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The four colour conjecture is well known to be equivalent to the proposition
that every trivalent planar graph without an isthmus (i.e. an edge whose removal
disconnects the graph) has an edge colouring in three colours ([1], p. 121). By an
edge colouring we mean an assignment of colours to the edges of the graph so
that no two edges of the same colour meet at a common vertex, and the graph is
n-valent if n edges meet at each vertex. An edge colouring by three colours is
called a Tait colouring; a trivalent graph which has a Tait colouring can be split
in three edge-disjoint 1-factors, i.e. spanning monovalent subgraphs.

Let G = {0^02,0$} be a set of three monovalent graphs on a common
vertex set {x,, •••,x2n), each Gx containing n edges. We call such a set a Tait graph
of order n; edges of Gx will be called a-edges and Gx, a = 1,2,3 the factors of G.
We allow edges of distinct factors to join the same pair of vertices, that is G
(regarded as a trivalent graph with Tait colouring) may have multiple edges; no
loops are admitted.

A Tait graph also defines three 2-factors (i.e. bivalent spanning subgraphs)
Gap = {Ga, Gp}, 1 ^ a < fi :g 3. They consist of disjoint elementary circuits
formed by an even number of alternating a,jS-edges. We refer to these as the
circuits (in particular the (or,/f) circuits) of G; the total number of circuits in G
will be denoted by a{G). Each edge is associated with two circuits containing
the edge.

Because of the relevance of trivalent Tait colourable graphs to the four
colour problem, any non-trivial parity property of these graphs is of interest. The
purpose of this note is to reveal such a property.

We define an oriented Tait graph G as one in which each circuit is provided
with an orientation. In an oriented Tait graph each edge e has an orientation
index co(e), denned to be 0 or 1 according to whether the two associated circuits
have the same or opposite orientation on e. The orientation index of G is denned
<o(G) = Seaj(e) summed for all edges of G. Hence co(G) is the number of edges
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which have opposite orientation in the two associated circuits. Similar definition
applies to a>(C) when C is a circuit of G. Clearly a)(C) depends on the orientation
of the circuit, but the parity of co(C) is independent of orientation. For let 2k be
the length of C. If we change the orientation of C then the number of oppositely
oriented edges in the new orientation will be 2k — co(C), which is = co{C) mod 2.
In particular the parity of co(G) depends only on G as a Tait graph, but not on
the specific orientation of its circuits.

Our purpose is to prove:

THEOREM. CO(G) = a(G) (mod 2).

Or, the orientation index of a Tait graph {with any orientation of its
circuits) has the same parity as the number of its distinct circuits.

By our previous remark it is sufficient to prove the theorem for any fixed
orientation of the circuits. We may assume that G is connected; for if it is the
union of disjoint oriented Tait graphs Gt and G2 then trivially <a(G) = co(Gx)
+ o)(G2), <x(G) = crCGi) + a{G2), and the theorem is true for G if it is true for
Gi and G2.

The following notation will be found convenient. We denote by (x"y) an
a-edge joining x and y, and by (xxyy an a-edge directed from x to y in a given
orientation of the circuits. Similar notation will be used for arcs and circuits, e.g.
(xpy"z) is the arc consisting of a /?-edge (xpy) and an a-edge (y"z), and <x*y"z°'//*>
is an oriented (a, jS) circuit.

We first verify the theorem in two simple cases: when n = 1 and when G is
the complete 4-graph with Tait colouring.

If n = 1 then G has two vertices {x,y} and three edges (x1y), (x2y), (x3y).
Take an orientation in which the circuits are (x1y2xy, <x2j>3x>, (x3y1x}; then
a>0cV) = co(x2y) = co(x3y) = 1, co(G) = 3 = <r(G).

If G is the complete 4-graph with vertices {x, z,p, q] and edges (x1y), (x2p),
(x3q), (y3p), (y2q), Q>'<7), the circuits may be taken as (x1y2q1p2x}, (x2p3y2q3x},
(x3qlp3y1x}, giving <o(xly) = co(x2p) = co(x3q) = 1, co(y3p) = co(j2q) = co(plq)
= 0. Hence co(G) = 3 = CT(G).

In the general case we proceed by induction on the order of G. We have
already verified the theorem for n = 1. Since a triple edge between two vertices
x, y forms a Tait graph of order 1, disconnected from the rest, we may assume
that G (as a trivalent graph) has no triple edges.

Suppose that G contains a double edge (xly), (x2y), the other edges adjacent
to x and y being (x3p), (y3q) where p # q. Consider the Tait graph G* obtained
from G by removing x, y and the four edges adjacent to them, and inserting a new
edge (p3q). Now (p3x1y3q'> forms part of an oriented (1,3) circuit(p3x1y3q1U1py
in G, where U is a (1,3) arc of odd length in G* n G. Similarly <p3x2_y3q> forms
part of an oriented (2,3) circuit (p3x2y3V2p) in G, where V is a (2,3) arc of odd
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length in G* O G. Hence (p*qlUlp> is a (1,3) circuit in G*, (p3q2V2py is a
(2,3) circuit in G*, and all other circuits in G* are common to those in G. The
only remaining circuit in G not contained in G* is <x*y2x}; thus c(G) = c(G*) +1.

With the given orientations of the circuits, the orientation indices of the
edges removed from G are co(p3x) = a>(q3y) = co(x1y) = 0, a>(x2y) = 1, and the
orientation index of the new edge in G* is (o(p3q) = 0; hence a>(G) = <u(G*) + 1.
So co(G*) = a(G*) (mod 2) implies «(G) = <r(G) (mod 2), and the theorem is
true for G provided it is true for G*.

Assume now that all edges of G are simple, but G contains a triangle with
edges (x1y), (x2p), (y3p). We may assume that the edge (x1y) is not adjacent to
another triangle; for suppose that G has the property that every edge which is
adjacent to one triangle is adjacent to another one. Then there is a vertex q ^ p
such that (x3q), (y2q) are edges, and then (since (y3p), (x1y) and (x2p) form a
triangle and (y2q) is adjacent to (y3p)), (p1^) is also an edge. Hence the four
vertices x, y, p, q span a Tait subgraph disconnected from the rest and we have
already checked the theorem for this graph.

Assume then that (x1y) is adjacent to exactly one triangle with edges (x2p),
(y3p). Let the other two edges adjacent to x and y be (x3q), (y2r) with p ^ q # r
# p. Again we consider G* obtained from G by removing x,y and the five edges
adjacent to them, and inserting the edges (p2r), (p3q). The circuits in G involving
the removed edges are

<q3x2p3y2r3U2q}, <q3x1y3p1V1q}, (p3xly2rlWlp)>

where U is a (2,3) arc, V a (1,3) arc, W a (1,2) arc in G* n G. The new circuits
in G* are

(q3p2r3U2q\ (q'p'V'q}, tfrWp)

hence a(G) = <r(G*). The orientation indices in G are

a)(xV) = co(x3q) = co(j2r) = 0, co(x2p) = w(j3p) = 1,

and in G* a>(p2r) = co(p3q) = 0, all other edges common to G and G* have the
same orientation indices in both graphs. Hence a(G) = co(G*) + 2 = co(G*)
(mod 2), and the theorem follows by induction, provided that G contains at least
one triangle.

Let us finally assume that G has no multiple edges and triangles. Then if
(x*y) is an edge, the other edges adjacent to x and y are (x2p), (x3q), (y2r), (y3s)
with all six vertices x, y, p, q, r, s distinct. G* is now obtained from G by removing
these five edges and inserting (p2r), (q3s). Since {p2x1y2r} is part of an oriented
(1,2) circuit in G, there is a (1,2) arc (r1 Ulpy in G* n G (which may pass through
q or s), and similarly there is a (1,3) arc (tq

lV1sy in G* n G.
For the (2,3) arcs in G* n G there are three possibilities
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(i) (p3S2q}, (r3T2s}, where S,T are oriented (2,3) arcs of even length-
Circuits in G:

<p3S2q3x2p}, (r3T2s3y2
ry, (r1U1p2xiy2

ry, (qlV1s3y1x3
qy.

Circuits in G*:

(riWp2ry, (qxVxs3qy, <p3S2q3s2T'3r2
Py

where T denotes T in opposite orientation. Hence

<T(G) = a(G*) + 1.

The relevant orientation indices are

co(x1y) = co(x2p) = co(x3q) = 1, co(y2r) = co(y3s) = 0 in G,

a>(p2r) = a>(q3s) = 1 in G*.

Also co(T) = co(T') (mod 2) since T is of even length, and we have co{G) = co(G*)
+ 1 (mod 2), as required.

(ii) <p3S3r>, <s2T2<z>, where S,T are oriented (2,3) arcs of odd length in
G n G*. The relevant (2,3) circuit in G is (p3S3r2y3s2T2q3x2py, and in G*
(p3S3r2py, (s2T2q3sy, all other circuits as before. Hence <r(G) = a(G*) - 1.
Furthermore

^(x1^) = co(x2p) = co(x3g) = co(y2r) = co(y3s) = 1 in G,

co(j>2r) = co(q3s) = 1 in G*,

w(G) = w(G*) + 3, co(G) - co(G) = co(G*) - a(G*) (mod 2)

(iii) (p3S2sy, <r3T2qy, where S, T are oriented (2,3) arcs of even length in
G n G*. The relevant (2,3) circuit in G is <p3S253j2r3T2q3x2p>, and in G*
</>3S2sVr 'V;>>, so that a{G) = a(G*). Furthermore

co(xly) = co(x2p) — co(x3q) = 1, (o(y2r) = co(y3s) = 0 in G,

co(p2r) = 1, co(q3s) = 0 in G*,

co(T') = co(T) (mod 2) hence <u(G) = co(G*) (mod 2)

as required. We have exhausted all possibilities, and the theorem is proved.
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