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ABSTRACT. We used observations and modeling of Siple Dome, West Antarctica, a ridge ice divide, to
infer the importance of linear deformation mechanisms in ice-sheet flow. We determined the crossover
stress (a threshold value of the effective deviatoric stress below which linear flow mechanisms dominate
over nonlinear flow mechanisms) by combining measurements of ice properties with in situ deformation
rate measurements and a finite-element ice flowmodel that accounts for the effects of viscous anisotropy
induced by preferred crystal-orientation fabric. We found that a crossover stress of 0.18 bar produces
the best match between predicted and observed deformation rates. For Siple Dome, this means that
including a linear term in the flow law is necessary, but generally the flow is still dominated by the
nonlinear (Glen; n = 3) term. The pattern of flow near the divide at Siple Dome is also strongly
affected by crystal fabric. Measurements of sonic velocity, which is a proxy for vertically oriented crystal
fabric, suggest that a bed-parallel shear band exists several hundred meters above the bed within the
Ice Age ice.

INTRODUCTION
Ice divides that are frozen to their beds maintain a unique
stress regime; because surface slopes and shear stresses
approach zero, ice is essentially in pure shear, and the
effective deviatoric stress is low compared to elsewhere on
the ice sheet. This stress regime poses a challenge for ice-
dynamics modeling because the assumption in the shallow-
ice approximation that longitudinal stresses are negligible
is not valid. Yet, modeling the flow of ice near divides is
crucial to examining the histories and possible futures of all
ice sheets, including interpreting ice-core records and radar
profiles.
The ways in which this ice-divide stress regime alters

the ice flow pattern depend on the ice-sheet boundary
conditions and the constitutive relation between stress and
strain rate for ice (the flow law). Within two ice thicknesses
of a divide, longitudinal stress can contribute as much as, or
more than, bed-parallel shear stress to the effective deviatoric
stress. According to Glen’s flow law for ice with a stress
exponent n = 3, the effective viscosity is inversely propor-
tional to the square of the deviatoric stress (Nye, 1953; Glen,
1958). Thus, the region with the lowest deviatoric stress (near
the bed at the divide) is more resistant to deformation than
surrounding areas. Deformation is therefore concentrated in
the softer ice nearer the surface; the velocity of ice particles
along a flow path is slowed as they approach the deep
resistant ice. Raymond (1983) first described this special
divide flow pattern and noted that the age/depth scale at a
steady-state divide would be impacted by this flow pattern:
with a uniform accumulation rate, ice of a particular age
appears higher in the stratigraphic column at the divide than
it does at flank sites. The special divide flow pattern has
limited horizontal extent (blending into flank flowwithin one

or two ice thicknesses of the divide), and leads to an arch in
the isochrones, commonly called a ‘Raymond bump’.
Since Raymond’s initial analysis, several authors have

expanded on this theory of divide flow by looking at
perturbations to the flow field caused by different boundary
conditions. Nereson and others (1998b) explored the effects
of changes in elevation of bounding ice streams, which
can cause the divide to migrate. Hvidberg (1996) included
realistic thermal boundary conditions, and Nereson and
Waddington (2002) characterized isochrones and isotherms
more fully under migrating divides. Pettit and others (2003)
and Martı́n and others (2009a) modeled the effects of a
sliding boundary condition at the base of the ice.
In addition to the boundary conditions, ice properties can

also modify the special divide flow pattern. Conventionally,
glaciologists have used Glen’s law, which describes ice as a
power-law fluid (n = 3) constitutive relation between stress
and strain rate, where dislocation creep is the dominant
deformation mechanism. This theory has been successful at
the relatively higher deviatoric stresses found in most valley
glaciers and ice sheets. At low deviatoric stresses, however,
the deformation mechanism probably shifts to a more linear
mechanism such as diffusion creep or grain boundary
sliding (e.g. Langdon, 1996; Goldsby and Kohlstedt, 2001).
Waddington and others (1996) defined the crossover stress
as the effective deviatoric stress at which the cubic and
linear terms contribute equally to deformation. Morse (1997)
estimated the crossover stress as 0.25bar from surface
velocities at Taylor Dome, Antarctica. Pettit and Waddington
(2003) summarized the theory behind this possible shift in
flowmechanism, reformulated the flow law as a combination
of a linear and a cubic term to allow for multiple
deformation mechanisms (including different dependencies
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of ice properties on those mechanisms) and demonstrated the
impacts of the linear term on ice-sheet surface and internal-
layer shapes near ice divides. The crossover stress, which
may depend on temperature, impurities and crystal size, is an
intensive property of bulk polycrystalline ice (i.e. it does not
depend on sample size or geometry) that has still not been
rigorously measured because of the difficulties of isolating
its effect on ice flow from that of crystal fabric (the pattern of
preferred crystal orientation) and other ice properties. Our
primary goal in this study was to determine the crossover
stress using data and analysis of ice flow at Siple Dome,
West Antarctica, using a model that includes the effect of the
viscous anisotropy induced by a preferred crystal-orientation
fabric. Pettit and others (2007) and Martı́n and others (2009b)
showed that the crystal fabric can significantly modify the
special divide flow pattern and can impact the interpretation
of ice-core records for this site.
In this study, we used the model developed by Pettit and

others (2007) for divide flow, which includes a flow law that
accounts for the effect of crystal fabric on deformation.
Siple Dome was chosen for this analysis because it

has been studied extensively as the site of a recent
US Antarctic Program deep-drilling project. In our study,
we used available ice-core, surface-flow, mass-balance,
borehole sonic-velocity and in situ vertical-strain data to
constrain the flow-law parameters within a comprehensive
finite-element model of ice flow near the divide.
The sonic-velocity and vertical-strain data were essential

to this analysis. The vertical-strain instruments were adapted
specifically for this study. We used data from two high-
resolution custom instruments: fiber-optic displacement
sensors developed by the University of California, San
Diego (Zumberge and others, 2002), and wire strain meters
developed by the University of Alaska, Fairbanks (Elsberg
and others, 2004). The sonic-velocity profile was measured
by G. Lamorey. We converted it to express vertically oriented
fabric through a method based on that of Thorsteinsson
(2000).
We predicted strain rates and velocities using a finite-

element flow model that incorporates specified geometry
and ice properties as inputs. Given measured geometry
and estimates of the ice properties, this flow model solves
a forward problem. Through the corresponding inverse
problem, we can infer the ice properties of interest (in this
case the flow-law parameters) by comparing the measured
depth profile of vertical-strain rate and measured horizontal
surface velocities (including measurement uncertainties)
with the respective model outputs. We focused our analysis
on the measured vertical-strain-rate profile because this
profile is more sensitive than horizontal surface velocities
to ice rheology that varies with depth (horizontal surface
velocities are responding to rheological properties that are
integrated over the depth of the ice sheet). Furthermore,
the velocities and vertical-strain-rate profiles depend only on
the modern ice-sheet geometry and ice properties; unlike the
shape of internal layers (which are often used for inferring
ice-sheet dynamic behavior), which are based on past ice
flow as well as the modern geometry and properties.

AN ANISOTROPIC CONSTITUTIVE LAW FOR ICE
Pettit and Waddington (2003) developed a two-term flow
law for isotropic ice that is simple to incorporate into ice flow
models but can encompass a range of deformation behaviors,

specifically the low-stress behavior seen near ice divides.
This flow law is:

ε̇ij = Γ(k
2 + τ2eff )τij , (1)

where ε̇ij and τij are the strain-rate and deviatoric-stress
tensors (i, j = 1, 2, 3), τ2eff is the second invariant of the
deviatoric-stress tensor, and

Γ = Γoe
−Q/RT , (2)

where

Γo = E (z)Ao. (3)

The associated effective viscosity, ηeff , is:

ηeff =
1

Γ(k2 + τ2eff )
. (4)

In this formulation, we incorporate processes that stiffen
or soften the ice isotropically within Γo; therefore we
call this the ‘isotropic flow-law coefficient’. The ‘isotropic
enhancement factor’, E (z), combines all processes that affect
the softness of ice isotropically (including a dimensionless
enhancement factor due to crystal size) and Ao represents
a softness parameter for clean Holocene ice (Ao is the
same as the conventional temperature-independent softness
parameter used in the n = 3 form of Glen’s law; units
Pa−3 s−1). Q is the activation energy for creep, T is the
temperature and R is the gas constant.
In this formulation the ‘crossover stress’, k , is a threshold

value of the effective deviatoric stress at which the linear and
cubic terms contribute equally to the total strain rate. It is a
property of the ice that can be described by:

k =
[
E (l)

E (nl)
e−(Q

(l)−Q (nl))/RT
] 1
2

ko, (5)

where superscripts (l) and (nl) refer to linear and nonlinear
deformation mechanisms, respectively. As shown in this
expression, the crossover stress depends on temperature
only when the linear and nonlinear flow mechanisms have
different activation energies, Q . Furthermore, the crossover
stress also depends on impurities and other isotropic
enhancement processes only when those processes are
different for linear and nonlinear flow mechanisms. When
k/τeff � 1, the conventional form of Glen’s law emerges.
This flow law does not, however, provide a straightforward

way for incorporating the anisotropic deformation due to
preferred crystal orientation, because, for anisotropic ice,
one component of the stress tensor can induce strain rates
in other components of the strain-rate tensor. Placidi and
others (2010) have designed the most comprehensive and
successful model of anisotropic flow using the enhancement
factor in Equation (3). Most other ice-sheet flow models
which incorporate the effect of crystal fabric on flow use
mathematically more complicated sets of assumptions that
allow for fabric to induce deformation in directions different
to the applied stress (e.g. Mangeney and others, 1996;
Castelnau and others, 1998; Gödert and Hutter, 1998; Gillet-
Chaulet and others, 2005, 2006; Morland and Staroszczyk,
2006; Pettit and others, 2007). However, this makes large-
scale flowmodels computer-processing intensive. The ability
for fabric to induce deformation in directions different to the
applied stress is often necessary because ice crystals have
only two easy-slip systems, which are within the basal plane;
deformation on other slip systems being >60 times harder
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(Duval and others, 1983). The easy slip on the basal plane
makes deformation of a crystal similar to that of a deck of
cards. As a result, an ice aggregate with crystal c-axes aligned
in the same direction is much softer in simple shear parallel
to the basal planes than an aggregate with randomly oriented
crystals. Since crystals within an ice sheet are known to
develop a preferred orientation as the ice sheet evolves (e.g.
Alley, 1992), incorporating deformation due to a preferred
crystal fabric into a flow law may improve our ability to
predict real ice-sheet behavior through models.
We used the same anisotropic flow law as Pettit and

others (2007), originally developed by Thorsteinsson (2001).
Thorsteinsson’s flow law is based on the homogeneous stress
assumption which states that the bulk deformation of the ice
aggregate is the average deformation of all the crystals within
the aggregate (Sachs, 1928). Our model assumptions are
similar to those of Gödert and Hutter (1998) and Gagliardini
and Meyssonnier (1999). The resolved shear stress on the
basal plane of each crystal depends on its orientation relative
to the applied stress. The resolved shear stress drives the
deformation within the crystal. Thus, crystals with c-axes
oriented in a direction nearly parallel to the applied stress
have a smaller resolved shear stress in the basal planes and
deform at a slower rate than crystals with c-axes oriented in
a direction more perpendicular to the applied stress.
To build a flow law from this theory, Thorsteinsson (2001)

used a statistical distribution of crystal orientations within
an aggregate to determine the bulk deformation. The crystal
fabric near an ice divide typically has a cluster of c-axes
oriented vertically. This type of fabric can be described by
a ‘cone angle’, the half-angle of a cone within which all
crystals in an ideal block of ice are uniformly distributed.
(In real ice, the distribution is not uniform and there are
outliers; its cone angle is that of the ideal block of ice that
produces the same bulk strain rate for a given bulk stress.)
Thorsteinsson derived an analytical solution to describe the
deformation of the bulk material for a given cone angle with
a linear relation between the resolved shear stress and the
strain rate on the basal plane (Pettit and others, 2007). This
bulk flow law, using the Sachs assumption of homogeneous
stress (Sachs, 1928), can be written:

ε̇ij =
1
ηeff⎡

⎣aτ11 + cτ22 + bτ33 dτ12 eτ13
dτ12 cτ11 + aτ22 + bτ33 eτ23
eτ13 eτ23 b(τ11 + τ22 − 2τ33)

⎤
⎦,
(6)

where coefficients a, b, c, d and e are given as functions of
cone angle, α, (derived by Pettit and others, 2007) and where
ηeff is the bulk isotropic effective viscosity (Equation (4)). For
plane strain, substituting velocity gradients for strain rates
(ux = ε̇11, wz = ε̇33, (uz + wx )/2 = ε̇13), the conservation
laws of momentum and mass are:

ηeff

(−1
3b

a − b
2a + b

− 1
2e

)
uxx + ηeff

1
2e
uzz − px = 0, (7)

1
ηeff

1
2e
wxx + ηeff

(−1
3b

− 1
2e

)
wzz − pz = ρg , (8)

ux +wz = 0, (9)

where

a =
1
48
(100+95cosα+36cos 2α+9cos 3α) sin2

(
α

2

)
, (10)

b =− 1
12
(20+25cosα+12cos 2α+3cos 3α) sin2

(
α

2

)
, (11)

e =
1
8
(10+4 cosα+3cos 2α+2cos 3α+cos 4α). (12)

Note that in the Pettit and others (2007) derivation, incom-
pressibility (Equation (9)) was used to produce Equations (7)
and (8). For an isotropic crystal fabric (cone angle α = 90o),
a = 2/3, b = −1/3 and e = 1. For pure single-maximum
fabric (α = 0o), a = 0, b = 0 and e = 5/2.
Compared to other anisotropic flow laws (e.g. Azuma,

1994; Castelnau and others, 1996) this formulation generally
under-predicts the magnitude of anisotropic enhancement
(Thorsteinsson, 2001), which limits how successfully the
model can predict observations. As defined, the unknown
scalar parameters, E , cannot fully account for this model
limitation. Furthermore, the Thorsteinsson (2001) flow law
is based on a linear relation between deformation rate and
resolved shear stress on the basal plane within a single
crystal, which also limits its universal applicability for ice.
We have assumed that the effects of these two limitations
on this study are small compared to the magnitude of
the anisotropic enhancement, for the following reason. The
linear constitutive relation assumed by Thorsteinsson applies
only to individual elements in the model domain. The
relation we used to describe bulk effective viscosity, however,
is a nonlinear flow law. As shown by Pettit and others (2007),
this combination of flow laws approximates the pattern of
behavior due to crystal fabric of the fully nonlinear system
without the mathematical complexity.
This model does not predict fabric evolution. Although

crystal fabric is continually evolving in an ice sheet, the
question posed here does not require the model results
to be time-integrated. Instead, we use the flow law to
relate the instantaneous stress field (imposed by the present
geometry), the instantaneous strain-rate field (from in situ
measurements) and the instantaneous crystal-orientation
fabric (based on borehole measurements). As long as our
extrapolation of the fabric data across the ice divide is
realistic, the analysis we present here does not depend on
the evolution of fabric.

FINITE-ELEMENT ICE FLOW MODEL
To study the flow at Siple Dome, we used a finite-
element model similar to the ice-divide models developed
by Raymond (1983) and Hvidberg (1996). Pettit (2003) and
Pettit and others (2003, 2007) described other variations of
this model. The assumptions for the present study include:

The ice deforms in plane strain; when the crystal fabric
is anisotropic, this requires a three-dimensional stress
field to keep the ice constrained to flow within the
plane. This type of model best represents a ridge ice
divide, such as Siple Dome (Nereson and others, 1996) or
Roosevelt Island, West Antarctica, (Conway and others,
1999), where the primary deformation is perpendicular
to the ridge line (see Fig. 1).

The temperature field is specified.

The present geometry is specified.
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Fig. 1. The Siple Coast and the Ross Sea embayment, West Ant-
arctica. Siple Dome is an inter-ice-stream ridge on the Siple Coast.
Shaded regions represent Mercer Ice Stream (former Ice Stream A),
Whillans Ice Stream (former Ice Stream B), Kamb Ice Stream (former
Ice Stream C), Bindschadler Ice Stream (former Ice Stream D),
MacAyeal Ice Stream (former Ice Stream E) and Echelmeyer Ice
Stream (former Ice Stream F). The dot on Siple Dome approximately
identifies the summit location, the dashed line is the ridge crest, and
the solid line represents the cross section modeled here.

The upper surface is stress-free.

The horizontal-velocity profile on the flank boundary
(at 30 ice thicknesses from the divide) carries away
the integrated mass balance from the divide to the
boundary, in order to satisfy global mass conservation for
a steady-state ice sheet. Because our boundary is more
than 20 ice thicknesses from the divide, the results for
the region within 10 ice thicknesses of the divide are
insensitive to the details of the horizontal-velocity profile
on the flank boundary (Raymond, 1983; Schøtt and
others, 1992). In practice, we begin a model run with a
laminar flow profile at the boundary. As velocities within
the ice sheet are iteratively calculated, we update the
shape of the horizontal-velocity profile at the boundary
(while maintaining the flux) to account for the unique
rheological properties of the anisotropic ice and the
non-uniform temperature field. Ultimately, the model
converges on a velocity solution with a more realistic
shape for the horizontal-velocity profile at the boundary.

Ice rheology is described by the two-term isotropic flow
law shown in Equations (1–5) combined with Thorsteins-
son’s anisotropic flow law, Equations (7–9). The softness
parameter, Ao, is taken from Paterson (1994), and vari-
ations from this standard softness are expressed through
isotropic enhancement factors, E (z). The model is solved
iteratively using the Jacobi method. Figure 2 shows a
simplified flow chart of the nested iterations. First, an
isotropic effective viscosity, ηeff , is calculated for each
element using Equations (1–5), the momentum equations
expressed in pressure and velocity fields, and the velocity
field from the previous iteration (or initialized by using
the shallow-ice approximation velocity field). Then this

effective viscosity is substituted in Equations (7–9), which
are solved simultaneously over all elements for the new
velocity field, given the fabric (cone angle) in each
element. In Equations (7–9), we assume that ηeff and
a–e are spatially uniform; they apply to individual finite
elements in the model. The new velocity field is then
used to calculate a new isotropic effective viscosity and
the process is repeated to achieve convergence, defined
as when the absolute change in velocity over successive
iterations, summed over all elements, is below a tolerance
of 0.5 × 10−3ma−1. This two-step process allows us to
combine the nonlinear bulk flow of ice based on Glen’s
lawwith Thorsteinsson’s description of the effect of crystal
fabric on flow based on linear crystal deformation rates.

The measured cone-angle profile at the divide is
extrapolated to the flanks as a function of normalized
height, z/H(x), where z is the height above the bed,
x is distance from the divide and H is the ice thickness.
This assumption is based on the idea that ice of similar
age and depth has experienced similar strain history and
therefore has developed similar fabric. Fabric develops
through shear strain as it moves horizontally as well,
which is not included in this assumption; therefore, the
real distribution of fabric may have stronger fabric on the
flanks than we assume in this model.

The model solves the flow equations on a 64×23 grid of
nine-node quadratic elements for pressure and velocity
fields. We use a finer grid near the divide and in regions
where ice properties have strong gradients.

SIPLE DOME, WEST ANTARCTICA
Siple Dome (81.65o S, 148.81oW) is a 1000m thick ridge
of slow-moving ice between Kamb and Bindschadler Ice
Streams on the Siple Coast of West Antarctica (Fig. 1). The
summit region has been in steady state for several thousand
years (Nereson and Raymond, 2001; Pettit and others, 2001;
Pettit, 2003) and it has been an elevated dome-like feature
for much of the Holocene and possibly since the Last Glacial
Maximum (Nereson and others, 2000). The internal structure,
as imaged by ice-penetrating radar, shows a distinctive arch
in the layers under the divide (Raymond and others, 1995;
Scambos and Nereson, 1995; Jacobel and others, 1996).
Assuming these layers represent the pattern of isochrones,
this arch implies that nonlinear deformation mechanisms
contribute significantly to the deformation (Raymond, 1983).
However, the characteristic deviatoric stress (as defined by
Waddington and others, 1996; Pettit and Waddington, 2003)
is 0.2 bar, low enough that near-linear flow mechanisms
may contribute measurably to the deformation. These
characteristics make Siple Dome ideal for a study of the
effects of rheological processes on divide flow.
In addition to the ice-core data available for Siple

Dome, a surface strain network provides surface flow;
snow pits, shallow cores and ice-penetrating radar provide
spatial and temporal accumulation-rate patterns; instruments
embedded in the ice provide vertical-strain measurements;
and borehole sonic-velocity measurements provide crystal-
fabric information. As described in detail below, we
incorporated most of the available data into our analysis:
the measured divide geometry, accumulation rates, borehole
temperatures and sonic log provide inputs to the model,
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while the strain data (both on the surface and at depth)
provide constraints on possible solutions.

Model inputs
Geometry
The surface topography along the cross section that we
studied (the line across the dome in Fig. 1) was measured
using GPS data (Raymond and others, 1995; Scambos
and Nereson, 1995; Nereson and others, 1996). The bed
topography came from ice-penetrating radar (Raymond and
others, 1995; Jacobel and others, 1996). Near the divide,
flow appears to be parallel to the cross section (Nere-
son, 1998); we therefore assumed two-dimensional plane-
strain flow.

Accumulation rate
The pattern of accumulation rate at Siple Dome is driven
primarily by the topography. Storms generally approach
from the north, oceanward, side of the divide, depositing
more of their moisture on the north side, leaving the
south side significantly drier (Bromwich, 1988). Nereson
and others (2000) observed this trend in the pattern of
radar-detected internal layers. They used a kinematic steady-
state ice flow model to predict internal layer shapes as
a function of a steady-state accumulation pattern across
the dome. The accumulation pattern Nereson and others
(2000) derived from radio-echo sounding (radar) images
provides only relative accumulation rates. Even with a
depth/age scale, extracting historical accumulation patterns
is not straightforward (Waddington and others, 2005). In our
analysis, we used the Nereson accumulation pattern scaled
to a point measurement of the modern 42year average of
0.132ma−1 ice-equivalent accumulation rate at the divide,
determined by Hamilton (2002) based on gross-β analysis
on a shallow core to detect nuclear bomb fallout layers
from 1955.

Temperature
The temperature profile at Siple Dome was measured both
in the deep borehole 500m south of the summit by the
US Geological Survey and the University of Washington
(MacGregor and others, 2007) and in a hot-water-drilled
borehole at the summit by the California Institute of
Technology (Engelhardt, 2004). Engelhardt (2004) also
measured a shorter profile to ∼300m depth at the flank
strain-gauge instrumentation site ∼7 km northeast (81.60o S,
148.69oW).
In a steady-state ice sheet, both advection and diffusion

can contribute significantly to the temperature field if
the Peclet number is large. As we described above, the
vertical-velocity field near a divide is altered by low-stress
behavior such that an arch forms in the isochrones. The
process that produces this arch also produces an arch
in the isotherms by affecting the advection term in the
heat equation. We determined the temperature for our
entire model cross section by adapting the two-dimensional
steady-state advection/diffusion kinematic model of Nereson
and Waddington (2002) constrained by the measured
temperature profile at the divide.
The Nereson–Waddington thermal model uses a kinematic

velocity field based on the shape-function method of Reeh
(1988). The shape function for horizontal- and vertical-
velocity smoothly varies from divide to flank, with divide
and flank end-member profiles based on Dansgaard–Johnsen

Velocity field from
previous time-step or from 
shallow-ice approximation

Calculate pressure
field from current geometry

Calculateη     from pressure 
and velocity field using momentum 
equations with isotropic Glen’s law

from h    and pressure,
momentum equations that 

include fabric (Equations (6–12))

Begin next time-step

Is difference between velocity fields
less than tolerance?

Calculate difference between 
current and previous 

velocity field estimates

Yes

No

eff

Calculate new velocity field

η

effη

Fig. 2. A flow chart showing the nested loop used to calculate the
effective viscosity and the influence of fabric on the flow. Note
that in the models run for this inverse problem we do not use
multiple time-steps. Instead we initiate the model with velocities
calculated from the shallow-ice approximation and then iterate to a
converged new velocity field. (For the isochrone calculations shown
in Figure 9 we do evolve the ice sheet through multiple time-steps
until it reaches a steady state, for comparison with internal layering
from radar imagery.)

profiles (Dansgaard and Johnsen, 1969). We scaled the
velocity field using vertical ice velocities at the surface,
as derived from the local accumulation rate. We adjusted
the bulk values of thermal conductivity, specific heat and
geothermal flux in the model to best fit the measured
temperature profile at the divide. We then applied these
values to the entire ice-sheet cross section. We ultimately
used 2.1Wm−1K−1 for conductivity, 1700 J kg−1K−1 for
specific heat and 70mWm−2 for the geothermal flux.
There are two primary sources of uncertainty in our

thermal model. First, although the temperature field is
dependent on the history of surface temperature and ice
flow, we do not explicitly account for this. By best-fitting the
model to the modern temperature profile, we minimize this
uncertainty. Second, although Siple Dome has been neither
thickening nor thinning in the late Holocene (Pettit, 2003;
Waddington and others, 2005; Price and others, 2007),
there is evidence of slow divide migration in the recent
past (Nereson and others, 1998a). The range of possible
migration speeds found by Nereson and others (1998a) is
0.05–0.50ma−1. We included a migration rate in the middle
of this range (0.26ma−1) in our calculation. The range of
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Fig. 3. The cone angle was derived from the sonic log of the
borehole. Grain size was derived from thin sections of the ice
core (DiPrinzio and others, 2005). Temperature is from a hot-water-
drilled borehole at the summit (Engelhardt, 2004). The calcium
concentration is from ice-core samples (MacGregor and others,
2007). The approximate ages are given on the right vertical axis
based on the combined timescale of Taylor and others (2004a).
Note the correspondence of the band of tight fabric with small
grains between 700 and 800m depth. Our assignment of Holocene,
Wisconsin and recrystallized ice regions is an estimate based on ice
properties.

possible migration rates introduces some uncertainty in the
temperature field.
The additional temperature measurements made by Engel-

hardt (2004) on the flank provide one location with which
to check our temperature calculation. All of our calculated
temperatures in that location are less than 0.5◦C from
the measured values. We estimated, using the Arrhenius
temperature relation in the flow law, that an uncertainty of
0.5◦C would contribute an uncertainty of ±5% error in our
strain-rate calculations.

Crystal size
Crystal size may be important where the crystals are small
(Cuffey and others, 2000b; Goldsby and Kohlstedt, 2001).
However, it is unclear whether crystal size is an independent
factor or whether it is driven by impurity content and the
strain-rate field (e.g. Gow and Williamson, 1976; Alley and
others, 1986a,b; Jacka and Li, 1994; De Bresser and others,
2001; Durand and others, 2006; Iliescu and Baker, 2008).
In this study, we assumed that crystal-size effects can be
incorporated into the isotropic enhancement factors as a
dimensionless crystal-size enhancement factor.

Crystal orientation
As preferred crystal orientation can alter local strain-rate
patterns by up to an order of magnitude, crystal orientation
is an important model input. We use observations of sonic
velocity converted to cone angles to provide a profile
of crystal fabric. Thorsteinsson (2000) describes the basic
method for converting compressional wave velocity into
cone angle, which relies on the assumption that viscous

anisotropy can be directly related to elastic anisotropy and
that the fabric can be well described by a single-maximum
vertical preferred orientation.
The cone-angle profile is shown in Figure 3, along with

crystal radius data (DiPrinzio and others, 2005), temperature
(Engelhardt, 2004) and calcium concentration (MacGregor
and others, 2007) as a function of depth and age (Taylor
and others, 2004b). We include crystal size, temperature and
calcium concentration in this plot to highlight the structural
difference in the ice at different depths.
The sonic log shows a distinct layer of extremely tight

vertical fabric, bounded by large gradients in cone angle.
The upper transition begins at 696m (∼20 ka bp) and ends at
680m (∼17.4 ka bp) when the crystal size abruptly increases
and the calcium concentration jumps. An increase in crystal
size is typical of the boundary between Holocene ice
and deeper Ice Age ice (e.g. Paterson, 1994, p. 193); one
theory suggests that Ice Age crystals are smaller because
they initially grew more slowly due to lower temperatures
(Lipenkov and others, 1989) and higher dust content
(Paterson, 1991). This theory provides one explanation as to
why the transition to larger crystals and weaker fabric at Siple
Dome is slightly deeper (earlier in time) than the transition
to a warmer climate expressed by stable isotopes (Taylor and
others, 2004a). The offset can be explained if the warmer
temperatures of the early Holocene affected crystal growth
in the 10–20m of Ice Age firn nearest the surface, but did not
affect the dust concentration. This is possible, considering
that the timescale for advection (∼ z/ḃ ≈ 200 years for
z = 20m and ḃ = 0.1ma−1) is 1.5 orders of magnitude
longer than the timescale for diffusion (∼ z2/K ≈ 13 years
for a thermal diffusivity of K = 10−6 m2 s−1). In addition,
the possibly lower accumulation rates during the Ice Age
(Spencer and others, 2006) would enhance this difference in
timescales.
The deeper transition in the cone-angle profile occurs

between 756m (−10◦C) and ∼805m (−8◦C). We identify
this transition as the upper bound of dynamic recrystalliza-
tion, which occurs as ice warms (typically above −10◦C;
Weertman, 1973).
In using the crystal fabric and other ice-core data in our

ice flow analysis, we assume that the ice properties vary
only with normalized depth. Realistically, there will be some
variation in ice structure with distance from the divide,
since ice properties are advected along particle paths. We,
however, assume that horizontal variations in ice properties
are small compared to vertical variations.

Chemical and physical impurities
Chemical and physical impurities affect the deformation rates
(e.g. Paterson, 1991; Cuffey and others, 2000a), but the
relations are complicated and often difficult to predict. We
assume that flow enhancements due to impurity content are
grain-scale isotropic effects that we can incorporate through
the isotropic enhancement factors.

Data used to constrain model outputs
Our analysis is unique because we incorporate measure-
ments of the vertical-strain-rate profile. We have data from
two sites: the divide (81.65o S, 148.81oW) and a flank site
(81.60o S, 148.69oW) 7 km to the northeast of the divide
along the same flowline. We used two types of instruments:
optical-fiber displacement sensors (effective gauge lengths
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174 and 178m) and wire-resistance strain gauges (gauge
length 1m).

Optical-fiber displacement sensors
The optical-fiber instruments, developed by Zumberge and
others (2002), use a pair of dual-fiber-optic cables, one short
and one long, to measure the total strain between the fiber
end points. Each dual-fiber cable consists of a transmit fiber
and a return fiber which are spliced together at the bottom.
The cable is anchored at the surface and at depth, and
the length of the fiber between anchors is measured using
an electronic distance meter. The length of each cable is
compared to the other cables, which have bottom anchors
at different depths within the ice sheet. The effective gauge
length for a pair of cables is the vertical distance between the
bottom anchors. Within each cable, the fibers are housed in
a stainless-steel sheath, so the fibers can move and deform
freely except at the anchors.
At each of the two sites, cables were lowered into water-

filled boreholes and allowed to freeze into the ice. Five
80m cables were paired with five longer cables, whose
lower anchors were spaced evenly with depth in the ice
sheet. The fibers were pre-stretched with a 12 kg mass,
allowing us to measure vertical compression of the ice.
We monitored the length of each fiber using a specially
adapted electronic distance meter during a few weeks each
summer for 4 years. Subsequently, the data were corrected
for temperature, optical/physical length ratio (Zumberge and
others, 2002) and horizontal shearing of the boreholes
(appendix C of Pettit, 2003). From these data (Zumberge
and others, 2002; Elsberg and others, 2004) we determined
the average annual strain rate at a series of depths, with an
effective gauge length of 178m at the divide and 174m at the
flank. The average strain rates over 4 years are shown as open
(flank) and closed (divide) circles in Figure 4; the vertical bars
indicate the effective gauge length. The horizontal dashed
lines indicate uncertainties in the data, which are ∼3×10−6
to 9×10−6 a−1, as reported by Zumberge and others (2002).

Wire-resistance strain gauges
The fiber-optic instruments measure average strain over
depth intervals greater than 100m. We compared these
average strains with pointmeasurements using 1m longwire-
resistance gauges developed by Elsberg and others (2004).
These instruments use a Wheatstone bridge configuration
with one active wire that is 1m long and in contact with
the ice. The three other wires in the bridge are coiled
inside the gauge housing. Similar to the installation of the
fiber gauges, the active wires in these gauges were installed
under tension to allow measurement of vertical compressive
strains. A data logger on the surface recorded the voltage
balance of the bridge every 30–90min almost continuously
for 4 years. Thus, as the fiber instruments measure strain
rates averaged over time and space, the wire instruments
are essentially point measurements of strain rate logged
continuously. Although they exhibited some intriguing small-
scale time-dependent fluctuations (Elsberg and others, 2004),
in this analysis we used the average strain rate over the 4 year
experiment (after initial transients had dissipated). These data
are shown as squares in Figure 4. The individual instrument
uncertainties for the raw data are between 5×10−6 and
10×10−6 a−1. The data and uncertainties shown in the figure
combine these instrument raw data with correction factors
necessary for interpretation of the data as discussed below.
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Fig. 4. Strain-rate data from the wire (squares) and fiber-optic
(circles) instruments. The open symbols are flank-site measurements,
while the closed symbols are divide measurements. The vertical
bars represent the effective gauge length over which the fiber-optic
instruments measured average vertical strain. The 1σ errors for the
wire instruments are shown by horizontal dotted lines. The 1σ
errors for the fiber instruments are shown by horizontal solid lines;
however, these are often as small as the symbol. The three pairs
of data points marked ‘Redundant gauges’ are pairs of wire gauges
installed within 1m of each other to observe the local variability
of the ice. The spread of these data may be caused by rheological
inhomogeneities in the ice on a scale of <10m.

As these instruments measure strain over a short distance,
they are sensitive to inhomogeneities in the ice on scales
of decimeters to 10m. The instruments may measure
small-scale flow unrepresentative of larger ice volumes,
particularly where there are large spatial gradients in ice
properties. At three locations, we installed two instruments at
the same depth (and within 10m of each other horizontally)
to observe this variability in the strain data. The results for
each pair of redundant instruments are shown in Figure 4.
Observations from thin sections suggest that structural
variability exists (DiPrinzio and others, 2005), but this
variability is difficult to quantify with the sparse data.
Three corrections are applied to the wire data. First, the

correction for horizontal shear (appendix C of Pettit, 2003)
applies to the wires as well as the fibers; in general, this
correction is larger for the wire instruments than it is for the
fiber instruments. The difference in correction arises because
most of the horizontal shearing occurs in the deeper part
of the ice sheet. For the fiber cables, therefore, a small
percentage of the total effective gauge length is affected,
while for the wire instruments the entire instrument may be
affected by shearing. The largest corrections correspond to
the deepest four wire instruments.
Second, the raw wire strain-rate data show a systematic

offset of ∼12% at the divide and 16% at the flank relative to
the fiber strain-rate data. According to Elsberg and others
(2004), this is a result of unexpected coupling between
the wire anchor and the bridge casing during the freeze-
in process, that may increase the effective gauge length by
5–25%. In our study, we used their adjusted data. We
assumed a random error in this correction factor of 2%
and added it (in quadrature) to the overall uncertainty for
the instruments.
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The final correction involves only the uppermost wire
and fiber instruments. Near the surface, the firn undergoes
densification. Most, but not all, of this densification happens
in the upper 80m. Therefore, the wire instruments installed
at 80m depth recorded some measurable vertical-strain rate
due to densification of the ice. Densification also affected
the uppermost fiber gauge, but the error introduced is much
smaller, because only the densification below 80m affects
the fiber-length measurement and that is small compared to
the effective gauge length.
We calculated the rate of densification from a density

profile measured by J. Fitzpatrick (personal communication,
2003) and the depth/age scale determined by Taylor and
others (2004b) using:

ε̇dens(z) =
1

ρ(z)
dρ
dz
dz
dt
, (13)

where ρ is the density at depth z and dz/dt is the downward
velocity derived from the depth/age scale assuming steady
state. To find the correction factor for each instrument, we
averaged strain rate due to densification along the length of
each gauge. This correction factor has a stronger gradient
near the surface than it has deeper in the ice column. At
80m depth (the depth of the highest gauge) it is also most
sensitive to errors in the density profile, the depth/age scale
and the depth and effective gauge length of the instrument. In
Figure 4 we present the corrected data. It appears, however,
that this calculation may have over-corrected the 80m wire
gauge at the divide by 20–30 ×10−6 a−1. It may also have
over-corrected the flank 170m instrument, but by a smaller
amount. Because of the large uncertainty associated with this
correction factor, we have given less weight to these data
points in the inverse problem.

THE INVERSE PROBLEM
Our goal in this study was to determine the crossover stress,
k (Equation (5)), the effective deviatoric stress below which
linear deformation mechanisms dominate. We modeled the
stress field and strain-rate field in a cross section across
Siple Dome, using geometry, accumulation rate, temperature
field and ice properties as inputs. The ice flow law used in
the model has an isotropic component and an anisotropic
component. The isotropic component of the flow law
includes a linear term and a nonlinear term. The anisotropic
component describes the effect of vertically oriented c-axis
crystal fabric.
Our model has four unknown flow-law parameters: the

crossover stress, k , and three isotropic enhancement factors,
one for each of the three layers shown in Figure 3 (Holocene
ice, Ice Age ice and recrystallized ice). The crossover stress,
k , determines the relative importance of the linear term in
the flow law. As shown by Pettit and Waddington (2003),
the relative importance of the linear term influences the
difference between the shape of the profiles of vertical-strain
rate at the divide and the flank. If k � τeff , nonlinear
mechanisms dominate deformation and the divide vertical-
strain-rate profile has stronger curvature than the flank
profile. If k � τeff , linear mechanisms dominate deformation
and the divide and flank profiles have similar curvature. In
this analysis, we assume k is spatially uniform, although, as
defined in Equation (5), it can vary with temperature and
other ice properties (Pettit and Waddington, 2003).

Based on past studies of bulk ice properties (e.g. Paterson,
1991), we expected that each layer shown in Figure 3
would have distinct rheological characteristics. Therefore,
we defined a bulk isotropic flow-law coefficient, Γo in
Equation (3), as EjAo (j = 1, 2, 3), where E1 is for Holocene
ice, E2 is for Ice Age ice and E3 is for recrystallized ice.
We used the value of Ao (for clean, isotropic Holocene

ice) recommended by Paterson (1994), based on data
from multiple studies. If the physical processes are well
implemented in our model, and if Paterson’s average Ao is a
good representation of Holocene ice, then we would expect
our model to fit the data best when E1 ∼ 1. Although we
term these flow-law coefficients ‘isotropic’, they do include
some residual effects of crystal fabric that are not captured
by the description of anisotropy within our flow law.
We determined the best values for these four flow-

law parameters by matching the vertical-strain-rate profiles
calculated by the model to the vertical-strain-rate profiles
measured by the fiber-optic and wire instruments. We
systematically explored the four-dimensional parameter
space, beginning with a coarse grid that spanned the range
expected for each parameter, and finishing with a fine grid
to narrow in on the best-fitting parameter set.
We constrained the modeled vertical-strain-rate profiles

to be smooth and to fit the observations to within the
uncertainties. We chose a smooth vertical-strain-rate profile
because in a real ice sheet strong gradients in the strain rate
are moderated by redistribution of the stresses. In the trade-
off between these constraints, we relaxed the smoothness
criteria to allow for some curvature where the strongest
gradients in ice properties exist.
We chose the parameter set that best fitted the data to

within the measurement uncertainties through minimizing a
misfit function:

J =
1

T − p − 1
T∑
j=1

wj
(smj − sdj )2

μ2j
, (14)

where T is the number of data points, p is the number
of free model parameters (in this case p = 4) and sdj and
smj are the measured vertical-strain-rate data points and the
corresponding model outputs, respectively. In this function,
μj are the uncertainties in the strain-rate measurements and
wj is a weighting function designed to give more weight to
important data. Because thewire gauges are more sensitive to
heterogeneity in the ice on a length scale much smaller than
the finite-element mesh, we weighed these data less than the
fiber data, which represent an average over a length scale
larger than our mesh: we gave the wire data one-half the
weight of the fiber data. Althoughwe tested several weighting
functions, we ultimately used wj = 0 for the uppermost
wire strain gauges because the firn densification process
resulted in large variability that was difficult to quantify
and was not related to ice properties. In this formulation,
a misfit index less than 1 fits the data within 1 standard
deviation of the instrument uncertainty. Because of the
inherent heterogeneity of the ice on a scale smaller than
our finite-element mesh, which our model is not capable
of predicting, we do not expect our model to fit the data to
this degree.
The observations that we used in the misfit calculation

included not only the measured strain rates from both the
fiber-optic and wire instruments, but also the difference in
strain rate between the divide and the flank sites. It is this
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Fig. 5. Misfit index describing the model results for the four-dimensional parameter space. Although we have explored the parameter space
outside the range shown here, we show only the region near the best solution. Each row of plots has a different crossover stress (from 0.16
to 0.21 bar). Each column has a different Holocene enhancement factor, E1 (1.2 to 1.8). Each small plot has the same values of the Ice
Age enhancement factor, E2 (0.07 to 0.22), on the horizontal axis and the recrystallized-ice enhancement factor, E3 (0.05 to 0.25), on the
vertical axis. Darker shading indicates better-fitting parameter sets. Lighter shading indicates parameter sets which do not fit the data well.
White indicates no data.

difference that is sensitive to the linear term in the flow
law (Waddington and others, 1996; Pettit and Waddington,
2003). The calculated horizontal velocities at the surface are
much less sensitive to the ice rheological properties at depth
in the ice sheet than is the strain-rate profile. We included
velocity measurements in some misfit calculations, but not
in those presented here; their impact on the choice of best
models was negligible.

RESULTS AND DISCUSSION
Figure 5 shows the misfit index for the four-dimensional
parameter space in the region near the best-fitting parameter
set. Each row of plots has a different crossover stress, k ,
and each column has a different Holocene enhancement
factor, E1. Each small plot is J(E2, E3), showing the misfit
as a function of the Ice Age ice enhancement factor, E2,
and the recrystallized ice enhancement factor, E3. Black
regions indicate the best-fitting parameter sets, dark shading
indicates parameter sets that fit the data less well, lightly
shaded areas indicate parameter sets which do not fit the
data, and white regions reflect no data.
The pattern of dark areas shows the resolution of our

model. With the uncertainties in our model, all of the
parameter sets that produce misfit indices less than 2 are
valid, in that they fit the data to within 2 standard deviations.
In Table 1, we chose values for the best-fitting parameter
set (identified by a star in Fig. 5), which is in the center of
the cluster of valid parameter sets, on which to focus our
discussion. It is important to reiterate here that this model
accounts for deformation due to preferred crystal orientation
explicitly using the cone angle. Therefore, E1, E2 and E3

are isotropic enhancement factors that reflect softening or
stiffening due to impurities, crystal size or other related
effects. The enhancement factors only include the effect
of crystal fabric as residuals not captured in our flow law.
Because deformation rates in the shallower ice depend on the
deformation rates in the deeper ice, the three enhancement
factors are not independent in their effect on the misfit index.
This interdependence explains the shape of the shaded area
in the J(E2, E3) plots. For example, increasing the stiffness of
the Ice Age ice layer, E2, transmits more shear stress to the
deeper recrystallized ice. In order to fit the data, therefore,
the value of E3 must also change to accommodate this higher
stress yet keep the deformation rates within the measured
values.
The flank and divide strain-rate profiles for this best-

fitting parameter set are shown in Figure 6. The profiles
are generally smooth where there are no strong gradients
in ice properties, but have strong curvature at the depths
corresponding to the strong gradients in ice properties and
the strong gradients in measurements of vertical-strain rate.

Table 1. Best-fit solution for the four model parameters. The
rightmost column shows the range for which the misfit function
is <2

Model parameter Symbol Value Model resolution

Crossover stress k 0.18 bar ±0.02bar
Holocene ice E1 1.5 ±0.2
Ice Age ice E2 0.16 ±0.04
Recrystallized ice E3 0.13 ±0.01
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Fig. 6. Flank and divide strain-rate profiles for solution shown in
Table 1. The data are from Figure 4. The thick solid curves are the
best-fitting model results. The thin dashed curves result from the
same solution parameters but the model was allowed to evolve
until the surface profile was in balance with the accumulation
rate derived from the radar internal layers. The three layers within
the model are shown with the same shading as Figure 3. Within
the Ice Age ice layer, the double-headed arrows show depths where
the wire instruments indicate a very strong gradient in vertical-strain
rate. This vertical gradient may signify the existence of a shear band.

Through most of the depth of the ice sheet, each profile
follows the pattern expressed by the fiber data (vertical bars).
The modeled profiles fit the wire data less well, most likely
due to small-scale (<100m) inhomogeneities in the ice. This
conclusion is supported by the observation that the largest
disagreements between the model and the wire data occur
within the band of tight fabric (700–800m deep), where
the ice core shows variations in properties over short depth
scales (<10m). At both the flank and divide sites, there
is a strong gradient in measured strain rate between the
instruments placed ∼800m deep and the instruments placed
closer to 700m deep. This strong gradient may signify the
existence of a shear band. The effect of this shear band does
not appear in the fiber data because the fiber data represent
averages over spatial scales twice as large as the scale of the
shear band.
In Figure 7 we show the sensitivity of the model to each

unknown parameter, providing an indication of the influence
of each parameter on the flow. In each plot, the heavy solid
curves are the modeled strain-rate profiles for the best-fitting
parameter set (Table 1). The dashed curves are the strain-rate
profiles produced by the same model except for a ∼20%
increase in one parameter, and the thin solid curve shows
the results for a ∼20% decrease in one model parameter.
Figure 7a shows that the vertical-strain-rate profile at the
divide is much more sensitive to the crossover stress than is
the flank profile: as k increases, the divide profile approaches
the flank profile, while the flank profile changes little. For a
divide in which τeff � k , the linear term in the flow law is
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relatively large; there is little difference between the divide
and flank vertical-strain-rate profiles, and no arch develops
in the isochrones (Pettit and Waddington, 2003). Figure 7b
shows that the upper part of the vertical-strain-rate profile
(that within the Holocene ice layer) is most sensitive to
changes in the Holocene ice enhancement factor, E1. As
shown in Figure 7c, the strain-rate profiles at all depths
are least sensitive to the Ice Age ice enhancement factor,
probably because that layer is thin relative to the rest of the
ice sheet (∼10% of the thickness of the ice sheet) and it has a
strong vertically oriented fabric, which stiffens the ice in the
vertical direction and results in a small contribution from this
layer to the total vertical strain the ice sheet experiences. The
flank vertical-strain-rate profile is more sensitive than the di-
vide to the softness of the deepest ice (Fig. 7d). This is a result
of the much lower deviatoric compressive stress at the divide
compared to the flank due to the nonlinearity of the flow law.
Considering these sensitivities, we can assess the ability

of the model to predict the real strain-rate observations.
Near the bed at the divide, the model predicts deformation
rates larger than the measured values, while at the flank
it predicts deformation rates smaller than the measured
values. Decreasing the isotropic enhancement factor for the
recrystallized ice layer, E3, results in stiffer ice and smaller
deformation rates at the divide, better fitting the divide data,
but the model then fails to fit the data at depth at the
flank or in the upper layers. This failure to fit the divide
data and the flank data with the same model may be a
result of our assumption that the measured ice fabric can
be propagated downstream from the divide unchanged. An
increase in magnitude of the effect of crystal fabric may
be required for the model to fit all the data. The effect of
crystal fabric leads to stiffer ice in the bottom layers at the
divide (which is primarily experiencing vertical compression)
and softer ice in the bottom layers at the flank (which is
primarily experiencing horizontal shear). A strengthening of
this effect could be driven by a strengthening of the crystal
fabric (decreasing cone angle) as ice moves toward the flank.
Such a strengthening of the fabric could occur as a result of
the increase in bed-parallel shear stress and increasing shear
strain with distance from the divide. Stronger flank fabric
relative to the divide fabric will increase the difference in
strain rate between the flank and the divide in the lowest
layers and possibly result in a better-fitting model.
The different enhancement factors that we find in this

analysis suggest a different mix of grain-scale deformation
mechanisms for each ice type. A Holocene enhancement
factor of E1 = 1.5 implies that the upper part of the ice
sheet is ∼50% softer than average Holocene ice as reviewed
by Paterson (1994). This discrepancy may result from the
possibility that Paterson’s dataset includes data from ice that
is not isotropic. The lower two layers have enhancements
much less than 1, implying that the ice at depth is much
stiffer than Holocene ice. The Ice Age ice in our best-fitting
model is six times stiffer than the Holocene ice, yet the
model still fails to fully capture the small vertical-strain rates
that we measured. Thorsteinsson and others (1999) separated
the enhancement in bed-parallel shear deformation due to
crystal fabric from that due to isotropic processes for the
Dye 3 (Greenland) ice core (a flank site) and found that
the Ice Age ice needed additional softening in bed-parallel
shear to fit the borehole tilt data. Although these results are
for different ice sheets, both model/data mismatches can be
reduced by strengthening the effect of crystal fabric (making

the ice softer in horizontal shear to match the Dye 3 data
and stiffer in vertical compression to match the Siple Dome
data). An isotropic process could not improve the model/data
match at both sites. This suggests that either both models are
underestimating the effect of crystal fabric on flow or that
a different process may be acting to enhance the effect of
crystal fabric.
In the deepest recrystallized ice our model requires a

stiffness more than seven times that of Holocene ice to match
the measured flank data, and yet the model still fails to
capture the low vertical-strain rates at the divide. In this layer,
too, another process must be acting to stiffen the ice. One
possibility is that the large interlocking crystals in this ice may
impede the migration of grain boundaries, creating ‘drag’ in
the flow.
With only four adjustable parameters in our model, we

are limited in how much detail we can infer about the
flow. A more complete analysis would allow E (z) to be
a function of depth and to be further split into a linear-
term enhancement factor and a nonlinear-term enhancement
factor. Resolving these functions, however, would require a
much more extensive dataset.
In this analysis, the finite-element model calculates

modern deformation rates based on present geometry and
measured ice properties. This calculation does not involve
evolution. Nor does it explicitly rely on an assumption of
steady state. It is useful, however, to run the model using
the best-fitting parameter set (Table 1) through time to allow
the surface to evolve until the flow is in balance with the
accumulation-rate pattern. The thin dashed curves in Figure 6
show this steady-state model result, and Figure 8 shows the
corresponding horizontal- and vertical-velocity fields. The
curves in Figure 6 are measurably different between the two
models, particularly in the upper part of the ice sheet. This
mismatch may imply a weakness in our assumptions that the
dome is not thinning or thickening, that the accumulation
pattern is realistic and unchanging through time, and that
the divide flows primarily in plane strain (the first two
assumptions apply only to the time-evolved version of the
model, the third applies to both versions of the model).
Without further data we cannot determine the dominant
source of weakness in these assumptions.
Within the horizontal-velocity field (Fig. 8), the contours

of equal velocity (dashed curves) each have a ‘kink’ at
∼700m deep. This kink represents concentrated bed-parallel
shearing in the Ice Age ice, due to strong preferred
orientation of crystals. We call this concentrated shearing
the ‘false-bed effect’ because a typical horizontal-velocity
profile for an ice sheet concentrates shearing near the bed.
At Siple Dome, however, the surface has adjusted to the
presence of the soft layer, so that ice below the false bed
experiences less bed-parallel shear stress and, therefore,
deforms less than basal ice would in an ice sheet without
a layer of highly oriented ice. Russell-Head and Budd (1979)
observed a similar effect at Law Dome, Antarctica, and
Durand and others (2007) suggested the Dome C (Antarctica)
flow pattern may be affected similarly by layered ice of
different rheological characteristics.
In Figure 9 we plot the isochrones from the model in

which we assume that Siple Dome has been in steady
state since the deepest layer was deposited. These modeled
layers are overlaid on the radar image of isochrones for
Siple Dome. The history of Siple Dome is reflected in its
internal-layer structure, so we expect some mismatch when

https://doi.org/10.3189/002214311795306619 Published online by Cambridge University Press

https://doi.org/10.3189/002214311795306619


50 Pettit and others: Crossover stress at Siple Dome

Fig. 8. Dashed curves show horizontal- (a) and vertical-velocity fields (b) from the steady-state solution using the best-fitting parameter set
(Table 1). Bindschadler Ice Stream is to the right and Kamb Ice Stream is to the left. The dashed curves are velocity contours. Note the kink
in the horizontal-velocity contours, which results from the false-bed effect.

comparing observed isochrones with modeled isochrones.
The real history of Siple Dome includes migration of the
divide (Nereson and others, 1998a) and variation in past
accumulation rates and surface elevations (Waddington and
others, 2005). Acknowledging this non-steady-state behavior,
it is still valuable to compare the isochrones predicted by the
steady-state model with those observed. In the upper half of
the ice sheet, the arch in the predicted isochrones is generally
broader, but has a similar amplitude to the observed arch.
The observed layers are steeper on the northward side than
the modeled steady-state layers. Nereson and Waddington
(2002) predicted this isochrone steepening in their study of
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Fig. 9. Isochrones inferred for a steady-state ice sheet, using the best-
fitting model parameters (Fig. 6) are overlaid on the ice-penetrating
radar data of Raymond and others (1995). One observed layer at
mid-depth is traced as a slightly bolder line for comparison with the
modeled layers.

migrating divides. At mid-depth, we have traced one of these
layers in gray to show that the arch in the modeled isochrone
has a significantly larger amplitude than the arch in the radar-
imaged isochrone. One possible reason for this mismatch is
that over the history of Siple Dome, the effect of crystal fabric
has changed, most likely due to a change in the magnitude
and shape of the cone-angle profile. Since the Ice Age, the
gradient in cone angle at the Ice Age/Holocene transition has
strengthened and the transition has moved deeper in the ice
column.
The deeper layers, which will show the greatest effect of

crystal fabric (Pettit and others, 2007), were not detected
continuously by radar and therefore cannot be compared.

CONCLUSIONS
The results of this analysis provide insight into the deform-
ation of ice at low deviatoric stress. Pettit and Waddington
(2003) isolated the effect of a shift in flow mechanism at
low deviatoric stress for an idealized divide based on the
geometry of Siple Dome. Our initial goal in this study was
to build on that work to determine the importance of a
linear deformation mechanism in flow near a realistic ice
divide, incorporating many measurements of ice properties
and dynamics behavior at Siple Dome. This goal necessitated
incorporating a flow law that includes the effect of crystal
fabric, which Pettit and others (2007) isolated for an
idealized divide, again using Siple Dome as the basis of the
model geometry.
We found that the flow pattern at Siple Dome (as defined

by vertical-strain-rate measurements) does show influences
of both linear and nonlinear deformation mechanisms. We
found a crossover stress of k = 0.18 ± 0.02bar best fits the
observations at Siple Dome. Because the crossover stress is
an intrinsic ice property, not specific to Siple Dome, this
result implies that flow in ice sheets with a characteristic

stress, τchar =
[
2ΓH/ḃ

]−1/3
(as defined by Pettit and
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Waddington, 2003), less than or similar to 0.18 bar will be
affected by linear deformation mechanisms.
A second conclusion from this work is that the flow pattern

at Siple Dome is strongly dependent on the crystal fabric.
A band of highly oriented fabric and small crystals exists
at Siple Dome between ∼700 and 800m depth. This band
of highly oriented fabric affects the overall flow pattern in
the ice sheet by concentrating bed-parallel shear several
hundred meters above the bed, an effect we call the false-bed
effect. Below 800m the temperature exceeds −10◦C and the
ice is recrystallized, with large crystals and a broad single-
maximum c-axis fabric that impedes easy bed-parallel shear
in the deepest ice. The shift in fabric at ∼700m depth occurs
at the same depth as the Ice Age/Holocene transition. The
band of highly oriented crystals consists entirely of Ice Age
ice. This suggests there may be a strong correlation between
fabric development and climate history.
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