\ blows up the strict transform Y\ of 
F7 in at most one point. 

Each branch F admits a parametrization, called Puiseux expansion, of the form 

ix = tm 

(see, for instance, [B-K] or [W]). If we choose coordinates (x,y) in such a way that no 
branch of (F, 0) is tangent to the y-axis, we can assume that y(t) has order greater than 
or equal to ra. 

From (2.1) we get the characteristic exponents (m;k\,. ..9ks) and the sequence of 
greatest common divisors 

d\ = (ra,k\) and d[ — (d(-\,ki) — (d(-\,ki — k{-\), i — 2 , . . . ,s . 

If ds — (ra, k\,... ,ks) = 1, the parametrization (2.1) is called irreducible. 
It follows from the definition of characteristic exponents that, by grouping the mono

mials between two successive characteristic exponents, the Puiseux expansion (2.1) can 
be written more conveniently in the form 

f x = f1 

{2'2) \y = Po(n + ^ P I ( ^ ) + • • • + Htf') 

where /?o,... ,ps-\ are polynomials and/5 is a convergent power series of order 0. 
In [E-C] it is shown that the standard resolution of (F, 0) can be reconstructed starting 

from (2.2) as follows. 
Consider the chain of the euclidean algorithms which calculate d\,d2,...,ds, say: 

kt — ki-i = fii,\di-\ +ru2 

di-\ = want + ni3 

i = 1, . . . , s 

Pi,q(i)-in,q(i)-\ +ri,q(i) 

Vi,q{i)rUq(ï) 

where ko = 0, do = m. Clearly r;^) — d(. 
Then, in order to obtain the Puiseux expansions of the strict transforms of F7, we need 

(after replacing every time the origin (0,0) in the point (JC(0), j(0))) 
- to divide fi\,\ times by the variable x 
- then to divide ^1,2 times by the variable y 
- then to divide /X13 times by the variable x 

and so on, following successively all the rows of the s euclidean algorithms (2.3). 

(2.3) 

ri,q(i)-2 
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We are also interested in performing a similar process for a curve C which is not 
f x = t 

singular. In this case C is parametrized by < _ v and no characteristic exponent 

[x—t 
is defined. Blowing up k times, its strict transform is given by < _ and this 

sequence of blowings-up is described by k = k • 1. We can therefore take account of this 

special situation and have it described by the algorithm (2.3) provided that (1 ; k) play the 

role of characteristic exponents. 

Of course when you have to divide by a variable, it is convenient to have it expressed 

by a monomial r*1 ; this is always possible by means of a change of parameter. Then we 

need to know how the series expressing the other variable changes under a reparametriza-

tion. For this we will use the following lemma, the statement of which was kindly sug

gested to us by Mutsuo Oka. 

LEMMA 2.4. Let 0 < k\ < • • • < ks be integers. Let d\ be a proper divisor ofk\ and 

consider the greatest common divisors recursively defined by dt = (d/_i, k() i = 2 , . . . , s. 

Assume d\ > d2 > • • • > ds (i.e. d\ doesn't divide kt+\). 

Let T{t) — Y.°Zk Cjtl be a complex series with the following properties: 

(1) c ^ 0 V ; G { t i fe} 
(2) if hi <j< ki+\ andcj ^ 0, thenj = 0 (mod d[). 

Set T(t) = skl and let t = s • S(s) = s • 52^0 ^k{+isl be the change of parameter. Then: 

(a) the coefficients {bj}j>kx satisfy the properties (I) and (2); 

(b) ifT = E™k] c]i satisfies (1) and (2) and ifS' = £ g 0 bf
k]+is

l is obtained from T 

in the same way as S is obtained from Ty then you have 

Cj = c'j V/ < k <=> bj = bj V/ < k, provided that bkl = b'kx. 

PROOF. By the properties ( 1 ) and (2), T(t) can be written in the following way (com

pare with (2.2)): 

T(t) = tk>Pl(t
d> ) + ^p2{td2) + • • • + Hit) 

wherepi(t) = £^L0
 cki+jdlt

jdl and m is the integral part of ^ . 

Now we must set T[s • S(sfj — sk], that is 

(2.4.1) T(s.J2h]+ls
l)=sk>. 

From (2.4.1) we have immediately ck] • (bkl)
k] = 1, hence bkl ^ 0. 

Following the classical procedure to invert a series, we shall deduce the properties (1) 

and (2) for the coefficients of S by calculating the coefficients of sa in the left member 

of (2.4.1) and by imposing it to be 0 for a > k\. Note that, in order to calculate such a 

coefficient, it is enough to truncate T at the order a. This truncation is, for k\ < a <k2, 

a polynomial in t*1 and in general, for kt < a < kt+\, it is a polynomial in f1'. 
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Let's start to prove that the coefficients ba vanish for k\ < a < k\ + d\ by induction 
on a. 

For a — k\ + 1, we must calculate the coefficient of skx+{ in 

^•(S(5)*1)(c j k l+c J k l^/ IS(5)d '+-.-) 

and therefore, by truncation, in ckx • sk[ • S(s)kl. The coefficient turns out to be 
k\ckxb

k
k
x~xbkx+\, so it vanishes if and only if bkx+\ — 0. 

Assume now b$ = 0 for each (5 such that k\ < (3 < a < k\ + d\. 

Then S(s)k[ = (bkx + bas
a~kl + • • - ) \ hence the coefficient of the monomial of degree 

a — k\ in S(s)kx is k\bk^~xba. As above, the truncation of T is c^fr, since a < k\ + d\. 
Therefore you have 

kicklb%-lba = 0*=*ba = 0. 

We have thus proved the thesis on the ba's, for a < k\ + d\. 
Assume now that the fra's have the properties (1) and (2) for a < k\ + ld\, and let us 

prove that ba — 0 for each a such that k\+ld\ < a <k\+(l + l)d\, if / + 1 < /ii. 
By induction 

oo 

5(5) - bkx + bkl+dls
d> + • •. + bkx+ldxs

ld< + £ bas
a-kK 

kx+ldx+\ 

Note that the truncation of S at the order ld\ is a polynomial in ^ ; therefore, for every k, 
each monomial of Sk of low enough degree has a degree divisible by d\. The monomial 
of Sk of lowest degree not divisible by d\ is obtained as a product by taking k — 1 times 
the term bkx and once the term bk +id +\s 1+ . 

Let a = k\ + /di + 1 (which is not divisible by d\). 
To calculate the coefficient 0f/

1+Wl+1 in T(s • S(s)}, truncate T at the order k\ + ld\ + 1 
(or equivalently at the order k\ + /di). By the above remark, only the term ckx **' of T can 
give a contribution to s

k]+ldl+l, since the successive terms ckx+dx^
x+d^ Q,+2rf,̂ 1+2rfl, • • • 

yield by the substitution t = s • S(s) monomials with degree nondivisible by d\ only 
if this degree is at least k\ + d\ + ld\ + \. Consequently the coefficient of />+wi+1 is 
k\ckxb

k^~lbkx+idx+\\ since it must vanish, one has bkx+ldx+\ = 0. 
Now the first term of S having a degree not divisible by d\ is bk{ +id] +2s

ld] +2. Arguing as 
before, one proves that bk x +idx+2 — 0 and iteratively ba — 0 for k\+ld\ <C oc <C k\{l+X)d\. 

Before going on with the proof of the part (a), let us see how to calculate bkx+idx. 
The terms of T which can give a contribution to skl+ldl are only: 

The substitution in c^^1 yields, for the coefficient ofskl+ldl, the sum of k\ckxb
k^~xbkx+ldx 

and other terms involving ckx and some ba's with a < k\ + ld\. The last term contributes 
by ckx+idxb

k
k
]+ldx. In the intermediate terms ck]+rdxs

kl+rd[ (S(s)) ' ', r < 1, one must take 
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in S(s)kl +rd" the monomials of degree (/ — r)d\. Therefore the coefficient of /'+ld] is given 
by 

(2.4.2) kxck]b
k
k
l~lbk]+Ul + intermediate terms + ckl+ldlb

k\+ldi 

where each of the intermediate terms contains one Q1+rdl, with r < 1, and some ba's, 
with a < ki +ld\. So bkl+[dl is determined. 

Coming back to the proof of (a), we have so far proved the thesis for k\ < a < ki. 
We can suppose, by induction, the thesis holds for k\ < a <k;. We have to prove: 

- K ± o 
- ba = 0 if ki < a < ki+\ and a ^ 0 (mod di). 

Again, by the inductive hypothesis, we have 

oo 

S(s) = qi(^) + S
ki-k'q2(s

d>) + ••• + ski~<-k<qi-1(s
di-')+ £ M * " * 1 • 

a=ki 

Arguing as above, we note that the truncation of S(s) at the order ki — k\ — 1 is a polyno
mial in y /~1 and therefore the monomial of Sk of lowest degree not divisible by d^\ is 
kbk~lbkis

ki~ki. This implies that, if we truncate T at the order ki and substitute t = s- S(s), 
obtaining 

(2.4.3) c*/ '(SW)*' +ckl+d/'
+d'(S(s))k'+d' +...+Ck2^(S(S))

k2
 + --- + ck/-(S(S)f, 

the monomial of lowest degree not divisible by di-\ has coefficient k\ck{ bk
k
l~lbk.+ck.b

k
k
i. 

In fact the intermediate terms of (2.4.3) yield monomials with a degree not divisible 
by di-\ only when such a degree is greater than fc. 

From the fact that k\ckxb
k
k\~

lbki + ckb\ = 0, we get bk. ^ 0. 
The proof that ba = 0 for kt < a < ki+\ and a ^ 0 (mod dï) is analogous to the 

proof given when k\ < a < fo, noting that the truncation of S at the order ki — fcj + /d; < 
ki+\ — k\ is a polynomial in sJ. Moreover the coefficient of/(+/J is given by an expression, 
analogous to (2.4.2), of the type: 

(2.4.4) kick]bil~lbk.+id. + intermediate terms + ck.+id.b
ki+ldi = 0 

where each of the intermediate terms contains one cp and some ba's, with a, f3 < ki+ldi. 
(2.4.4) determines bki+idr 

The part (a) is completely proved. 
To prove (b), it is enough to note that (2.4.4) can be written in the form 

Fba + G + Hca = 0 

where F ^ 0, H ^ 0 and G contains only coefficients of T and S with indices lower than 
a. That allows the recursive calculation of the coefficients ba of S (respectively ca of T) 
in terms of the coefficients of T (resp. of S) of index lower or equal to a and of its own 
coefficients of index lower than a. 
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Finally note that all the ba's are uniquely determined by T and by the choice of b^ — 

( — ) ^ . 
V Ck- 1 / 

This explains why (b) holds only if one chooses bkx = bf
k . • 

DEFINITION 2.5. Let k\,...,ks,d\ be integers as in Lemma 2.4. We say that 

(k\,...,ks;d\) are characteristic numbers for the series T(t) if the conditions (1) and 

(2) of Lemma 2.4 are satisfied. This definition makes sense also when k\ — 0; in this 

case d\ will be supposed to be any integer not dividing ki. 

REMARK 2.6. The part (b) of Lemma 2.4 can be used also under a weakened hypoth

esis. In fact if T(i) has characteristic numbers (k\,... ,ks\d\) and T'(t) has characteristic 

numbers (k[,...,k's;d[) and if there exist integer numbers p, q such that 

pki — qk[ i = 1 , . . . , s and pd\ = qd[, 

then the series T(f) and T'(f) have the same characteristic numbers; hence Lemma 2.4 

(b) holds true for them. 

REMARK 2.7. If C is a branch of an analytic curve germ in (C2,0) with a Puiseux 

expansion (2.2) and characteristic exponents (m; k\,..., ks), then (k\,..., ks\ d\), where 

d\ = g. c. d. (m,k\), are characteristic numbers for the series y(t) — p^f1) in (2.2). 

In the following lemma, starting from the Puiseux expansion of a branch C, we recon

struct the expansion of the strict transform of C at any stage of the process of standard 

resolution. 

LEMMA 2.8. Let C be an irreducible germ of analytic curve in (C2 ,0) with a Puiseux 

expansion (2.2). Let Cp be the strict transform ofC after p blowings-up of its standard 

resolution. 

If p corresponds to the end ofthej-th row of the i-th block (i.e. of the i-th euclidean 

algorithm) 

nj-\ = VIM + riJ+i 

(where r/o = h — k{-\ and r^\ = dt-\), then, up to exchange the variables x andy, the 

Puiseux expansion ofCp is: 

x = flJ 

y = fw • [PA?') + **'*'-*< • pi+i^M) + ' • 'I 

with characteristic exponents 

fa/' rU+i > */+i - ki + riJ+\ ,-..'>ks—ki + riJ+i ). 

In particular, if p corresponds to the end of the i-th block, the expansion of Cp is: 

x = td' 
y = pi(t

d0 + tk^-k'-pi+l(t
d<^) + ---
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with characteristic exponents (di\ k(+\ — &/,..., ks — ki). 

PROOF. We can assume that at the end of each block, say for instance the /-th block, 
the variable x is expressed by a monomial and y by a series. In fact the last division to be 
made in the block is 

(2. 8. 1) ri,q(i)-l = Hi,q(i) ' di, 

which means that one of the two variables is given by él and the other one by a series 
of order multiple of dt. If x = é1, we are done. If, on the contrary, y — f1', before 
performing the last blowing-up (i.e. when x is expressed by a series of order di), one can 
reparametrize once more. 

Such a procedure does not change the algorithm, except for replacing, if necessary, 
the last row (2.8.1) by the rows 

n,q(i)-l = (Hi,q(i) —l)'di+ di 

di = 1 • d(. 

In this way we can always suppose that each block consists of an odd number of rows. 
This explains the lack of ambiguity in the representation of Cp at the end of a block. 

Let us now prove the lemma by induction on / andy. 
Let / = 1 and j = 1. At the end of the first row, that is after \i\^ blowings-up, C^,, is 

given by 
x = fn 

y = tk^^mpi(td^) + ^-^mp2(&) + • • • ' 

That is precisely what we wanted, since k\ — [i\,\m-\-r\^ 
For / = 1, j = 2, before performing the blowings-up of the second row, we have to 

reparametrize, by setting y = T(i) — sri2. With the notation of Lemma 2.4, we shall 
have x = sm • (S(s))m. The series T has characteristic numbers (r\ 2, &2 — k\ + n 2» • • • » 
ks — k\ + nx,d\), with d\ = (r\^m). Since (di,&2 — k\ + r\^) — (di,&2 — &1X the 
g. c. d. sequence is again (di, di, •.., ds). By Lemma 2.4, the series S(s) has characteris
tic numbers (0, &2 —k\,...9ks — k\\d\). One can easily convince oneself that the same 
thing is true for S(s)m and therefore the series sm • S(s)m has characteristic numbers (m, 
ki — k\ + m,. . . , ks — k\ +m\ d\). 

Perform now the second row of blowings-up, dividing \i\£ times by srx-2. At the end 
of the row, we get 

f x = sT-w* {S(s))m 

I y = sr^ 

where the series expressing x has characteristic numbers 

Oi,3 = m- fjLh2ru2,k2 —k\ +ri,3 , . . . ,fe - k\ +r\y,d\). 

That proves the case / = 1J = 2; clearly, arguing in the same way, one can inductively 
prove all the cases / = IJ — 1, . . . , g(l). 
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Assume now, by induction, that the thesis is true for / < z"o. In particular at the end of 

the /o-th block we have: 

f x = A 
i y = Pio^io) + **'"°+1~*'o • Pio+i(^0+1 ) + • • • 

with characteristic exponents (d,0; ki0+\ — /c;0 , . . . , fe — &/0). 

But then the situation is completely similar to the initial one, with di{) in the place of 

m and k\ — kt{) in the place of /c/_/0. The same argument as above proves the thesis for 

/ = /o + 1 and 1 <j < q(io + 1). • 

Keeping in mind that we are trying to solve Problem 1 of the first section, we want now 

to look for (complex) irreducible arcs 7 through (0,0) € C of the special kind defined 

below. 

DEFINITION 2.9. Let A be the exceptional divisor of the blowing-up 717, i.e. the ir

reducible component of the exceptional curve E[ of the standard resolution of C, which 

appears for the first time when performing the /-th blowing-up. Let 7 be an analytic arc 

through (0,0) G C2. We say that 7 has the property *(p) if: 

i) the strict transform 7P-1 of 7 intersects Cp_ 1 in the point O = Cp_ 1 Pi Dp_ 1 ; 

ii) 7p- i admits a parametrization of the type 

iii) the tangent line to 7 p - i in O is distinct from the tangent line to Cp-\. 

Note that, if 7 is like that, 7P is a smooth arc which meets Dp transversally in a point 

different from Cp P) Dp and p is the first level in the resolution process at which 7P and 

Cp separate. 

In the following lemma we calculate the characteristic exponents of such a 7 for any 

fixed p. Let us denote by M\ — Y^=\ Pij the number of blowings-up of the /-th block, and 

M = M\ + • • • + Ms the number of blowings-up of the standard resolution of C. We shall 

consider also the case p > M: in this case we extend the resolution process by blowing 

up the (smooth) curve CM in the point CM H DM and so on. 

LEMMA 2.10. Let Cbea branch of analytic curve in (C2 ,0) with irreducible Puiseux 

expansion (2.2), characteristic exponents (m; k\,..., ks) andg. c. d. sequence (d\ ,d2,..., 

ds = 1). Fix a p and let 7 be an analytic arc through (0,0) which has the property *(p) 

defined in Definition 2.9. Then 
f x = tn 

a) 7 admits an irreducible Puiseux expansion < _ T{ . with characteristic expo

nents (n; h\,..., hi), I < s, and sequence of g. c. d. (d[,..., d[) uniquely deter

mined by p (see also Remark 2.11); 
b) if p > M = M\ + • • • + Ms, then I — s,n — m and hi — k[,i— 1 , . . . , s; 
c) ifp<M = M\ + ---+ Mv, one has m = rn, kt = rh[, i — 1 , . . . , / — 1 with 

PROOF. Set M0 = 0. 

Let us start by supposing p < M\ + • • • + Ms and let /Q be the least integer such that 

p < M\ + • • • + M/0. Since 7/ has to pass through Pj — Cj P) Dj for each j — 1 , . . . , p — 1, 

x = t 
y = at + • 

https://doi.org/10.4153/CJM-1994-024-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-024-2


DISTRIBUTIONS OF SIGNS 463 

one can deduce that the sequence of euclidean algorithms associated to 7 must have the 
same g(/)'s and the same /x//s as C for / = 1, . . . , i0 — 1 and 1 <j < q(i). 

7/ and Cj have to pass through the same point also for M\ + • • • + M/0_i <j<p, so 
the next p — (M\ + • • • + M/0_i) blowings-up must come from only one block of 7 since 

this happens for C. But we want (property *(p)) that 7p-i is expressed by 

so the *o-th block must be the last one for 7, that is / = /o-
Moreover we can set d\ — 1, in order to obtain an irreducible parametrization for 7. 
Starting from these data, we want to reconstruct all the euclidean algorithms relative 

to 7. To do that, it is enough to reconstruct the last block (which calculates d\_x and 
hi — hi-i) and then continue backwards, by substituting the value of d\_x in the place of 
the last remainder in the (/ — l)-st block and so on. 

The reconstruction of the last block requires distinguishing some cases. 
By hypothesis, we have p = Af i + • • • + M/_i + 77, where either 77 < /x/j, or 77 = 

EJLi Vij + m with 770 = 0 if b = q(l), otherwise T/0 < Pi,b+\ • 
Let us start by considering the case 77 > /i/j and 770 ^ 0,1. One must have pf

lb+] = 770 
and [i\- — pijj = 1, . . . , b. Therefore the last block of 7 must have the form 

h-h-\ = H\d'i-\ +r/,2 

<-l = M/,2<2 + <3 

r'lb-\ = VUbr'lb + 1 

^ijb = ^0 • 1 (we have set d\ = 1 and p'lb+x = 770) 
This block calculates d\_x and hi — /i/_i. 

The cases 770 = 0 or 1 < 77 < /x/j are completely analogous. 
We still have to investigate the cases 77 = 1 or 770 = 1. 
If 770 = 1, following the same procedure as above, the last two rows of the /-th block 

of 7 would have the form 

(2.10.1) V i = ^ + 1 

^ = 1 - 1 . 

Evidently the first one of them is not a euclidean division, as the remainder is not lower 
than the divisor. The correct division should be 

(2.10.2) V , =(/x/t* + l ) . l . 

However, using (2.10.2) instead of (2.10.1 ), we do not alter the total number of bio wings-
up of the block, that is /̂ /j + /j / ) 2 + • • • + pi,b + 1» and we get the same result for d\_x and 
ht-hi-x. 

In the same way, one can deal with the case 77 = 1. 
What was said above shows that, for our purpose, one can use the algorithm of the 

general case in these cases too, even if it is not a true euclidean algorithm. 

t 
at+ • 
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Going on backwards, as explained before, one calculates n,h\,...,h\. 
Let us now consider the case p > M = M\ + • • • + Ms. 
By Lemma 2.8, the curve CM has a parametrization of the type 

x = t 

A priori the curve 7M is not yet completely resolved; however, by hypothesis, the first 
s blocks of 7 have the same q(iY$ and the same p / / s as the blocks of C. Therefore, again 
by Lemma 2.8, 7M is represented by 

x = td° 
y = qs(t

d>) + th>«-h>(-')' 

During the following p — M blowings-up, the strict transform of CM is obtained by 
dividing each time by the variable x. Then, the same thing must happen for 7; in particular 
the exponent d's cannot decrease. Since we want lp to have exponent equal to 1, it must 
be d's = 1 = ds. 

As a consequence, 7 has the same number s of blocks as C and, arguing as above, one 
deduces from d's — ds = 1 that hi = ki for i = 1 , . . . , s and n — m. 

We have thus proved a), b). 
To prove c), it is enough to note that if the euclidean algorithms for the two pairs of 

integers (/i, k) and (h', k!) have the same number of rows and the same quotients, then the 
two pairs are one multiple of the other by a rational number given by the quotient of the 
twog.c. d.'s. • 

REMARKS 2.11. i) As for Lemma 2.10 a), we need to note that, if p < Mi,i, the last 
block to be reconstructed is also the first one and gives h\ = p • 1. So we get d\ — n = 1 
and h\ = p, even if in this case h\ is not really a characteristic exponent according to the 
usual definition. 

ii) The result of Lemma 2.10 is clearly algorithmic. We emphasize that, in order to 
calculate h\,..., hh n, it is not necessary to reconstruct all the blocks as in the proof of 
Lemma 2.10, but only the last one, because of Lemma 2.10 c). 

PROPOSITION 2.12. Let C be an analytic branch in (C2,0) with irreducible Puiseux 
expansion (2.2), 

' x = tm 

Let a be an integer, 0 < a < s, and let 7 be an arc having the property *(p) with 
p > M0 + • • - + M a + 1. 

Then 7 admits an irreducible parametrization of the type (setting ho = 0 and df
0 = n) 

f x = tn 
(2A2A) \y = Y«^th-qi{td'>) + th«g{t) 

where qç> = /?o, •. •, qa-\ — Pa-\ as elements of the ring C[X], and g(t) is a convergent 
series. 
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Moreover the constant term of g is equal to the constant term ofpa ifa<s, or to the 
constant term off ifa — s. 

PROOF. By Lemma 2.10 we already know that 7 admits a parametrization of the 
type (2.12.1) with characteristic exponents (n;h\,...,h{), 1 > a, uniquely determined 
by p; in (2.12.1) all the monomials of order greater or equal to ha have been collected in 
tag(t). 

The proof consists of several steps. 

STEP 1. The case a — 0. In this case we have only to show that po and g have the 
same constant terms. This is obvious, since both 7 and C pass through O G C for t — 0. 

STEP 2. If a = 1, one easily sees thatpo = <7o- In fact it is enough to impose that 
the two curves pass through the same point during the first n\ j blowings-up. 

STEP 3. If p > Mi, the constant term b of q\ and the constant term a of p\ are tied 
by the relation bnld'\ = amldx. 

PROOF OF STEP 3. First of all f = f by Lemma 2.10. 

After //ii blowings-up, by Lemma 2.8, CMl, and 7^, l are respectively represented by: 

x = fn ix = t" 
y = ^ p i ( ^ ) + • • • ( y = ^ ^ i ( ^ ) + 

We must reparametrize in order to have y — sn-2 (resp. y — s 12)- To make this 
reparametrization, we choose arbitrarily one n^-th root Co ofa~l (resp. one r̂  2-th root 
C'Q of b~l). We get x expressed by a series with leading coefficient CQ (resp. C'Q). This 
implies that, at the following change of parameter, when the order of x has become 
w — Mi,2H,2 = n,3 (resp. rj 3), we shall have to choose an ri,3-th root of c^m (resp. an 
r'y 3-th root of c'0~

n). After that reparametrization y is expressed by a series of order r\^ 
starting with a determination of amlr^ (resp. of order rj 2 starting with a determination 
of^ / r , u) . 

Going on like that, at the end of the first block, that is after an even number of 
reparametrizations, y will be expressed (Lemma 2.8) by a series of order 0 starting with 

am/di (resp.of order 0 starting with bnld\). Since p > M\, the curves CMX and 7M, have 
to pass through the same point (0, amldx) = (0, IfM). This implies amld' = bnldK 

STEP 4. lfqo—po,...,qi= pi and the constant terms b and a of #/+i and/7/+i satisfy 
the relation bd'Jd'^ = adildi+x, then there exists a root of unity u such that, setting t = wâ, 
the new parametrization of 7 by means of # satisfies qo= po,..., qt = /?/ and b — a. 

PROOF OF STEP 4. By hypothesis, a — eb with £ a root of unity of order a divisor 
of d'j/d'i+i. The number CJ we look for must satisfy, in particular, uhi+] • b = a — e • b, 
so uj must be a hi+\ -st root of e. But in the subgroup of C* generated by e, each element 
is a /i/+i-st power, since g. c. d. (hi+\, d'Jd'i+l) — 1. Therefore e = UJQ+1 with o;o a root of 
unity, the order of which divides df

t/d'i+l, and so divides d\, d'i9 ...,d\9n.So UJQ is the root 
we looked for. 
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STEP 5. Proof of the proposition recursively on a. 
For a = 0 and a = 1, the proposition is proved by the Steps 1, 2, 3, 4. 
Suppose now p > M\ + • • • + Ma + 1. In particular p > M\ + • • • + Ma-\ + 1, so, by 

induction, we know that qo = po,..., qa-i — Pa-2- After M \ + • • • + Ma_i blowings-up, 
CM[+-••+Ma_1 and7Af1+-+Afa_1 are respectively given by 

{ x - /*»-' f x = /<-. 
IJ - p£i V»-' ) + • • • \y = #-1V-' ) + • • • 

where the upper index (A) indicates that A blocks of blowings-up have been performed. 
From p > Mi + • • • + Ma > M\ + • • • + Ma_i + /xa>1 we get, arguing as is Step 2, 

g ĴTî  = P^a-i^- Apply n o w Lemma 2.4, using its part (b) in both directions. Since qo = 
po,..., qa-2 = Pa-2, each time we have to reparametrize during the first a — 2 blocks 
of C and 7, we can choose (see proof of Step 3) the same determination of the rational 
power of the least order coefficients of the series involved. So, by Lemma 2.4, we get 
qf =pfforl<(3<a-2 and 1 < i < p. 

As forpa-i and qa-\, note that, by Step 3 applied to CMl+-+Ma_2
 anc* 7M,+ -+Ma_2, the 

constant terms b and a of q^Z^ and p^Z^ satisfy the relation bd«-ild'«-\ = a
da~2lda-x. 

Hence (Step 4) there exists a (d^_ 2 /^a-r s t r o o t °f ^nity, u, such that, substituting / = 
uj - ê (which does not alter r4 for d = ft, d(, df

2,..., t/^_2) one can assume b — a. 
This implies that one can choose the same determination of the successive rational 

powers of b = a also when performing the blowings-up of the (a — l)-st block. So, by 
Lemma 2.4, from q^Z? = P ^ we deduce q^Z? = P^Z?. For the first a-2 blocks 
we have already chosen the determinations which allow the use of Lemma 2.4, so we 
deduce successively q^Z? = P{£l?\ • • •,<7(

a_i = Pa-vaa-\ = pa-\. 
It remains to prove that g and pa have the same constant term (if a = s, replace pa 

by/). 
Since CMX+-+Ma

 a nd 7M,+-+Ma P a s s through the same point for t = 0, g(a) and/?^ 
have the same constant term. Arguing as before, we deduce that the same fact is true for 
g(/3) and p^ V/3 < a. In particular, at the end of the procedure, we get that g and/?a have 
the same constant term. • 

REMARK 2.13. By Lemma 2.10 and Proposition 2.1.2 we have proved that any arc 
7 having the property *(p) admits a Puiseux expansion in which the coefficients of all 
the monomials of order lower or equal to hi-\ (hi is the last characteristic exponent of 
7) are equal to the corresponding coefficients of the expansion of C (that is, up to the 
term akl x fr-' ). As a matter of fact, if p is strictly greater than M\ + • • • + M/_i + 1, more 
coefficients of 7 are determined, as the following theorem proves. 

THEOREM 2.14. Assume thatl has the property *(p) with respect to C. Then 7 admits 
[x — f 

an irreducible parametrization I _ ^ , t where 

i) ifM\ + • • • + M/_! < p < M\ + • • • + Mi, all the coefficients b[ are determined for 
i — 0, . . . , / i / - i , . . . ,/i/_i + p1, with p — min(p/i,p — (M\ + • • • +A//_i + 1)) 
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ii) if p > M\ + • • • + Ms, all the coefficients b( are determined for i = 0 , . . . , hs + p' 
with p' — p — (Mi + • • • + Ms + 1) 

Hi) the first nondetermined coefficient for 7 must be different from the corresponding 
one in C. 

PROOF i) AND ii). By Remark 2.13, we already know the thesis for the £/'s with 
i < h[_i. As for the following terms, it is enough to write down the expressions of 7 and 
C after M\ + • • • + Af/_i blowings-up (case i)), or after M\ + • • • + Ms blowings-up (case 
ii)), and to impose that the further strict transforms of C and 7 pass through the same 
point for t = 0. 

iii). The first nondetermined coefficient for 7 characterizes (by means of the process 
described in Lemma 2.4 and Proposition 2.12) the tangent to 7p-i, which must be differ
ent from that one of Cp_ i. • 

THE REAL CASE. Theorem 2.14 gives a complete answer to Problem 1 in the case of 
a complex curve. Now we come again to the real case. 

Let C be a branch of a real analytic curve in (IR2,0). It is known (see, for instance, 
[M]) that C admits a parametrization of the type 

y = Z™lait
i ateR 

where e = ±1 ; working, if necessary, with the coordinates (— x,y) instead of (JC, y), we 
can always assume e = 1. 

From now on, we will therefore assume C is given by: 

( 2 ' 1 5 ) \y = ^laif atGR' 

In order to solve Problem 1 in the real case, let 7 be a real analytic arc in (1R2,0) 
having the property *(p) with respect to C. Let 

(x=£-tn 

( } \y = Eel bit = qoin + ^qitf1)*' • ' 

be an irreducible parametrization of 7, with e = ±1 (in general, it is not possible to 
require that E = 1 both for C and for 7, and we have already made the choice e — 1 for 
C). 

REMARK 2.17. What was said at the beginning of the section about the standard 
resolution of C holds true also in the real case. In particular the sequence of blowings-up 
involved in the resolution is again described by the chain of euclidean algorithms (2.3). 
Moreover, it is easy to convince oneself that Lemma 2.10 holds true also in the real case 
(which involves reparametrizations of the type y — T{t) = e • sk with k equal to order 
of T and e = ±1 , according to the sign of the least order coefficient of T). In fact the 
euclidean algorithms used in the proof of Lemma 2.10 work on the exponents, not on 
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the coefficients. We have also proved that the characteristic exponents (n\ h\,..., hi) of 
7 are determined by p, as explained in Lemma 2.10. 

If we allow the parameter t to vary in C, we can regard both C and 7 as complex curves 
(with real coefficients). In particular, by a suitable complex change of parameter 

oo 

(2.18) * = X>,V, 

we can express 7 in the form (2.2). Substituting (2.18) in (2.16), we find that it must be 

' oo x n 

v i= l 

/ oo N n 

This implies that c, = 0 V7 > 1 and that c = c\ satisfies the relation d1 — -e — e, and 
consequently c2n — 1. 

We are now in the position to apply to C and 7 the results found so far, Le Proposi
tion 2.12, Remark 2.13 and Theorem 2.14: after reparametrizing 7 by means of t = c • s, 
the coefficients of the series £ bi(cs)1 must be equal to those of the series £ atf of C up 
to the order determined in Theorem 2.14. In particular, for the coefficients of the first 
(/ — 1) characteristic terms we must have bh.chi = a*, for / = 1 , . . . , / — 1. 

Hence, c7*' turns out to be a real number for / = 1,. . . , /— 1. Since c is a root of 1, chl 

can only be 1 or — 1. This implies that c2hi = 1 for / = 1, . . . , /— 1 and therefore, since 
c2n= l , i t isc2< = l f o r ï = 1 , . . . , / - 1 . 

Hence if we set 6 — cd'i-\, we have only two possibilities: £ = l o r £ = —1. Note 
that the value of 6 determines the value of c^, i = 1,.. . / — 2, since cdi = (ĉ /'-i )d'ild'i-\ = 
(^)</<i and^_! divides d\. 

In particular this implies that the relations found above qt(cdisdi) = pt(sdi) are of a 
very special type: either qi(X) = pi(X) or qd—X) = pt(X), according to the value of cd'. 

We have thus proved the following result: 

THEOREM 2.19 (SOLUTION OF PROBLEM 1). Let Cbea branch of analytic curve in 
(IR2,0) with irreducible Puiseux expansion 

x = r 

and let 7 be a real analytic arc having the property *(p) with respect to C. Then 7 admits 
an irreducible parametrization 

J C = e-f1 

y = g(t) = qo(fl) + th>ql(t
d'0 + --

where: 
1) the characteristic exponents (n\ h\,..., h\) ofl are determined by Lemma 2.10; 
2) e and g satisfy one of the two following conditions: 

a) £ = 1 and the truncation ofg(t) to the order hi^\ + p' (see Theorem 2.14) 
coincides with the corresponding truncation off(t); 
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b) e = (—\)nld'i~\ and the truncation of g(t) to the order h^\ + p' can be 
obtained from that one off(t) according to the rule: 

qt(X) = pi(X) if d\ Jd\_ x is even 
qi{-X) = Pi(X) ifd'Jdl, is odd. 

SOLUTION OF PROBLEM 2. Each region with a sign in (R2,0) - (F, O) is bounded 
by two analytic half-branches, possibly belonging to the same branch of (Y, O). We have 
assumed that no branch of (Y, O) is tangent to {x — 0}, so that each of the half-branches 
mentioned above is expressed by 

x = ±f 
y=f(t) = ait

ai +a2t
a2 + ---

where 
i) te[0,e) 

ii) x = t, or x = — t according to whether the half-branch lies in the half-plane 
{ x > 0 } or in {*<()}. 

iii) f(t) is a Puiseux series. 
Our aim is to know the analytic arcs 7: [0, e) —-> IR2, which have their images contained 

in a region of the plane bounded by two fixed analytic half-branches 7i and 72 through 
(0,0). Two cases may arise: 

a) 7i and 72 lie in the same quadrant bounded by the y-axis and by the x-axis, 
b) 7i and 72 do not lie in the same quadrant. 

One can easily check that the arcs 7 we looked for are the arcs satisfying the following 
conditions: 

CASE a). Assume, for instance, that both 7i and 72 lie in {x > 0, y > 0}. Therefore 
they are expressed by 

f x = t ( x = t 
7 l : ( y = axt

a' +a2t
a2 + • • • 7 2 : ( y = bxtP* + b2t^ • • • 

withal > 0 , b\ > 0 . 
If a\ta] ^ b\flx (precisely oc\ < f3\, and if oc\ ~ f3\ then a\ > b\), the arcs g lying in 

the region of {x > 0} bounded by 7i and 72 must be of the form 

x — t 
y = C\fx +C2t

Sl + • •• 

where c\ > 0, 8\ G [otuf3\] and, moreover, 
- if <5i = ct\ => c\ < a\ and if c\ — a\ =̂> 62 > a2 and if 62 = a2 =̂> c2 < a2 and 

so on. 
- if S\ = (3\ => c\ > b\ and if c\ = b\ =5 S2 < (32 and if 62 = (32 =» c2 > b2 and 

soon. 
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When the expressions of y in 71 and 72 begin with a common part y = g(t)+a\ta]+- • -, 
y = g(t) + fr^1 + • • • with aifai 7̂  b\t^, the condition is the same, except that 7 is given 
by 

lx = t 
\y = g(f) + ciiSi + •••• 

For the analytic arcs through (0,0) and lying in the other region bounded by 71 and 72, 
one finds all the arcs lying in the three quadrants and the arcs 7 which satisfy a condition 
analogous to that one found above, but with "reversed" inequalities. 

CASE b). In this case we have 

( JC = ±t \x=±t 
7 l : { y = axt

a' + a2t
ai + • • • l2' \y = bxt^ + b2fi

2 + • • • ' 

It is easy to write down conditions, analogous to the ones found before, assuring that 
an arc 7, not tangent to {x — 0}, lies "above or below 7i" and "above or below 72"-

Problem 2 is thus completely solved. 

THE PROCEDURE. Assuming we know the Puiseux expansions of the branches 
y 1 , . . . , Yr of (y, 0), we are now ready to give a procedure to decide whether a given 
distribution of signs is locally completable or not. Recall this will be done checking if 
the exceptional curve En in the standard resolution of (Y, O) contains at least one type 
changing component. 

For each component D ofEN there is a lowest index p such that D is the strict transform 
of an irreducible component Dp ofEp through TTP+\ O 7rp+2 O • • • o nN. Since we know that 
D is type changing (in X#) if and only if Dp is type changing (in Xp), we will test the 
nature of each D "the first time it appears", i.e. by testing Dp. 

Dp was produced by the blowing-up of Xp_ 1 in a point Pp_ 1 belonging to an irreducible 
component Ya

p_x of Yp-\, so we can investigate Dp by using the resolution process of Ya. 
However note that more components of yp_i may pass through Pp_i and the resolution 
process of each of them produces, at the p-th step, the same divisor Dp. 

This explains why, in order to economize on the number of tests, it is helpful to con
sider, for each 1, 0 < i < N, the partition % of the index set { 1 , . . . , r} into subset %j 
such that two indexes a and /3 belong to the same subset if and only if Yf and y? pass 
through the same point in X,. This can be concretely made by using Theorem 2.14. 

It is easy to see that: 
i) the partition is increasingly refined; 

ii) there is a 1-1 correspondence between the elements tPp-\j of the partition !Pp_i 
and the irreducible components of Ep which do not belong to the strict transform 
of Ep-\. 

Therefore we can perform our test as follows. 
- Fix a p, 1 < p <N (starting from p — 1). 
- Choose an index a, in (Pp-\j for each j . 
- Find a family A of arcs having the property *(p), by applying Theorem 2.14 to the 

curve ya, for each j . 
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- Test if the family A contains open subfamilies Ç\, Ç2 of arcs joining regions re
spectively with the same or the opposite signs, by using the solution of Problem 2. 

- If the answer is YES, the test stops (because we have found a type changing com
ponent in Ep). Otherwise repeat the test at the successive level p + 1. 

3. An application to a separation problem. Let V be a compact, non-singular, real 
algebraic surface; let A, B be two semialgebraic subsets of V such that their interior parts 
0 ° ——-z 
A and B do not intersect; denote by Z = A n B the Zariski closure of A Pi B. 

DEFINITION 3.1. We say that A and B are (polynomially) separated if there exists a 
polynomial function/ on V which is positive on A — Z and negative on B — Z (we will 
write/(A - Z) > 0 and/(£ - Z ) < 0). 

Some results about the separation of semialgebraic sets by polynomials can be found 
in [B2], [R], [F-G] and are used in [F] in order to reduce the completability of a given 
partial distribution of signs to a local problem. 

Now, following the opposite direction, we will apply the results of the first two sec
tions to the problem of deciding whether two given semialgebraic sets in V can be sepa
rated by polynomials. In order to avoid trivial cases, we will always suppose both A — Z 
and B — Z not empty. Adapting classical techniques of separation, we get the following 
criterion: 

o o 

PROPOSITION 3.2. Let A and B be semialgebraic subsets of V such that AHB = 0 
— —z 

and A — Z ^ 0 and B — Z^Ç) (with Z — AHB ) . IfdA denotes the boundary of A, define 
z 

Y = dAUdB . Let a be the partial distribution of signs onV—Y defined by a(A — Y) 
anda(B-Y) = - 1 . 

Then A and B are polynomially separated if and only if a is completable. 
PROOF. First of all note that we can work using regular functions on V\ in fact if 

/ = § is a regular function which separates A and B, then/ • Q2 = P • Q is a polynomial 
separating function. 

Moreover, the thesis of Proposition 3.2 is trivially true if at least one of the semial
gebraic sets A, B is 0-dimensional; in fact in this case it is easy to see that A and B are 
separated and a is completable. So we can assume that dim A > 1 and dim B > 1, which 
implies dim dA = dim dB = 1. 

Since Y D Z, if A and B are separated, then a is completable. 
Conversely, suppose that a is completable, i.e. there exists / G %J(V) such that 

f(A-Y)> 0,f(B - Y)< 0 and/|y = 0. 
We will prove that A and B are separated by modifying/ in order to extend its sign 

on (Y — Z) H (Â U B). The procedure consists of two steps: first we extend the sign on 
the 1-dimensional part of (Y — Z) n (Â U B), and if it is not empty, afterwards on the 
remaining 0-dimensional part. 

STEP 1. Assume that dim((y - Z) n (Â U Bj) = 1 ; otherwise go directly to Step 2. 

We can suppose, for instance, that dim((y — Z) PiÂ) = 1. 
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Denote F = Reg((T - Z) n À) and G = Sing((F - Z) H Â). Since F is an open 
semialgebraic set of dimension 1 in F, it is known ([R]) that there exists h G %SY) such 
that h(F) > 0 and F = {y G F : fc(y) > 0}. 

Since ( F - Z ) H £ n F = 0, we have h((Y~Z) H Â) < 0. 
Extend h to a regular function on V and denote it again by h. By slightly modifying /z, 

if necessary, we may assume that h is positive on the isolated points of (F — Z) PiÂ and 
negative on the isolated points of (Y — Z) Pi B. 

Consider now the closed semialgebraic set 

s = (An {h < o})u (B n {h > o}). 

By a consequence of Lojasiewicz inequality ([Bl]), there exists -0 G %iV), I/J > 0, 
such that/ + T/> • /i and/ have the same sign on S and, for the zero-set V(t/>), one has 
V(0) = V ( / ) n / . So, if we set R = / + 0 • A, we have that #((A - y ) H 5 ) > 0. 
Moreover R((A — Y) — 5) > 0, because there /? is the sum of two positive functions. 
Hence we have R(A — Y) > 0. In the same way we see that R(B — Y) < 0. 

So R separates A — Y and B — Y a s / did, but we claim that R does not vanish anymore 
on (Y — Z) D (Â U /?), except on a finite number of points. More precisely we claim that: 

(3.2.1) R(À-Z)>0, R(B-Z)<0 and V(R)nÂÇGUZ, V(R)nËÇZ. 

PROOF OF (3.2.1). The first two inequalities follow easily from the fact that/| Y = 0, 
so that on Y we have R = 0 • h. 

Since V(R)C\(AUB) Ç Y9 it is enough to study V(i/> • /i). Note that: Vty) = V(f)C\^ Ç 

YDAn{h<0} U F n 5 n { / î > 0 } Ç Ân(ZUG) U Z, because /Î(F) > 0 and 

h((Y-Z)nB) <0 . 
Then V(0) H Â Ç G U Z and V(0) H f i Ç Z . Recalling the properties of h, we get 

fl(F) > 0 and R((Y - Z) H 5) < 0, which imply (3.2.1). 

STEP 2. In order to extend the sign on the 0-dimensional set G, we use again the 
Lojasiewicz inequality recalled above. 

If we apply that argument to the regular functions R and 1, relatively to the closed 
semialgebraic set B, we get a regular function 77 > 0 such that R + 77 and R have the same 

_z 

sign on B and V(rj) = V(R) HB At easy to see that the function Q = R + rj is such that 
Q(A - Z) > 0 and Q(# - Z ) < 0, i.e. A and B are separated. • 

REMARK 3.3. It is important to note that the Proposition 3.2 assures that, in order to 
decide whether two given semialgebraic sets are polynomially separated, it is equivalent 
to check whether the associated distribution of signs a, defined in Proposition 3.2, is 
completable. In particular, because of the results of §1 and §2, the local completability 
at the singular points of Y can be tested by using the criterion described in the second 
section. 
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