TWISTED GROUP ALGEBRAS AND THEIR REPRESENTATIONS

S. B. CONLON

(received 4 August 1963)

Introduction

Let \mathscr{G} be a finite group, \mathscr{F} a field. A *twisted group algebra* $\mathscr{A}(\mathscr{G})$ on \mathscr{G} over \mathscr{F} is an associative algebra whose elements are the formal linear combinations

$$\sum_{A \in \mathcal{F}} a_A(A) \qquad (a_A \in \mathcal{F})$$

and in which the product (A)(B) is a non-zero multiple of (AB), where AB is the group product of $A, B \in \mathcal{G}$:

$$(A)(B) = f_{A,B}(AB) \qquad (f_{A,B} \in \mathscr{F}, f_{A,B} \neq 0).$$

One gets the ordinary group algebra $\mathscr{F}(\mathscr{G})$ by taking each $f_{A,B} = 1$.

Twisted group algebras play a central part in Schur's theory of the projective representations of finite groups [17], [18]. They also arise naturally in the theory of ordinary representations. Let \mathscr{L} be an irreducible \mathscr{F} -representation of a normal subgroup \mathscr{H} of \mathscr{G} . Miss Tucker [21]¹ has shown that the analysis of the induced representation $\mathscr{L}^{\mathscr{G}}$ of \mathscr{G} depends on a twisted group algebra $\mathscr{A}(\mathscr{H})$ on a certain subgroup \mathscr{H} of \mathscr{G}/\mathscr{H} . Clifford [5] encountered much the same algebra in the analysis of the restriction to \mathscr{H} of an irreducible representation of \mathscr{G} .

The aim of the present paper is to develop the theory of twisted group algebras by exploiting their analogy with ordinary group algebras. This approach permits a unified treatment of such problems as Miss Tucker's cited above. It will be seen that the theory of ordinary group algebras carries over in considerable detail.

In § 1, a normalization theorem is proved which brings out the multiplicative similarity between ordinary and twisted group algebras. This theorem is fundamental for the subsequent work. In § 2, a two-fold generalization of Miss Tucker's paper is given. Firstly, the ordinary group algebras of \mathscr{G} and \mathscr{H} are replaced by twisted ones. Secondly, the representation \mathscr{L} is

¹ Kleppner [14] has extended the theory to infinite discrete groups.

assumed to be indecomposable rather than irreducible. As in Miss Tucker's theory, the analysis of $\mathscr{L}^{\mathfrak{s}}$ depends on the decomposition of a certain twisted group algebra into indecomposable left ideals.

A first step towards such a decomposition is to obtain the decomposition into two-sided ideals. This leads to the consideration, in § 3, of the blocks of a twisted group algebra. Here we follow the treatment of Rosenberg [16] rather than the original treatment of Brauer [4]. Finally, in § 4, we develop Higman's theory of relative projectivity [9], [11] and Green's theory of vertices and sources [8] for twisted algebras.

This paper is based on part of a Ph. D. dissertation submitted to the University of Cambridge. I gratefully acknowledge the help of Professors D. Rees and H. Cartan, and Dr. G. E. Wall, during the course of the work.

1. Normalization of twisted group algebras

We take a twisted group algebra $\mathscr{A}(\mathscr{G})$ as defined in the introduction. For $A \in \mathscr{G}$, we write $\mathscr{C}(A)$ for the centralizer of A in \mathscr{G} . Let \mathscr{F}^* denote the set of non-zero elements of \mathscr{F} . Let p be the characteristic of \mathscr{F} ; we allow p = 0. E will be the identity element of \mathscr{G} .

The elements k(A) of $\mathscr{A}(\mathscr{G})$ $(k \in \mathscr{F}^*, A \in \mathscr{G})$ form a multiplicative subgroup Γ . The elements k(E) form a multiplicative subgroup K such that $\Gamma/K \cong \mathscr{G}$, and the (A) are coset representatives for K in Γ .

An element $A \in \mathscr{G}$ is called a *u*-element if

$$(B)^{-1}(A)(B) = (A),$$

for all $B \in \mathscr{C}(A)$. Thus the centralizer of (A) in Γ consists of all multiples k(B), where $k \in \mathscr{F}^*$, $B \in \mathscr{C}(A)$. All conjugates of A are also *u*-elements.

The condition of associativity of $\mathscr{A}(\mathscr{G})$ is equivalent to

$$f_{A,B}f_{AB,C} = f_{A,BC}f_{B,C},$$

for all A, B, $C \in \mathcal{G}$. Thus the set $\{f_{A,B}\}$ forms a factor system² for \mathcal{G} . If we take a new basis of $\mathcal{A}(\mathcal{G})$

$$(1) (A) = d_A(A),$$

where $d_A \in \mathscr{F}^*$, $A \in \mathscr{G}$, then the $f_{A,B}$ are modified to

$$f_{A,B} = \frac{d_A d_B}{d_{AB}} f_{A,B}.$$

² The factor systems $\{f_{A,B}\}$, modulo the principal factor systems $\{d_A\}$ form an abelian group, which Schur [17] has called the "Multiplikator". Further discussion of the group is found in [2] and [3].

[2]

Transformations given by (1) correspond to taking a different choice of coset representatives in Γ/K .

THEOREM. Let n be the order of G. Let D be the largest normal p-subgroup of G if $p \neq 0$, $D = \{E\}$ if p = 0. After making a finite number of primary radical extensions to the field F, if necessary, it is possible to choose the coset representatives (A) such that:

(a)
$$\begin{cases} f_{A,B}^{n} = 1 \ (n \text{ odd}) \\ f_{A,B}^{2n} = 1 \ (n \text{ even}) \end{cases}$$
 (for all $A, B \in \mathcal{G}$),

(b) the representatives $(A), (B), \dots, (A, B, \dots, \in \mathcal{D})$ form a normal subgroup of Γ ,

(c) $(A)^{-1} = (A^{-1})$ (all $A \in \mathscr{G}$),

(d)
$$(X)^{-1}(A)(X) = (X^{-1}AX)$$
 whenever A is a u-element, $X \in \mathcal{G}$.

PROOF. (i) Since

we have

$$f_{A,B}^{d} = h_{A} h_{B} / h_{AB} \qquad (\text{for } A, B \in \mathcal{D}),$$

where d = order of \mathcal{D} , $h_A = \prod_{C \in \mathcal{D}} f_{A,C}$. Replacing (A) by $h_A^{-1/d}(A)$, we have

 $f_{A,B}f_{AB,C} = f_{B,C}f_{A,BC},$

$$f^{d}_{A,B} = 1 \qquad (\text{for } A, B \in \mathscr{D}).$$

Since d is a power of p, $f_{A,B} = 1$, all A, $B \in \mathcal{D}$. If $X \in \mathcal{G}$, $A \in \mathcal{D}$,

$$(X)^{-1}(A)(X) = l(X^{-1}AX),$$

where $l \in \mathcal{F}^*$, and so

$$(X)^{-1}(A)^{d}(X) = l^{d}(X^{-1}AX)^{d}$$

Thus

$$l^d = 1.$$

Hence

l = 1, and (b) holds.

(ii) Similarly,

$$f_{A,B}^{n} = k_{A}k_{B}/k_{AB} \qquad (all \ A, B \in \mathscr{G}),$$

where $k_A = \prod_{C \in \mathscr{G}} f_{A,C}$. For each $A \in \mathscr{G}$, choose a definite value for $k_A^{-1/n}$. Replacing (A) by $k_A^{-1/n}(A)$, we may assume $f_{A,B}^n = 1$ for all $A, B \in \mathscr{G}$. (For $A, B \in \mathscr{D}$,

$$1 = f_{A,B}^n = k_A k_B / k_{AB},$$

whence $k_A = 1$; choose $1^{-1/n}$ in \mathscr{F} as 1; then (b) still holds.) (iii) Let $\mathscr{K} = \{A_1, \dots, A_r\}$ be any conjugacy class of *u*-elements not in \mathscr{D} . The *u*-condition tells us that (A_1) has r conjugates in Γ . Choosing (A_1) arbitrarily and taking $(A_2), \dots, (A_r)$ as its other conjugates in Γ we have condition (d) holding, and we still have $f_{A,B}^n = 1$.

(iv) Consider the elements in \mathscr{G} not in \mathscr{D} . For such an element, $(A)(A^{-1}) = l(E)(l \in \mathscr{F}^*)$. For one, say A, out of each pair A, A^{-1} of non-involutory, non-u elements, leave (A) as before and replace (A^{-1}) by $(A)^{-1} = l^{-1}(A^{-1})$. For each non-u involution A, replace (A) by $l^{-\frac{1}{2}}(A)$. As $l^n = 1$, $(l^{-1})^n = 1$, n odd, $(l^{-\frac{1}{2}})^{2n} = 1$, n even.

Now consider the *u*-class

$$\mathscr{K} = \{A_1, \cdots, A_r\}.$$

We still have the choice of (A_1) at our disposal. If $\mathscr{K} \neq \mathscr{K}^{-1} = \{A_1^{-1}, \cdots, A_r^{-1}\}$, we choose (A_1) , (A_1^{-1}) as above in the case $A \neq A^{-1}$. If $(X)^{-1}(A_1)(X) = (A_i)$, then $(X)^{-1}(A_1)^{-1}(X) = (A_i)^{-1} = (A_i^{-1})$, by choice of (A_i) , (A_i^{-1}) . Finally, let \mathscr{K} be self-inverse. Thus

$$A_1^{-1} = T^{-1}A_1T,$$
$$(A^{-1}) = (T)^{-1}(A_1)(T)$$

and

$$(A_1) = (I)^{-1}(A_1)(I).$$

Replacing (A_1) by $l^{-\frac{1}{2}}(A_1)$, and so all (A_i) by $l^{-\frac{1}{2}}(A_i)$, we still have (*) and also $(A_i^{-1}) = (A_i)^{-1}$.

Remarks. 1. (E) is now the identity element of $\mathscr{A}(\mathscr{G})$. Further $(A)(A^{-1}) = (A^{-1})(A) = (E)$. If we write $\mathscr{A}(\mathscr{D})$ to denote the natural restriction of $\mathscr{A}(\mathscr{G})$ to the subspace spanned by the elements (D) $(D \in \mathscr{D})$, then $\mathscr{A}(\mathscr{D})$ is precisely the group algebra $\mathscr{F}(\mathscr{D})$.

2. If $\mathscr{A}(\mathscr{G})$ satisfies (c) [(c), (d)] [[(b), (c), (d)]] then we shall call $\mathscr{A}(\mathscr{G})$ normalized [*u*-normalized] [[p-*u*-normalized]].

3. If A is a *u*-element, and if t is prime to the order of A, then A^t is a *u*-element. In particular A^{-1} is a *u*-element.

If $p \neq 0$, and if A has order a power of p, then A is a u-element.

Even if A is non-u, (c) ensures that

$$(X)^{-1}(Y)^{-1}(A)(Y)(X) = (X^{-1}Y^{-1})(A)(YX),$$

for all X, $Y \in \mathscr{G}$.

4. If $\mathscr{A}(\mathscr{G})$ is *u*-normalized and $\mathscr{K}_1, \dots, \mathscr{K}_t$ are the *u*-classes, then the *u*-class sums $K_{\alpha} = \sum_{G \in \mathscr{K}_{\alpha}} G$ form a basis for the centre $\mathscr{Z}(\mathscr{G})$ of $\mathscr{A}(\mathscr{G})$, which has dimension t.³

5. A twisted group algebra $\mathscr{A}(\mathscr{G})$ is actually an (two-sided) ideal direct summand of a group algebra ⁴: suppose $\mathscr{A}(\mathscr{G})$ has been normalized as in

³ c. f. Satz 1, p. 83 of [20]. Tazawa's formulation is not so explicit and is confined to the non-modular case.

⁴ I am indebted to the referee for this remark and its proof.

(ii) above so that all $f_{A,B}$ satisfy $f_{A,B}^n = 1$. If \mathscr{F} has characteristic p, and $n = mp^{\alpha}$, (m, p) = 1, then in fact $f_{A,B}^m = 1$. Thus the $f_{A,B}$ all belong to the multiplicative group W_m of *m*-th roots of unity. Let $f \to f^*$ be an isomorphism onto some other cyclic group \mathscr{C}_m of order *m*, generated by μ^* , and define a central extension \mathscr{G}^* of \mathscr{G} by \mathscr{C}_m in which \mathscr{G}^* is generated by elements $S_A(A \in \mathscr{G})$ and \mathscr{C}_m , with $S_A S_B = f_{A,B}^* S_{AB}$. Then $\mathscr{F}(\mathscr{C}_m)$, considered as embedded in $\mathscr{F}(\mathscr{G}^*)$, is in the centre of $\mathscr{F}(\mathscr{G}^*)$; let

$$S_E = E_1 + \cdots + E_m,$$

where

$$E_i = \frac{1}{m} \sum_{\alpha=0}^{m-1} \mu^{\alpha i} (\mu^*)^{\alpha},$$

be a decomposition of the identity S_E of $\mathscr{F}(\mathscr{G}^*)$ into primitive idempotents of $\mathscr{F}(\mathscr{C}_m)$. It is readily verified that $\mathscr{A}(\mathscr{G}) \cong E_1 \mathscr{F}(\mathscr{G}^*)$.

As $\mathscr{F}(\mathscr{G}^*)$ is symmetric⁵, it follows that $\mathscr{A}(\mathscr{G})$ is symmetric. (This can also be seen directly without using $\mathscr{F}(\mathscr{G}^*)$.)

6. If p = 0, or $p \nmid n$ (non-modular case) (thus $p \nmid |\mathscr{G}^*|$), $\mathscr{F}(\mathscr{G}^*)$ is semisimple, and so $\mathscr{A}(\mathscr{G})$ is semi-simple⁶. In this case there are t different irreducible representations of $\mathscr{A}(\mathscr{G})$, where t = number of u-conjugacy classes.

In the modular case, the number of irreducibles is equal to the number of p-regular *u*-conjugacy classes of \mathscr{G}^{7} . (An element $A \in \mathscr{G}$ is p-regular if its order is prime to p.) This can be proved using Brauer's Theorem 3A, p. 410 of [4].

7. From remark 1, any twisted group algebra $\mathscr{A}(\mathscr{D})$ on a p-group \mathscr{D} over a field \mathscr{F} of characteristic $p \neq 0$ is the group algebra $\mathscr{F}(\mathscr{D})$. This is a local algebra whose radical is spanned by the elements (P)-(E), $P \in \mathscr{D}$, E identity of \mathscr{D} . The regular representation of $\mathscr{F}(\mathscr{D})$ is indecomposable.

8. This last result can be extended a little further. Let \mathscr{G} be a cyclic extension of a normal p-subgroup \mathscr{D} , where $p \neq 0$. Then $\mathscr{A}(\mathscr{G})$ is the group algebra on \mathscr{G} .

PROOF. Clearly it can be assumed that $|\mathscr{G}/\mathscr{D}| = m$, prime to p. Take $G \in \mathscr{G}$ such that the coset $G\mathscr{D}$ generates \mathscr{G}/\mathscr{D} . Write

$$G^m = K \in \mathcal{D},$$

 $(G)^m = d(K),$ $(d \in \mathcal{F}^*).$

Any element of \mathscr{G} can be written uniquely in the form $G^{k}D$, where $0 \leq k < m$, $D \in \mathscr{D}$.

' See also p. 207 of [2].

⁵ See definition of symmetric on p. 440 of [6].

⁶ This can also be seen by a direct calculation of the discriminant of $\mathscr{A}(\mathscr{G})$, e. g. see p. 80 of [20].

By the theorem, $\mathscr{A}(\mathscr{G})$ can be supposed to be *p*-*u*-normalized. If now we replace $(G^k D)$ by $d^{-k/m}(G)^k(D)$ this ensures that $\mathscr{A}(\mathscr{G})$ is the group algebra $\mathscr{F}(\mathscr{G})$.

9. If a twisted group algebra $\mathscr{A}(\mathscr{G})$ has one representation of degree 1, then it is the group algebra $\mathscr{F}(\mathscr{G})$.

2. Induced representations

Let $\mathscr{A}(\mathscr{G})$ be a normalized twisted group algebra and let $\mathscr{A}(\mathscr{H})$ be the natural restriction of $\mathscr{A}(\mathscr{G})$ to a subgroup \mathscr{H} of \mathscr{G} . Let \mathscr{L} be a left $\mathscr{A}(\mathscr{H})$ -module. (Throughout this apper all modules will be taken as having finite dimension considered as vector spaces over the base field \mathscr{F} .) We define $\mathscr{L}^{\mathscr{G}}$ to be the left $\mathscr{A}(\mathscr{G})$ -module given by

$$\mathscr{L}^{\mathfrak{g}} = \mathscr{A}(\mathscr{G}) \otimes_{\mathscr{A}(\mathscr{F})} \mathscr{L},$$

where \otimes is defined as in [6]. If \mathscr{M} is an $\mathscr{A}(\mathscr{G})$ -module, then we shall write $\mathscr{M}_{\mathscr{H}}$ for the $\mathscr{A}(\mathscr{H})$ -module obtained from \mathscr{M} by simple restriction of the module multiplication to the ring $\mathscr{A}(\mathscr{H})$.

Let \mathcal{M}, \mathcal{N} be $\mathcal{A}(\mathcal{H})$ -modules. Then we write $\operatorname{Hom}_{\mathcal{H}}(\mathcal{M}, \mathcal{N})$ for the set of $\mathcal{A}(\mathcal{H})$ -homomorphisms of \mathcal{M} into $\mathcal{N}, E_{\mathcal{H}}(\mathcal{M}) = \operatorname{Hom}_{\mathcal{H}}(\mathcal{M}, \mathcal{M})$ for the ring of $\mathcal{A}(\mathcal{H})$ -endomorphisms of \mathcal{M} , and $R_{\mathcal{H}}(\mathcal{M})$ for the radical of $E_{\mathcal{H}}(\mathcal{M})$. Throughout this section homomorphisms will be written on the right. We quote the following simple lemma.

LEMMA. If \mathscr{L} is an $\mathscr{A}(\mathscr{H})$ -module and \mathscr{M} an $\mathscr{A}(\mathscr{G})$ -module, then Hom_{$\mathscr{H}}(\mathscr{L}, \mathscr{M}_{\mathscr{H}}) \cong \operatorname{Hom}_{\mathscr{G}}(\mathscr{L}^{\mathfrak{G}}, \mathscr{M})$. This correspondence $\eta \to \eta^{\mathfrak{G}}$ is given by defining for $\eta \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{M}_{\mathscr{H}}), \eta^{\mathfrak{G}} \in \operatorname{Hom}_{\mathfrak{G}}(\mathscr{L}^{\mathfrak{G}}, \mathscr{M})$ by</sub>

$$(A \otimes L)\eta^{\mathfrak{g}} = A(L\eta) \quad (A \in \mathscr{A}(\mathfrak{G}), L \in \mathscr{L}).$$

Henceforth we take \mathscr{H} to be a normal subgroup of \mathscr{G} , and \mathscr{L} to be an $\mathscr{A}(\mathscr{H})$ -module. The main theorem of this section concerns the structure of $\mathscr{L}^{\mathfrak{G}}$ and this analysis is to be made through its ring of endomorphisms $E_{\mathfrak{G}}(\mathscr{L}^{\mathfrak{G}})$.

Given an element $G \in \mathscr{G}$, we can consider the $\mathscr{A}(\mathscr{H})$ -submodules of $\mathscr{L}^{\mathscr{G}}$ of the form

$$(G)\otimes_{\mathscr{A}(\mathscr{K})}\mathscr{L},$$

where $(H)((G) \otimes L) = (G) \otimes (G)^{-1}(H)(G)L$ for $H \in \mathcal{H}$, $L \in \mathcal{L}$. $(G) \otimes \mathcal{L}$ may or may not be $\mathscr{A}(\mathcal{H})$ -isomorphic to \mathcal{L} . The stabilizer \mathcal{S} of \mathcal{L} is the set of elements $S \in \mathcal{G}$ such that $(S) \otimes \mathcal{L} \cong \mathcal{L}$. Then \mathcal{S} is a subgroup of \mathcal{G} containing \mathcal{H} .

Take a set $\{X_a\}$ of elements of \mathscr{G} such that $X_1 \mathscr{H}, \dots, X_s \mathscr{H}(X_1 \mathscr{H}, \dots, X_s)$

S. B. Conlon

 $X_{g}\mathscr{H}$) are the different cosets of \mathscr{H} in \mathscr{G} (of \mathscr{H} in \mathscr{G}) with $X_{1} = E$. Then we may write

(1)
$$\mathscr{L}^{g} = \sum_{1}^{g} (X_{\alpha}) \otimes \mathscr{L} = \sum_{1}^{g} \mathscr{L}_{\alpha},$$

$$(1') \qquad \qquad \mathscr{L}^{\mathcal{G}} = \sum_{1}^{s} \mathscr{L}_{\alpha},$$

the \sum meaning vector space sum over \mathscr{F} . We identify \mathscr{L}_1 and \mathscr{L} . If we restrict to \mathscr{H} , (1) and (1') then become $\mathscr{A}(\mathscr{H})$ -direct decompositions of $(\mathscr{L}^{\mathscr{G}})_{\mathscr{H}}$ and $(\mathscr{L}^{\mathscr{G}})_{\mathscr{H}}$ respectively.

Let

$$w_{\alpha}: \mathscr{L}_{\alpha} \to (\mathscr{L}^{\mathfrak{g}})_{\mathfrak{K}}, \quad \chi_{\alpha}: (\mathscr{L}^{\mathfrak{g}})_{\mathfrak{K}} \to \mathscr{L}_{\alpha}$$

be the inclusion and projection $\mathscr{A}(\mathscr{H})$ -homomorphisms according to (1). (We use the same symbols for the decomposition in (1') and regard $(\mathscr{L}^{\mathscr{G}})_{\mathscr{H}} \subset (\mathscr{L}^{\mathscr{G}})_{\mathscr{H}}$ naturally.) Thus the identity ι of $E_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})^{\$}$ may be written

$$\iota = \sum_{1}^{g} \chi_{\alpha} \omega_{\alpha}$$

If $\eta \in \operatorname{Hom}_{\mathscr{X}}(\mathscr{L}, \mathscr{L}^{\mathfrak{g}})$, then

$$\eta = \sum_{1}^{\sigma} \eta \chi_{\alpha} \omega_{\alpha} = \sum \eta_{\alpha} \omega_{\alpha},$$

where $\eta_{\alpha} = \eta \chi_{\alpha} \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}_{\alpha})$. Similarly if $\zeta \in E_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$, we write

$$\zeta = \sum_{1}^{g} \sum_{1}^{g} \chi_{\alpha} \omega_{\alpha} \zeta \chi_{\beta} \omega_{\beta} = \sum_{1}^{g} \sum_{1}^{g} \chi_{\alpha} \zeta_{\alpha\beta} \omega_{\beta},$$

where

$$\zeta_{\alpha\beta} = \omega_{\alpha} \zeta \chi_{\beta} \in \operatorname{Hom}_{\mathscr{X}}(\mathscr{L}_{\alpha}, \mathscr{L}_{\beta}).$$

Suppose

$$L\eta_{\beta} = (X_{\beta}) \otimes L_{\beta} \qquad (L \in \mathscr{L}),$$

$$(X_{\alpha})(X_{\beta}) = (X_{\gamma})H_{\alpha,\beta}$$

where $X_{\alpha}X_{\beta} \in X_{\gamma}\mathcal{H}$, $H_{\alpha,\beta} \in \mathcal{A}(\mathcal{H})$. Then

$$((X_{a})\otimes L)\eta^{\mathfrak{g}} = \sum_{\beta} (X_{a})(X_{\beta})\otimes L_{\beta}.$$

Thus $(\eta^{\mathscr{G}})_{\alpha\gamma}$ maps $(X_{\alpha}) \otimes L$ to $(X_{\gamma}) \otimes H_{\alpha,\beta}L_{\beta}$, where β is determined by $X_{\alpha}X_{\beta} \in X_{\gamma}\mathscr{H}$.

From this point onwards we shall take \mathscr{L} to be an indecomposable $\mathscr{A}(\mathscr{H})$ -module. Hence $E_{\mathscr{H}}(\mathscr{L})$ is a completely primary ring.

⁸ Here $E_{\mathscr{X}}(\mathscr{L}^{\mathscr{G}})$ means $E_{\mathscr{X}}((\mathscr{L}^{\mathscr{G}})_{\mathscr{X}})$. Similarly $\operatorname{Hom}_{\mathscr{X}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$ means $\operatorname{Hom}_{\mathscr{X}}(\mathscr{L}, (\mathscr{L}^{\mathscr{G}})_{\mathscr{X}})$ etc.

LEMMA 1. Let $\eta \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$. Then $\eta^{\mathscr{G}} \in R_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$ if, and only if, none of η_1, \dots, η_s is an \mathscr{H} -isomorphism.

PROOF. By Jacobson [13], p. 60, $\eta^{\mathscr{G}} \in R_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$ if, and only if, no $(\eta^{\mathscr{G}})_{\alpha\beta}$ is an \mathscr{H} -isomorphism. By the above, this is the case if, and only if, no η_{β} $(\beta = 1, \dots, g)$ is an \mathscr{H} -isomorphism. No η_{β} $(\beta > s)$ is an \mathscr{H} -isomorphic to \mathscr{L} . This gives the lemma.

There is of course the analogous 1-1 correspondence $\eta \leftrightarrow \eta^{\mathcal{G}}$ between the \mathscr{H} -isomorphisms η of \mathscr{L} into $\mathscr{L}^{\mathcal{G}}$ and \mathscr{G} -endomorphisms $\eta^{\mathcal{G}}$ of $\mathscr{L}^{\mathcal{G}}$, where $\eta^{\mathcal{G}}$ is defined by

$$(A \otimes L)\eta^{\mathscr{G}} = A(L\eta) \quad (A \in \mathscr{A}(\mathscr{G}), L \in \mathscr{L}).$$

COROLLARY. Let $\eta \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$. Then $\eta^{\mathscr{G}} \in R_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$ if, and only if, $\eta^{\mathscr{G}} \in R_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$. (Here $\operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$ is considered in the natural way as a subset of $\operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$.)

If $\mu \in E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$, the equations

$$(A \otimes_{\mathscr{A}(\mathscr{G})} M)\mu^* = A \otimes_{\mathscr{A}(\mathscr{G})} (M\mu) \qquad (A \in \mathscr{A}(\mathscr{G}), M \in \mathscr{L}^{\mathscr{G}})$$

define an element μ^* of $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$. Moreover, the mapping $\mu \to \mu^*$ of $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ into $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ is a ring monomorphism.

LEMMA 2.

$$\begin{split} E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})^* &+ \tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}}) = E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}}), \\ E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})^* &\cap \tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}}) = \tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})^* \end{split}$$

where

$$\begin{split} \tilde{R}_{g}(\mathcal{L}^{g}) &= E_{g}(\mathcal{L}^{g}) \cap R_{x}(\mathcal{L}^{g}), \\ \tilde{R}_{\mathcal{G}}(\mathcal{L}^{\mathcal{G}}) &= E_{\mathcal{G}}(\mathcal{L}^{\mathcal{G}}) \cap R_{x}(\mathcal{L}^{\mathcal{G}}). \end{split}$$

PROOF. Let $\mu \in E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$. Then $\mu = \eta^{\mathscr{G}}, \eta \in \operatorname{Hom}_{\mathscr{X}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$. Also $\eta^{\mathscr{G}} = \mu^*$. By lemma 1, corollary, $\mu \in R_{\mathscr{X}}(\mathscr{L}^{\mathscr{G}})$ if, and only if, $\mu^* \in R_{\mathscr{X}}(\mathscr{L}^{\mathscr{G}})$. This gives the second relation.

Now let $\rho \in E_{g}(\mathscr{L}^{g})$. Then $\rho = \zeta^{g}, \zeta \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{g})$. Write

$$\zeta = \zeta' + \zeta'',$$

where $\zeta' = \sum_{\alpha=1}^{s} \zeta_{\alpha} \omega_{\alpha}$. Since $\zeta' \in \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}}), \ \zeta'^{\mathscr{G}} = (\zeta'^{\mathscr{G}})^* \in E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})^*$. Also, by lemma 1, $\zeta''^{\mathscr{G}} \in R_{\mathscr{H}}(\mathscr{L}^{\mathscr{G}})$. Hence

$$\rho = \zeta^{\mathfrak{g}} = \zeta'^{\mathfrak{g}} + \zeta''^{\mathfrak{g}} \in E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})^* + \tilde{R}_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{g}}).$$

This proves the first relation.

COROLLARY 1. If $\varepsilon = \sum \varepsilon_{\lambda}$ is a decomposition of the identity of $E_{\varphi}(\mathcal{L}^{\varphi})$ into indecomposable idempotents in $E_{\varphi}(\mathcal{L}^{\varphi})$, then $\varepsilon^{*} = \sum \varepsilon_{\lambda}^{*}$ is a similar decomposition in $E_{\varphi}(\mathcal{L}^{\varphi})$. S. B. Conlon

COROLLARY 2. $E_g(\mathcal{L}^g)/\tilde{R}_g(\mathcal{L}^g) \approx E_{\mathscr{G}}(\mathcal{L}^g)/\tilde{R}_{\mathscr{G}}(\mathcal{L}^g).$ COROLLARY 3. $E_g(\mathcal{L}^g)/R_g(\mathcal{L}^g) \approx E_{\mathscr{G}}(\mathcal{L}^g)/R_{\mathscr{G}}(\mathcal{L}^g).$

(Notice here that \tilde{R}_{g} , \tilde{R}_{g} are nilpotent ideals of E_{g} , E_{g} , so that $\tilde{R}_{g} \subseteq R_{g}$, $\tilde{R}_{g} \subseteq R_{g}$).

Now consider $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$. We remark first that $\eta \to \eta^{\mathscr{G}}$ gives a ring monomorphism of $E_{\mathscr{H}}(\mathscr{L})$ into $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$. (Here, and in what follows, we regard $E_{\mathscr{H}}(\mathscr{L}) = \operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L})$ and $\operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}_{\alpha})$ ($\alpha \leq s$) as subsets of $\operatorname{Hom}_{\mathscr{H}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}})$.) We denote the image of $E_{\mathscr{H}}(\mathscr{L})$ in $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ by $E_{\mathscr{H}}(\mathscr{L})^{\mathscr{G}}$.

Write $T_{\alpha} = X_{\alpha} \mathscr{H}$ ($\alpha = 1, \dots, s$) for the elements of \mathscr{G}/\mathscr{H} . For each T_{α} , choose an \mathscr{H} -isomorphism $\xi_{\alpha} : \mathscr{L} \to \mathscr{L}_{\alpha}$, and form

$$(2) (T_{\alpha}) = \xi_{\alpha}^{\mathscr{Y}}.$$

Clearly, if $T, T' \in \mathscr{G}/\mathscr{H}$, $(T)(T')(TT')^{-1}$ maps \mathscr{L} onto \mathscr{L} and so belongs to $E_{\mathscr{H}}(\mathscr{L})^{\mathscr{G}}$:

(3)
$$(T)(T') = \eta_{T,T'}^{\mathscr{G}}(TT') \qquad (\eta_{T,T'} \in E_{\mathscr{H}}(\mathscr{L})).$$

Similarly, if $\eta \in E_{\mathscr{H}}(\mathscr{L})$, $T \in \mathscr{S}/\mathscr{H}$, $(T)^{-1}\eta^{\mathscr{G}}(T) \in E_{\mathscr{H}}(\mathscr{L})^{\mathscr{G}}$ and we write $(T)^{-1}\eta^{\mathscr{G}}(T) = (\eta^{(T)})^{\mathscr{G}}$, $\eta^{(T)} \in E_{\mathscr{H}}(\mathscr{L})$.

Clearly, $\eta \to \eta^{(T)}$ is an \mathscr{F} -algebra automorphism of $E_{\mathscr{F}}(\mathscr{L})$; and in fact, if $(T) = \xi^{\mathscr{F}}, \xi^{-1}\eta\xi = \eta^{(T)}$.

Finally, since an arbitrary element ζ of Hom_{\mathscr{X}}($\mathscr{L}, \mathscr{L}^{\mathscr{G}}$) has the form

$$\zeta = \sum_{\alpha=1}^{s} \zeta_{\alpha} \omega_{\alpha} = \sum_{\alpha=1}^{s} \eta_{\alpha} \xi_{\alpha} \omega_{\alpha}, \qquad \eta_{\alpha} \in E_{\mathscr{X}}(\mathscr{L}),$$

each element of $E_{\mathscr{A}}(\mathscr{L}^{\mathscr{G}})$ can be uniquely expressed in the form

$$\zeta^{\mathcal{G}} = \sum_{T \in \mathcal{G} \mid \mathcal{X}} \eta^{\mathcal{G}}_{T}(T), \qquad \qquad \eta_{T} \in E_{\mathcal{X}}(\mathcal{L}).$$

Thus $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ is a kind of twisted group algebra on \mathscr{G}/\mathscr{H} over $E_{\mathscr{H}}(\mathscr{L})$, though the (T) do not commute with the coefficients $\eta^{\mathscr{G}}$.

By lemma 1, $\zeta^{\mathcal{G}} \in \tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ if, and only if, no η_{T} is an \mathscr{H} -isomorphism, i.e. if, and only if, all $\eta_{T} \in R_{\mathscr{F}}(\mathscr{L})$. Thus to get $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})/\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$, we simply replace all the η 's in all above by their canonical images $\bar{\eta} = \eta + R_{\mathscr{F}}(\mathscr{L})$ in $E_{\mathscr{F}}(\mathscr{L})/R_{\mathscr{F}}(\mathscr{L})$. Thus $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})/\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ appears as a generalized twisted group algebra over the division algebra $E_{\mathscr{F}}(\mathscr{L})/R_{\mathscr{F}}(\mathscr{L})$. The operations $\eta \to \eta^{(T)}$ are \mathscr{F} -algebra automorphisms of $E_{\mathscr{F}}(\mathscr{L})/R_{\mathscr{F}}(\mathscr{L})$. From now on we assume \mathscr{F} algebraically closed. Thus $E_{\mathscr{F}}(\mathscr{L})/R_{\mathscr{F}}(\mathscr{L})$ is the 1-dimensional \mathscr{F} -algebra \mathscr{F} itself, so $\tilde{\eta} = \tilde{\eta}^{(T)} (= \overline{\eta^{(T)}})$, all T. Here $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})/\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ becomes a genuine twisted group algebra $\mathscr{A}(\mathscr{G}|\mathscr{H})$ on $\mathscr{G}|\mathscr{H}$ over \mathscr{F} .

The following lemma by Fitting [7] provides the link between a module

and its ring of endomorphisms. We use the term "component" to mean "indecomposable direct summand".

LEMMA 3. Let \mathcal{A} be a finite dimensional algebra (with a 1) over \mathcal{F} and let \mathcal{M} be an \mathcal{A} -module (finite dimensional) with \mathcal{E} as its ring of \mathcal{A} -endomorphisms. Let

$$\mathscr{E} = \mathscr{E} \varepsilon_{11} \oplus \cdots \oplus \mathscr{E} \varepsilon_{1n_*} \oplus \cdots \oplus \mathscr{E} \varepsilon_{mn_*}$$

be a decomposition of \mathscr{E} into left ideal components, where $\mathscr{E}_{\varepsilon_i} \approx \mathscr{E}_{\varepsilon_{i'j'}}$ if, and only if, i = i'. Let

$$\mathcal{M} = \mathcal{M}_{11} \oplus \cdots \oplus \mathcal{M}_{1n'_1} \oplus \cdots \oplus \mathcal{M}_{m'n'_m}$$

be a decomposition of \mathcal{M} into components, with $\mathcal{M}_{ij} \approx \mathcal{M}_{i'j'}$ if and only if, i = i'. Then m = m', n = n', and one possible choice of $\mathcal{M}_{\alpha\beta}$ is given by $\mathcal{M}_{\alpha\beta} = \mathcal{M}\varepsilon_{\alpha\beta}$.

Let

$$\mathscr{L}^{\mathscr{G}} = \mathscr{M}_1 \oplus \cdots \oplus \mathscr{M}_n$$

be a decomposition of $\mathscr{L}^{\mathscr{G}}$ into \mathscr{G} -components. We can further write

(5)
$$(\mathcal{M}_{\alpha})_{\mathcal{H}} = \mathcal{M}_{\alpha 1} \oplus \cdots \oplus \mathcal{M}_{\alpha k_{\alpha}}$$

where each of the $\mathcal{M}_{\alpha\beta} \approx \mathcal{L}$, by the Krull-Schmidt theorem. Let $\varepsilon = \sum_{\alpha=1}^{l} \varepsilon_{\alpha}$ be a decomposition of the identity of $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ according to (4). Then each ε_{α} can be further decomposed by (5) in the form

$$\varepsilon_{\alpha} = \sum_{\beta=1}^{k_{\alpha}} \varepsilon_{\alpha\beta}^{\mathscr{G}}, \qquad \qquad \varepsilon_{\alpha\beta} \in \operatorname{Hom}_{\mathscr{X}}(\mathscr{L}, \mathscr{L}^{\mathscr{G}}),$$

and any element π of $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ has a unique expression in the form

$$\pi = \sum_{\alpha,\beta} \pi^{\mathscr{G}}_{\alpha\beta} \varepsilon^{\mathscr{G}}_{\alpha\beta}, \qquad \qquad \pi_{\alpha\beta} \in E_{\mathscr{K}}(\mathscr{L}).$$

Clearly $\sum k_{\alpha} = s$, and the left ideal $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})e_{\alpha}$, considered as a module over $E_{\mathscr{K}}(\mathscr{L})$, is the direct sum of k_{α} copies of $E_{\mathscr{K}}(\mathscr{L})$. Hence the dimension over \mathscr{F} of the corresponding left ideal in $\mathscr{A}(\mathscr{G}/\mathscr{H}) (= E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})/\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}}))$ is precisely k_{α} . Moreover, as $\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ is nilpotent, the images of the two left ideal components in the quotient ring are isomorphic if, and only if, the corresponding left ideal components of the original ring $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ are isomorphic⁹. Combining these results we have that the decomposition of $\mathscr{L}^{\mathscr{G}}$ is entirely reflected by the decomposition of $\mathscr{A}(\mathscr{G}/\mathscr{H})$ into left ideals.

Now $\mathscr{L}^{g} \approx (\mathscr{L}^{g})^{g} \approx \mathscr{M}_{1}^{g} \oplus \cdots \oplus \mathscr{M}_{1}^{g}$. Further, by corollary 3 to lemma 2 each \mathscr{M}_{α}^{g} must remain indecomposable. Moreover, as $R_{g}(\mathscr{L}^{g})$

⁹ This was noted in § 1 of Nakayama [15] for the case where the kernel is actually the radical of $E_{\mathscr{S}}(\mathscr{L})$.

is nilpotent, the multiplicities of the different isomorphism types of left ideal components of $E_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})$ are the same as in $E_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})/R_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})$, i.e. as in $E_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})/R_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})$ (by lemma 2, corollary 3), i.e. as in $E_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})$ (since $R_{\mathfrak{g}}(\mathscr{L}^{\mathfrak{G}})$ is nilpotent). Hence we have proved the following theorem.

THEOREM. Let $\mathscr{A}(\mathscr{H})$ be the restriction of a normalized twisted group algebra $\mathscr{A}(\mathscr{G})$ over an algebraically closed field \mathscr{F} to a normal subgroup \mathscr{H} of \mathscr{G} , and let \mathscr{L} be an indecomposable $\mathscr{A}(\mathscr{H})$ -module with stabilizer \mathscr{G} in \mathscr{G} . Then the decomposition of $\mathscr{L}^{\mathfrak{G}}$ is entirely determined by the decomposition of a certain twisted group algebra $\mathscr{A}(\mathscr{G}|\mathscr{H})$ into left ideals, there being a 1-1correspondence between left ideal components \mathscr{I}_{α} and components \mathscr{N}_{α} of $\mathscr{L}^{\mathfrak{G}}$, such that the left ideals are isomorphic if, and only if, the corresponding summands are. Further

$$\dim_{\mathfrak{F}} \mathcal{N}_{\mathfrak{a}} = \dim_{\mathfrak{F}} (\mathcal{I}_{\mathfrak{a}}) \cdot \dim_{\mathfrak{F}} (\mathcal{L}) \cdot (\mathcal{G} : \mathcal{S})$$

A decomposition of $\mathscr{L}^{\mathfrak{g}}$ is obtained from one of $\mathscr{A}(\mathscr{G}/\mathscr{H})$ as follows: The decomposition of $\mathscr{A}(\mathscr{G}/\mathscr{H}) \approx E_{\mathscr{G}}(\mathscr{L}^{\mathfrak{g}})/\tilde{R}_{\mathscr{G}}(\mathscr{L}^{\mathfrak{g}})$ is raised to one of $E_{\mathscr{G}}(\mathscr{L}^{\mathfrak{g}})$ by the algorithm used in the proof of theorem 9.3c in [1]. A decomposition of $\mathscr{L}^{\mathfrak{g}} = \sum \mathscr{M}_{\alpha}$ is obtained as in lemma 3. Finally we may take $\mathscr{N}_{\alpha} = \mathscr{M}_{\alpha}^{\mathfrak{g}}$.

If \mathscr{L} is irreducible, then $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}})$ is the twisted group algebra $\mathscr{A}(\mathscr{G}/\mathscr{H})$, as $E_{\mathscr{H}}(\mathscr{L}) \approx \mathscr{F}$.

COROLLARY 1. If \mathscr{L} is not indecomposable, say

$$\mathscr{L} = \mathscr{L}_1 \oplus \cdots \oplus \mathscr{L}_h$$

then

$$\mathscr{L}^{\mathfrak{g}} = \mathscr{L}_{1}^{\mathfrak{g}} \oplus \cdots \oplus \mathscr{L}_{h}^{\mathfrak{g}},$$

as tensor product \otimes is distributive over direct sum \oplus . We apply the theorem to each $\mathscr{L}^{\mathfrak{g}}_{\mathfrak{g}}$ to obtain the decomposition of $\mathscr{L}^{\mathfrak{g}}$.

The problem of inducing up from a subnormal subgroup is equivalent to the decomposition of a series of twisted group algebras. For, if $\mathscr{H} \leq \mathscr{H}_1 \leq \mathscr{G}$, we have $(\mathscr{L}^{\mathscr{H}_1})^{\mathscr{G}} \simeq \mathscr{L}^{\mathscr{G}}$.

COROLLARY 2. If \mathcal{H} is a subnormal subgroup of \mathcal{G} of prime power index p^{v} in \mathcal{G} , with \mathcal{F} of characteristic $p \neq 0$, then $\mathcal{L}^{\mathcal{G}}$ is indecomposable if \mathcal{L} is.

PROOF. Clearly the factor groups are p-groups and so the twisted group algebras involved are on p-groups. Hence by § 1, remark 7, these are indecomposable. (c.f. Theorem 8 of Green [8]).

In decomposing a twisted group algebra $\mathscr{A}(\mathscr{G})$ into left ideals, we may make use of a composition series of \mathscr{G} and consider $\mathscr{A}(\mathscr{G}) = (\mathscr{F}_{\{E\}})^{\mathscr{G}}$, where $\mathscr{F}_{\{E\}}$ is the trivial representation of the group $\{E\}$. This leaves only

the problem of the decomposition of twisted group algebras on simple groups.

A detailed analysis will now be given of the decomposition of $\mathscr{L}^{\mathscr{G}}$. Let $H \to \lambda(H)$ be the linear representation afforded by the module \mathscr{L} . All such linear mappings will be written on the left. In particular an element of $E_{\mathscr{L}}(\mathscr{L})$ will be represented by a linear mapping θ written on the left.

Corresponding to each $\alpha = 1, \dots, s$ we have a non-singular linear transformation D_{α} such that the $\mathscr{A}(\mathscr{H})$ -isomorphism ξ_{α} of equation (2) is given by

(6)
$$\xi_{\alpha}: L \to (X_{\alpha}) \otimes D_{\alpha}L$$
 $(L \in \mathscr{L}).$

If we make a second choice of isomorphisms, say $\xi'_{\alpha}: \mathscr{L} \to \mathscr{L}_{\alpha}$, and if D'_{α} are the corresponding linear mappings, then

$$D_{a} = \theta D'_{a}$$

where θ is a linear mapping representing an automorphism in $E_{\mathscr{H}}(\mathscr{L})$. We choose $D_1 = I$, the identity map. If $X_{\alpha}X_{\beta} = X_{\gamma}H$, then corresponding to equation (3) we have

(7)
$$D_{\alpha}D_{\beta} = \frac{f_{X_{\alpha},X_{\beta}}}{f_{X_{\gamma},H}} \theta_{\alpha,\beta}D_{\gamma}\lambda(H),$$

where $\theta_{\alpha,\beta}$ represents an automorphism in $E_{\mathscr{H}}(\mathscr{L})$, and where this equation may be taken as defining $\theta_{\alpha,\beta}$. As $D_1 = I$, it follows that $\theta_{\alpha,1} = \theta_{1,\alpha} = I$ also.

We now define D_s for $S = X_{\alpha}H \in \mathscr{S}$:

(8)
$$D_{\mathcal{S}} = f_{\mathcal{X}_{\alpha},H}^{-1} D_{\alpha} \lambda(H),$$

and so $D_{X_{\alpha}} = D_{\alpha}$, $D_{E} = D_{1} = I$. Then from these definitions it follows that if $S \in X_{\alpha} \mathcal{H}$, $S' \in X_{\alpha}, \mathcal{H}$,

$$(9) D_S D_{S'} = f_{S,S'} \theta_{\alpha,\alpha'} D_{SS'}.$$

Thus the correspondence $S \to D_S$ gives rise to an extension of \mathscr{L} to $\mathscr{A}(\mathscr{S})$ if, and only if, $\theta_{\alpha,\beta} = 1$, all α, β .

For the case of \mathscr{L} irreducible the analysis of Clifford in the proof of his theorem 3 in [5] (although not starting from the same point of view) can be adopted to get an explicit view of $\mathscr{L}^{\mathscr{S}}$.

PROPOSITION 1. Let \mathcal{L} be an irreducible $\mathcal{A}(\mathcal{H})$ -module. Then any direct summand \mathcal{M} of $\mathcal{L}^{\mathscr{G}}$ affords a linear representation $S \to \psi(S)$ of $\mathcal{A}(\mathcal{G})$, which is the product of a fixed projective linear representation $S \to D_S$ of $\mathcal{A}(\mathcal{G})$ (independent of \mathcal{M}) together with a certain direct summand $\pi(S\mathcal{H})$ of the linear representation afforded by considering $\mathcal{A}(\mathcal{G}|\mathcal{H})$ as a left module over itself ("regular representation" of $\mathcal{A}(\mathcal{G}|\mathcal{H})$), i.e.,

[12]

S. B. Conlon

(10)
$$\psi(S) = D_S \times \pi(S\mathscr{H}).$$

Thus \mathscr{M} must decompose just as π does. For $\mathscr{M} = \mathscr{L}^{\mathscr{G}}$, the decomposition of $\mathscr{L}^{\mathscr{G}}$ is related directly to that of $\mathscr{A}(\mathscr{G}|\mathscr{H})$ into left ideals.

Again following Clifford's line of argument, we have:

PROPOSITION 2. In the situation of proposition 1, if π is an irreducible linear representation of $\mathcal{A}(\mathcal{S}|\mathcal{H})$, then the linear representation of $\mathcal{A}(\mathcal{S})$ given by (10) is irreducible.

The analysis in the proof of Clifford's theorem 2 in [5] provides an explicit relation between the decomposition of $\mathscr{L}^{\mathscr{G}}$ and that of $\mathscr{L}^{\mathscr{G}}$.

Finally we consider certain problems on extensions of \mathscr{L} .

PROPOSITION 3. Let \mathscr{G}/\mathscr{H} be cyclic of order m and suppose that either p = 0, or (m, p) = 1. Let \mathscr{L} (indecomposable) have stabilizer the whole of \mathscr{G} . Then there exist exactly m extensions of \mathscr{L} to be an $\mathscr{A}(\mathscr{G})$ -module to within $\mathscr{A}(\mathscr{G})$ isomorphism.

PROOF. By the theorem $\mathscr{L}^{\mathfrak{s}}$ decomposes just as $\mathscr{A}(\mathscr{G}|\mathscr{H})$ does. By § 1, remark 8, this must be the group algebra $\mathscr{F}(\mathscr{G}|\mathscr{H})$ and so decomposes into *m* non-isomorphic one-dimensional left ideals. Hence $\mathscr{L}^{\mathfrak{s}}$ consists of the direct sum of *m* non-isomorphic extensions of \mathscr{L} .

Furthermore these are the only possible extensions of \mathscr{L} . For, say

$$G \rightarrow D_G$$

where

(11)
$$D_{H} = \lambda(H)$$
 $(H \in \mathscr{H}),$

is the linear representation afforded by any other extension of \mathscr{L} as an $\mathscr{A}(\mathscr{G})$ -module. $D_{\alpha} = D_{\mathbf{X}_{\alpha}}$ is then a possible choice of D's in (6); it follows that $\theta_{\alpha,\beta} = I$, from (9). If $G_1 \mathscr{H}(G_1 \in \mathscr{G})$ generates \mathscr{G}/\mathscr{H} , then all $D_G(G \in \mathscr{G})$ are determined in terms of D_{G_1} , by equations (7), (8) and (11). A calculation shows that the *m* extensions of \mathscr{L} contained in $\mathscr{L}^{\mathscr{G}}$ have the linear representations determined by

(12)
$$G_1 \to \omega^j D_{G_1}$$

where ω is a primitive *m*-th root of unity in \mathcal{F} .

PROPOSITION 4¹¹. Let \mathscr{G}/\mathscr{H} be a cyclic extension of a p-subgroup, where \mathscr{F} has characteristic $p \neq 0$. Let $|\mathscr{G}/\mathscr{H}| = mp^a$, (m, p) = 1 and let \mathscr{L} be an irreducible $\mathscr{A}(\mathscr{H})$ -module, which has stabilizer the whole of \mathscr{G} . Then there exist exactly m extensions of \mathscr{L} to be an $\mathscr{A}(\mathscr{G})$ -module to within $\mathscr{A}(\mathscr{G})$ -isomorphism.

 $^{^{10}}$ Here \times denotes the Kronecker or tensor product.

¹¹ Propositions 3 and 4 are generalizations of lemmas 1 and 2 of Srinivasan [19].

PROOF. As \mathscr{L} is irreducible, \mathscr{F} algebraically closed, $E_{\mathscr{G}}(\mathscr{L}^{\mathscr{G}}) = \mathscr{A}(\mathscr{G}/\mathscr{H})$, and $E_{\mathscr{F}}(\mathscr{L}) \approx \mathscr{F}$. The D_{α} of (6) are then determined to within a factor in \mathscr{F}^* , and the $\theta_{\alpha,\beta}$ are elements of \mathscr{F}^* . A different choice of D_{α} 's gives a basis transformation of type § 1, (1) on $\mathscr{A}(\mathscr{G}/\mathscr{H})$. By § 1, remark 9, $\mathscr{A}(\mathscr{G}/\mathscr{H})$ is the group algebra on \mathscr{G}/\mathscr{H} and so the $\theta_{\alpha,\beta}$ may be considered equal to 1. Then $G \to D_G$ is a linear representation of an extension of \mathscr{L} to $\mathscr{A}(\mathscr{G})$ by (9).

Write \mathscr{P} for the subgroup of \mathscr{G} , such that \mathscr{P}/\mathscr{H} is the Sylow p-group of \mathscr{G}/\mathscr{H} . Restricting our attention to $\mathscr{A}(\mathscr{P})$ and $\mathscr{A}(\mathscr{P}/\mathscr{H})$, we see that if $\theta_{\alpha,\beta} = 1$, then the choice of D_P $(P \in \mathscr{P})$ is uniquely determined, for the only basis transformation of type § 1 (1) on the group algebra of a p-group, keeping the multiplication constants all 1, is the identity transformation. Let \mathscr{M} be this unique extension of \mathscr{L} to $\mathscr{A}(\mathscr{P})$.

By proposition 3, \mathcal{M} has exactly *m* different extensions to $\mathcal{A}(\mathcal{G})$ to within isomorphism.

3. Blocks and centres of twisted group algebras

The decomposition of a finite dimensional algebra \mathscr{A} into the direct sum of two sided ideals is determined by the corresponding decomposition of the centre \mathscr{D} . This in turn is determined by the decomposition of the identity element (E) as the sum of primitive central idempotents:

$$(1) (E) = I_1 + \cdots + I_s.$$

The term *block* will be used to describe either an I_{λ} or the corresponding two sided ideal of \mathscr{Z} or \mathscr{A} .

Rosenberg's analysis [16] of blocks of group algebras can be adapted to the twisted case by using the normalization theorem of \S 1.

If $\mathscr{A}(\mathscr{G})$ is *u*-normalized, then a basis for its centre $\mathscr{Z}(\mathscr{G})$ is provided by the *u*-class sums K_{α} , as in § 1, remark 4. Then any block can be expressed as:

$$(2) I = \sum f_{\alpha} K_{\alpha}.$$

Let us assume that the field characteristic $p \neq 0$. Consider the centralizers $\mathscr{C}(A)$ in \mathscr{G} of elements A of \mathscr{G} which have non-zero coefficients in (2). The largest among the Sylow *p*-subgroups of these $\mathscr{C}(A)$ is well defined up to conjugacy in \mathscr{G} and is the *defect group* \mathscr{D} of I. If $|\mathscr{D}| = p^d$, d is called the *defect* of I.

If \mathscr{D} is any subgroup of \mathscr{G} , write $\mathscr{N}(\mathscr{D})$ for the normalizer of \mathscr{D} in \mathscr{G} and $\mathscr{C}(\mathscr{D})$ for the centralizer of \mathscr{D} in \mathscr{G} .

Take \mathscr{D} to be a *p*-group and write $\mathscr{H} = \mathscr{N}(\mathscr{D})$. Let $\mathscr{L}(\mathscr{H})$ be the centre of $\mathscr{A}(\mathscr{H})$. Consider a *u*-class \mathscr{K} of elements of \mathscr{G} with *u*-class sum K and write

$$\sigma(K) = \text{sum of elements } (A),$$

https://doi.org/10.1017/S1446788700023363 Published online by Cambridge University Press

[14]

where $A \in \mathscr{K} \cap \mathscr{C}(\mathscr{D})$, if such elements exist, 0 otherwise. σ can be extended to the whole of $\mathscr{L}(\mathscr{G})$ by linearity and is verified to be an \mathscr{F} -algebra homomorphism,

$$\sigma: \mathscr{Z}(\mathscr{G}) \to \mathscr{Z}(\mathscr{H}).$$

In the case of group algebras, Brauer's first theorem on blocks may be stated as follows:

 σ gives a 1-1 correspondence between the blocks of $\mathscr{Z}(\mathscr{G})$ with \mathscr{D} as one of their defect groups and the blocks of $\mathscr{Z}(\mathscr{H})$ of defect d. The latter have \mathscr{D} as their unique defect group.

However, in the twisted case a complication arises as an element $H (\in \mathscr{H})$ may be a *u*-element in $\mathscr{A}(\mathscr{H})$ but not in $\mathscr{A}(\mathscr{G})$. To overcome this difficulty we define $\mathscr{U}(\mathscr{D})$ to be the subspace of $\mathscr{Z}(\mathscr{H})$ spanned by those *u*-class sums of $\mathscr{A}(\mathscr{H})$ which have defect group \mathscr{D} and whose elements are *u*-elements in $\mathscr{A}(\mathscr{G})$. Then $\mathscr{U}(\mathscr{D})$ is a subalgebra of $\mathscr{Z}(\mathscr{H})$. The theorem for blocks in the twisted case can now be stated as follows:

 σ gives a 1-1 correspondence between the blocks of $\mathscr{L}(\mathscr{G})$ with \mathscr{D} as one of their defect groups and primitive idempotents of $\mathscr{U}(\mathscr{D})$. Each such idempotent is the sum of primitive idempotents of $\mathscr{L}(\mathscr{H})$ with \mathscr{D} as their unique defect group.

Since this last theorem has reduced (to a certain extent) the problem to the case of blocks I with a normal defect group \mathcal{D} (which must then be unique), this special case warrants more attention. As \mathcal{D} is normal in \mathscr{G} , it is certainly contained in the maximal normal p-subgroup $\overline{\mathcal{D}}$ of \mathscr{G} . Let us suppose then that $\mathscr{A}(\mathscr{G})$ has been p-u-normalized. Then the natural homomorphism $\mathscr{G} \to \mathscr{G}/\mathcal{D}$ gives rise to an algebra homomorphism

$$\tau : \mathscr{A}(\mathscr{G}) \to \mathscr{A}(\mathscr{G}/\mathscr{D}),$$

where $\mathscr{A}(\mathscr{G}/\mathscr{D})$ is a twisted group algebra on \mathscr{G}/\mathscr{D} . Ker τ is spanned by the elements $(A)((D)-(E)), A \in \mathscr{G}, D \in \mathscr{D}$, and is a nilpotent ideal of $\mathscr{A}(\mathscr{G})$. Further if K is a u-class sum of $\mathscr{A}(\mathscr{G})$, such that $\mathscr{K} \cap \mathscr{C}(\mathscr{D}) = \emptyset$, then $\tau(K) = 0$, and so K is nilpotent. As ker τ is nilpotent, τ provides a 1-1 correspondence between idempotents of $\mathscr{Z}(\mathscr{G})$ and those of $\mathscr{Z}(\mathscr{G}/\mathscr{D})$; thus the problem of blocks is further reduced to the case of defect d = 0.

Finally we have the following theorem for blocks of maximum defect, which we prove in full as the u-property needs careful attention.

THEOREM. Let \mathscr{G} have order $p^a m$, (m, p) = 1. Let $\mathscr{A}(\mathscr{G})$ be a twisted group algebra over an algebraically closed field \mathscr{F} of characteristic $p \neq 0$. Then the number of blocks of defect a equals the number of p-regular u-classes of defect¹² a.

¹¹ The defect group of a conjugacy class is any one of the Sylow *p*-subgroups of the centralizers in $\mathscr G$ of its elements.

PROOF. A block of $\mathscr{A}(\mathscr{G})$ of defect *a* has the Sylow p-subgroups as its defect groups. Let \mathscr{D} be any such and write $\mathscr{H} = \mathscr{N}(\mathscr{D})$. Then the above theorem tells us that the number of blocks of defect *a* is the same as the number of primitive idempotents of $\mathscr{U}(\mathscr{D})$.

The homomorphism τ ,

$$\tau: \mathscr{A}(\mathscr{H}) \to \mathscr{A}(\mathscr{H}/\mathscr{D}),$$

is defined as above. $\mathscr{U}(\mathscr{D})$ contains the identity element of $\mathscr{A}(\mathscr{H})$ and so, as ker τ is nilpotent, the restriction of τ to $\mathscr{U}(\mathscr{D})$ gives a 1-1 correspondence between idempotents of $\mathscr{U}(\mathscr{D})$ and those of $\tau(\mathscr{U}(\mathscr{D}))$. $\mathscr{A}(\mathscr{H}/\mathscr{D})$ is semi-simple by § 1, remark 6, and so its centre $\mathscr{L}(\mathscr{H}/\mathscr{D})$ is the direct sum of copies of \mathscr{F} . As $\tau(\mathscr{U}(\mathscr{D}))$ is a subalgebra of $\mathscr{L}(\mathscr{H}/\mathscr{D})$, it is also semi-simple and hence the number of blocks of defect a in $\mathscr{A}(\mathscr{G})$ is equal to the dimension of $\tau(\mathscr{U}(\mathscr{D}))$.

We may assume that $\mathscr{A}(\mathscr{G})$, $\mathscr{A}(\mathscr{H})$ and $\mathscr{A}(\mathscr{H}/\mathscr{D})$ are (separately) p-unormalized. Write (G), [H] for the basis elements of $\mathscr{A}(\mathscr{G})$, $\mathscr{A}(\mathscr{H})$ respectively, where $G \in \mathscr{G}$, $H \in \mathscr{H}$ and $\{H\}$ for the basis element of $\mathscr{A}(\mathscr{H}/\mathscr{D})$ corresponding to the coset $H\mathscr{D}$ of \mathscr{H}/\mathscr{D} . Thus $\{H\} = \{HD\}$, for all $D \in \mathscr{D}$.

Let G be a *u*-element of $\mathscr{A}(\mathscr{G})$ such that \mathscr{D} is a Sylow *p*-subgroup of $\mathscr{C}(G)$. Write G = PR, where P, R are powers of G, P has order a power of p, R is *p*-regular. Then \mathscr{D} is a Sylow *p*-subgroup of $\mathscr{C}(R)$. Let \mathscr{K} be the *u*-class of \mathscr{G} containing G, and write $\mathscr{L} = \mathscr{K} \cap \mathscr{C}(\mathscr{D})$; then \mathscr{L} is a complete ¹³ conjugacy class in \mathscr{H} . Thus

$$\sigma(K) = dL,$$

where K, L are the u-class sums of \mathcal{H} , \mathcal{L} . (The factor $d \in \mathcal{F}^*$) has to be introduced because of the possibly different normalizations of $\mathcal{A}(\mathcal{G})$, $\mathcal{A}(\mathcal{H})$.) Then

$$\tau(\sigma(K)) = d\tau(L) \in \mathscr{Z}(\mathscr{H}|\mathscr{D}).$$

If $\tau(\sigma(K)) \neq 0$, it will now be proved that R is also a u-element in $\mathscr{A}(\mathscr{G})$. If

$$H \in \mathscr{H}$$
, write $\mathscr{C}(H) = \text{centralizer of } H \text{ in } \mathscr{H},$
= $\mathscr{C}(H) \cap \mathscr{H}.$

 \mathscr{D} is the Sylow *p*-subgroup of $\widetilde{\mathscr{C}}(G)$. Further $P \in \widetilde{\mathscr{C}}(R)$ and so $P \in \mathscr{D}$. Thus $\{G\} = \{R\}$. As $\tau(\sigma(K)) \neq 0$, and $\tau(\sigma(K)) \in \mathscr{Z}(\mathscr{H}/\mathscr{D}), G\mathscr{D} = R\mathscr{D}$ must be a *u*-element in $\mathscr{A}(\mathscr{H}/\mathscr{D})$ (see § 1, remark 4). Take $N \in \widetilde{\mathscr{C}}(R)$ and write

$$[N][R][N^{-1}] = b[R],$$

$$\tau([R]) = c\{R\},$$

¹³ This is proved in Rosenberg's paper [16].

[16]

where $b, c \in \mathcal{F}^*$. Then

$$\tau([N][R][N^{-1}]) = b\tau([R]) = bc\{R\}.$$

On the other hand this is equal to

$$\begin{aligned} \tau([N])\tau([R])\tau([N^{-1}]), \\ &= \{N\}c\{R\}\{N^{-1}\} \quad (\text{as both } \mathscr{A}(\mathscr{H}), \ \mathscr{A}(\mathscr{H}/\mathscr{D}) \text{ are normalized}), \\ &= c\{R\} \quad (\text{as } R\mathscr{D} \text{ is a } u\text{-element in } \mathscr{A}(\mathscr{H}/\mathscr{D})), \end{aligned}$$

and so b = 1, i.e., R is a u-element in $\mathscr{A}(\mathscr{H})$. Hence we have

(3)
$$(N)(R)(N^{-1}) = (R)$$

in $\mathscr{A}(\mathscr{G})$, for all $N \in \mathscr{C}(\mathbb{R}) \cap \mathscr{N}(\mathscr{D})$, as both $\mathscr{A}(\mathscr{G}), \mathscr{A}(\mathscr{H})$ are normalized.

Let \mathscr{D}' be any other Sylow p-subgroup of $\mathscr{C}(R)$; then there exists $T \in \mathscr{C}(R)$ such that $\mathscr{D}' = T \mathscr{D} T^{-1}$. Thus

$$T(\mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}))T^{-1} = \mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}'),$$

 $TGT^{-1} = R(TPT^{-1}).$

Take $TNT^{-1} \in \mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}')$, where $N \in \mathscr{C}(R) \cap \mathscr{N}(\mathscr{D})$. From (3) we get

$$((T)(N)(T^{-1}))((T)(R)(T^{-1}))((T)(N^{-1})(T^{-1})) = (T)(R)(T^{-1}),$$

i.e.

 $((T)(N)(T^{-1}))(R)((T)(N^{-1})(T^{-1})) = (R).$

Using § 1, remark 3, we get

$$(TNT^{-1})(R)(TN^{-1}T^{-1}) = (R)$$

and so

(4)
$$(M)(R)(M^{-1}) = (R),$$

for all $M \in \mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}')$.

Let $\mathscr{D}_1 = \mathscr{D}, \mathscr{D}_2, \dots, \mathscr{D}_q$ be all the Sylow *p*-subgroups of $\mathscr{C}(R)$ and let \mathscr{Q} be the group union of the subgroups $\mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}_a)$. Then $\mathscr{C}(R) = \mathscr{Q}$, for \mathscr{Q} is normal in $\mathscr{C}(R)$ and \mathscr{Q} contains the normalizer of a Sylow *p*-subgroup of $\mathscr{C}(R)$. Any element of $\mathscr{C}(R)$ has the form $C = A_1 A_2 \cdots A_m$, where $A_a \in \text{some } \mathscr{C}(R) \cap \mathscr{N}(\mathscr{D}_{\beta})$. Thus if $\tau(\sigma(K)) \neq 0$, then

$$(C)(R)(C^{-1}) = (A_1 \cdots A_m)(R)(A_m^{-1} \cdots A_1^{-1}),$$

= $(A_1) \cdots (A_m)(R)(A_m^{-1}) \cdots (A_1^{-1})$ (by § 1, remark 3),
= (R) (by repeated use of (4)),

and so R is a *u*-element of $\mathscr{A}(\mathscr{G})$.

Let \mathscr{K}_{α} $(\alpha = 1, \dots, r)$ be the *p*-regular *u*-classes of defect *a* in $\mathscr{A}(\mathscr{G})$ with corresponding *u*-class sums K_{α} . The $\mathscr{L}_{\alpha} = \mathscr{K}_{\alpha} \cap \mathscr{C}(\mathscr{D})$ consist of single

[17]

169

conjugacy classes in \mathscr{H} , and so the $\sigma(K_{\alpha})$ are multiples of the class sums L_{α} . Write $\mathscr{P} = \bigcup_{\alpha} \mathscr{L}_{\alpha}$ (set union). Then the $\{H\}$ $(H \in \mathscr{P})$ are all distinct in $\mathscr{A}(\mathscr{H}/\mathscr{D})$. For say $\{H\} = \{H'\}$. Then H = H'D, for some $D \in \mathscr{D}$. But each \mathscr{L}_{α} has defect group \mathscr{D} and so $D \in \mathscr{D} \subset \mathscr{C}(H')$. Further, the orders of H, H' are prime to p and so D = E, or H = H'. Hence the $\tau(L_{\alpha})$ are all non-zero and linearly independent. But $\tau(L_{\alpha}) \in \tau(\mathscr{U}(\mathscr{D}))$ and so dim $\tau(\mathscr{U}(\mathscr{D})) \geq r$. It remains to show that the $\tau(L_{\alpha})$ actually span $\tau(\mathscr{U}(\mathscr{D}))$.

It is clear that the \mathscr{L}_{α} exhaust all the *p*-regular conjugacy classes of \mathscr{H} of defect group \mathscr{D} which consist of *u*-elements in $\mathscr{A}(\mathscr{G})$. Let then \mathscr{L} be any *p*-singular class of \mathscr{H} of defect group \mathscr{D} and consisting of *u*-elements in $\mathscr{A}(\mathscr{G})$, i.e. *L* is a *p*-singular *u*-class sum in $\mathscr{U}(\mathscr{D})$. Take $G \in \mathscr{L}$, and write G = PR as before. Then if $\tau(L) \neq 0$, *R* is a *u*-element of $\mathscr{A}(\mathscr{G})$ and $\tau(L)$ is equal to a multiple of $\tau(M)$, where *M* is the class sum of the conjugacy class \mathscr{M} of *R* in $\mathscr{A}(\mathscr{H})$. But \mathscr{M} must be one of the classes \mathscr{L}_{α} and so the $\tau(L_{\alpha})$ do in fact span $\tau(\mathscr{U}(\mathscr{D}))$.

Thus the number of blocks of $\mathscr{A}(\mathscr{G})$ of highest defect $= \dim \tau(\mathscr{U}(\mathscr{D})) = r$, the number of *p*-regular *u*-classes of highest defect *a*.

4. Vertices and sources

The results of Higman [9] [10] and Green [8] can also be carried over to the twisted case. Here the generalization is even more direct than in § 3 and for most of the results we need only insist that the algebras be normalized. As before all modules will be assumed to have finite dimension over \mathcal{F} .

Let \mathscr{H} be a subgroup of \mathscr{G} . An $\mathscr{A}(\mathscr{G})$ -module \mathscr{M} is said to be \mathscr{H} -projective if there esists an $\mathscr{A}(\mathscr{H})$ -module \mathscr{R} such that \mathscr{M} is isomorphic to an $\mathscr{A}(\mathscr{G})$ direct summand of $\mathscr{R}^{\mathscr{G}}$. This definition is equivalent to \mathscr{M} being $(\mathscr{A}(\mathscr{G}),$ $\mathscr{A}(\mathscr{H}))$ -projective or $(\mathscr{A}(\mathscr{G}), \mathscr{A}(\mathscr{H}))$ -injective in the sense of Hochschild [12] or Higman [11].

When \mathscr{F} has characteristic p = 0, or $p \nmid |G|$, by § 1, remark 6, $\mathscr{A}(\mathscr{G})$ is semi-simple. Hence all $\mathscr{A}(\mathscr{G})$ -indecomposables occur in the regular representation. Thus all $\mathscr{A}(\mathscr{G})$ -modules are $\{E\}$ -projective and the theory is trivial. From now on we assume $p \neq 0$.

Higman's criterion ¹⁴ for \mathscr{M} to be \mathscr{H} -projective can be written down immediately. Further, taking $\mathscr{H} = \mathscr{P}$, a Sylow *p*-subgroup of \mathscr{G} , we find that every indecomposable $\mathscr{A}(\mathscr{G})$ -module \mathscr{M} is a component of a module induced from some $\mathscr{A}(\mathscr{P})$ -module. But by § 1, remark 7, if \mathscr{F} is large enough, $\mathscr{A}(\mathscr{P})$ is the group algebra $\mathscr{F}(\mathscr{P})$ and so all indecomposable $\mathscr{A}(\mathscr{G})$ -modules can be obtained by inducing from ordinary group representations of *p*-groups. $\mathscr{A}(\mathscr{G})$ has a finite number of different indecomposable $\mathscr{A}(\mathscr{G})$ -modules if,

¹⁴ c.f. theorem 1, p. 371 of [9].

[18]

and only if, \mathscr{P} is cyclic, and as in [10] a rough upper bound for the number of indecomposables is

$$\frac{1}{2}p^{a}(m(p^{a}+1)-p^{a}+1),$$

where $|\mathcal{G}| = mp^a$, (m, p) = 1.

If \mathscr{P} , \mathscr{Q} are subgroups of \mathscr{G} we shall write $\mathscr{P} \subseteq_{\mathscr{G}} \mathscr{Q}$ if there exists a $T \in \mathscr{G}$ such that $\mathscr{P} \subseteq T \mathscr{Q} T^{-1}$, and $\mathscr{P} =_{\mathscr{G}} \mathscr{Q}$, if $\mathscr{P} = T \mathscr{Q} T^{-1}$. If \mathscr{M} is an indecomposable $\mathscr{A}(\mathscr{G})$ -module, then a subgroup \mathscr{V} of \mathscr{G} is called a *vertex* of \mathscr{M} if

(a) \mathcal{M} is \mathscr{V} -projective, and

(b) if \mathscr{M} is \mathscr{H} -projective, then $\mathscr{V} \subseteq_{\mathscr{G}} \mathscr{H}$. \mathscr{V} is then determined up to conjugacy in \mathscr{G} and is a *p*-subgroup. When $p \nmid |\mathscr{G}|$ (or p = 0), all vertices coincide with $\{E\}$.

We may also look at the various $\mathscr{A}(\mathscr{V})$ -modules \mathscr{S} such that $\mathscr{S}^{\mathscr{G}}$ contains \mathscr{M} as a component. As the process of inducing (i.e. \otimes) is distributive over direct sum and \mathscr{M} is indecomposable, it is sufficient to consider \mathscr{S} indecomposable. If \mathscr{S}' is a second such indecomposable $\mathscr{A}(\mathscr{V})$ -module, then there exists an element $X \in \mathscr{N}(\mathscr{V})$ such that

$$\mathscr{S}' \approx (X) \otimes_{\mathscr{A}(\mathscr{V})} \mathscr{S},$$

considered as $\mathscr{A}(\mathscr{V})$ -modules. Thus \mathscr{S} is called a source of \mathscr{M} .

As in the corollary to theorem 6 of [8], the problem of determining the vertex and source of a given indecomposable $\mathscr{A}(\mathscr{G})$ -module \mathscr{M} can be reduced to the same problem for $\mathscr{A}(\mathscr{P})$, where \mathscr{P} is a Sylow *p*-subgroup of \mathscr{G} , i.e. to the same problem for *p*-group representations. Hence Green's discussion of induced modules in *p*-groups (§ 4 of [8]) is relevant.

The existence of the vertex and source of a given indecomposable \mathscr{M} can also be inferred from the non-twisted case by means of the group algebra $\mathscr{F}(\mathscr{G}^*)$ defined in § 1, remark 5.

The notion of blocks of § 3 can be extended further to embrace indecomposable $\mathscr{A}(\mathscr{G})$ -modules \mathscr{M} . If (E) is decomposed as in § 3 (1), then

$$\mathcal{M} = (E)\mathcal{M} \approx I_1\mathcal{M} \oplus \cdots \oplus I_s\mathcal{M},$$

this being an $\mathscr{A}(\mathscr{G})$ -direct sum decomposition. But \mathscr{M} is indecomposable and so there is one and only one I_i such that $I_i \mathscr{M} = \mathscr{M}$. We say that \mathscr{M} is in the block I_i .

Let then \mathscr{M} be an indecomposable $\mathscr{A}(\mathscr{G})$ -module of vertex \mathscr{V} , and in the block I of defect group \mathscr{D} . Then $\mathscr{V} \subseteq_{\mathscr{G}} \mathscr{D}$. On the other hand we shall prove the existence of an $\mathscr{A}(\mathscr{G})$ -module in the block I with vertex \mathscr{D} and so the defect group \mathscr{D} of a block I may be characterised as being the "supremum" of the vertices of indecomposable modules in the block.

The following proposition helps in the construction of the above indecomposable.

$$\sigma(I)=J_1+\cdots+J_t,$$

where J_{α} are primitive idempotents (blocks) of $\mathscr{Z}(\mathscr{H})$ ($\mathscr{H} = \mathscr{N}(\mathscr{D})$). Let \mathscr{R} be an indecomposable $\mathscr{A}(\mathscr{H})$ -module belonging to one of the above blocks, J_1 say. Then there is a component \mathscr{M} of $\mathscr{R}^{\mathscr{B}}$ belonging to the block I such that \mathscr{R} is isomorphic to a component of $\mathscr{M}_{\mathscr{R}}$.

PROOF. Let $X_{\alpha}\mathscr{H}$ be the cosets of \mathscr{H} in $\mathscr{G}(X_{\alpha} \in \mathscr{G})$, with $X_1 = E$. Then

(1)
$$(\mathscr{R}^{\mathfrak{g}})_{\mathfrak{K}} \approx ((E) \otimes_{\mathfrak{sf}(\mathfrak{K})} \mathscr{R}) \oplus (\sum_{\alpha > 1} (X_{\alpha}) \otimes_{\mathfrak{sf}(\mathfrak{K})} \mathscr{R})$$

is an $\mathscr{A}(\mathscr{H})$ -direct decomposition. We write $\mathscr{Q} = \sum_{\alpha > 1} (X_{\alpha}) \otimes \mathscr{R}$ and we identify $(E) \otimes \mathscr{R}$ with \mathscr{R} . Let π denote the $\mathscr{A}(\mathscr{H})$ -projection:

We write

$$\pi: (\mathscr{R}^{\mathscr{G}})_{\mathscr{H}} \to (E) \otimes \mathscr{R} = \mathscr{R}$$

$$I = \sigma(I) + T_1 + T_2,$$

where T_1 is the sum of terms in $\mathscr{A}(\mathscr{H})$ but not in $\mathscr{A}(\mathscr{C}(\mathscr{D}))$, and T_2 is the sum of the remaining terms not in $\mathscr{A}(\mathscr{H})$. For each *u*-class sum L in $T_1, \mathscr{L} \cap \mathscr{C}(\mathscr{D}) = \emptyset$ and so $\tau(L) = 0$ (τ is defined in § 3). Hence $\tau(T_1) = 0$, and T_1 is nilpotent.

For $A \in \mathscr{A}(\mathscr{H})$, we write $\rho(A)$ for the linear transformation representing A in the representation afforded by $(E) \otimes \mathscr{R} = \mathscr{R}$. Clearly $\sigma(I)$ acts identically on \mathscr{R} , and so $\rho(\sigma(I) + T_1)$, being the sum of the identity transformation and a nilpotent one, is non-singular. Hence the map

$$R \to IR = \rho(\sigma(I) + T_1)R \oplus (T_2 \otimes R) \qquad (R \in \mathcal{R})$$

is an $\mathscr{A}(\mathscr{H})$ -homomorphism, the decomposition on the right hand side being that of (1). On the other hand

$$\pi(IR) = \rho(\sigma(I) + T_1)R$$

and so πI is an $\mathscr{A}(\mathscr{H})$ -automorphism of $(E) \otimes \mathscr{R} = \mathscr{R}$. Hence $\mathscr{R} \cong I(\mathscr{R})$ and $I(\mathscr{R})$ is an $\mathscr{A}(\mathscr{H})$ -component of $(I(\mathscr{R}^{\mathscr{G}}))_{\mathscr{H}}^{-15}$. By the Krull-Schmidt theorem there is a component \mathscr{M} of $I(\mathscr{R}^{\mathscr{G}}) (\subseteq \mathscr{R}^{\mathscr{G}})$ such that $\mathscr{M}_{\mathscr{H}}$ has a component isomorphic to \mathscr{R} . \mathscr{M} must also be in the block I.

The construction of the required indecomposable in block I of vertex \mathscr{V} is now simple. Suppose first of all that \mathscr{D} is normal in \mathscr{G} . As ker τ is nilpotent, $\tau(I)$ must be a non-zero idempotent of $\mathscr{Z}(\mathscr{G}/\mathscr{D})$. Write

[20]

¹⁵ This follows from the lemma: If U, V are modules and there exist homomorphisms $\alpha : U \to V$, $\beta : V \to U$ such that $\beta \alpha$ (α followed by β) is an automorphism. then $V = \text{Im } \alpha \oplus \ker \beta$.

S. B. Conlon

$$\tau(I)=J_1+\cdots+J_d$$

as a decomposition into blocks of $\mathscr{L}(\mathscr{G}/\mathscr{D})$. Let \mathscr{R} be any principal component of $\mathscr{A}(\mathscr{G}/\mathscr{D})$ in block J_1 , say. J_1 has defect group $\{E\}$ in \mathscr{G}/\mathscr{D} and \mathscr{R} has vertex $\{E\}$ in \mathscr{G}/\mathscr{D} . By means of the homomorphism τ , \mathscr{R} can be considered as an $\mathscr{A}(\mathscr{G})$ -module, and as such it will be in the block I and will have vertex \mathscr{D} .

For the case where \mathcal{D} is not necessarily normal we first write

$$\sigma(I) = J'_1 + \cdots + J'_s,$$

where the J'_{α} are primitive idempotents in $\mathscr{X}(\mathscr{H})$, each having defect group \mathscr{D} by the main theorem on blocks. By the previous paragraph there is an indecomposable $\mathscr{A}(\mathscr{H})$ -module \mathscr{R} in block J'_{1} , say, with vertex \mathscr{D} . By the proposition there is a component \mathscr{M} of $\mathscr{R}^{\mathscr{G}}$ in block I with a component of $\mathscr{M}_{\mathscr{H}}$ isomorphic to \mathscr{R} . As the defect group of I is \mathscr{D} and as \mathscr{M} is in the block I, the vertex \mathscr{V} of \mathscr{M} satisfies

$$\mathscr{V} \subseteq \mathscr{D}$$

On the other hand as \mathscr{M} is \mathscr{V} -projective each of the components of $\mathscr{M}_{\mathscr{X}}$ has vertex ¹⁶ $\subseteq_{\mathscr{G}} \mathscr{V}$. In particular the vertex \mathscr{D} of the component isomorphic to \mathscr{R} satisfies

Hence $\mathscr{D} =_{\mathscr{A}} \mathscr{V}$, and so \mathscr{M} is in block I with vertex \mathscr{D} .

References

- Artin, E., Nesbitt, C. J. and Thrall, R., Rings with minimum condition, Univ. of Michigan Press, Ann Arbor, 1955.
- [2] Asano, K., Osima, M. and Takahasi, M., Uber die Darstellung von Gruppen durch Kollineationen im Körper der Charakteristik p, Proc. Phys.-Math. Soc. Japan (3) 19 (1937), 199-209.
- [3] Asano, K. and Shoda, K., Zur Theorie der Darstellungen einer endlichen Gruppe durch Kollineationen, Compositio Math. 2 (1935), 230-240.
- [4] Brauer, R., Zur Darstellungstheorie der Gruppen endlicher Ordnung, Math. Z. 63 (1956), 406-444.
- [5] Clifford, A. H., Representations induced in an invariant subgroup, Ann. of Math. (2) 38
 (3) (1937), 533-550.
- [6] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [7] Fitting, H., Die Theorie der Automorphismenringe Abelscher Gruppen und ihr Analogon bei nicht kommutativen Gruppen, Math. Ann. 107 (4) (1932), 514-542.
- [8] Green, J. A., On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
- ¹⁶ This follows as in theorem 6 of [8]

[21]

- [9] Higman, D. G., Modules with a group of operators, Duke Math. J. 21 (1954), 369-376.
- [10] Higman, D. G., Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.
- [11] Higman, D. G., Relative cohomology, Canad. J. Math. 9 (1957), 19-34.
- [12] Hochschild, G., Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
- [13] Jacobson, N., The Theory of Rings (Mathematical Surveys, number II), Amer. Math. Soc., 1943.
- [14] Kleppner, A., The structure of some induced representations, Duke Math. J. 29 (4) (1962), 555-572.
- [15] Nakayama, T., Some studies on regular representations, induced representations and modular representations, Ann. of Math. (2) 39 (2) (1938), 361-369.
- [16] Rosenberg, A., Blocks and centres of group algebras, Math. Z. 76 (1961), 209-216.
- [17] Schur, J., Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 127 (1) (1904), 20-55.
- [18] Schur, J., Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (2) (1907), 85-137.
- [19] Srinivasan, B., On the indecomposable representations of a certain class of groups, Proc. London Math. Soc. (3) 10 (1960), 497-513.
- [20] Tazawa, M., Über die Darstellung der endlichen verallgemeinerten Gruppen, Sci. Rep. Tohoku Univ. (1) 23 (1934), 76-88.
- [21] Tucker, P. A., On the reduction of induced representations of finite groups, Amer. J. Math. 84 (3) (1962), 400-420.

University of Sydney.

[22]