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Let R, C be the additive groups of the real, complex numbers respectively.
Using the Axiom of Choice (A.C.), these groups may be shown to be isomorphic.
We show that this cannot be proved in Zermelo-Fraenkel set theory (see e.g.
Fraenkel, Bar-Hillel and Levy (1973)) without the additional assumption of A.C.
This is one of the most ' 'concrete" used of the Axiom of Choice of which I know.

THEOREM 1 (assuming (A.C)). C = R.

PROOF. Regarding J? as a vector space over the field of rationals, R has a
basis, X. Since R is uncountable, X is infinite. A bijection thus exists between X
and (X x {0}) u ({0} x X) which is a basis for R © R regarded again as a
vector space. This bijection then induces an isomorphism between R and
R © R as vector spaces, and so as groups. But C = R (&R.

The proposition C s R may be deduced, by this method, from restricted
forms of the Axiom of Choice, such as the existence of a well-ordering of the reals,
and so does not imply the full Axiom of Choice. (See Derrick and Drake (1967).)
We show, however, that C = R does imply a result known not to be provable
without the Axiom of Choice.

We use the notation <a, by for ordered pairs and (a, b) etc. for intervals
in R.

THEOREM 2 (without A.C). If C = R then there is a set of reals which is
not Lebesgue measurable (see e.g. Halmos (1950)).

PROOF. Assume C ^ R. Then, since C s R © R, we have an isomorphism
/ : R@R -> R. Now suppose that each subset of R is Lebesgue measurable. We
shall derive a contradiction.

For x e R, let Sx be the image under/of R © [x, x + 1). The Sn, for integers n,
partition R, and so the Sn n (0,1) partition (0,1). We show that the Sn n (0,1) all
have the same measure, giving a contradiction to countable additivity as required.

First, since R © [x, x + 1) may be translated to R © [0,1) in R © R, then the
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same applies to their images. Thus Snr> (0,1) translates to Son (y,y + 1) for
some y e R. It is therefore sufficient to show that So n (y, y + 1) and So n (0,1)
have the same measure.

Let T be the set of images under / of pairs <r, 0> for rational r. Then we
have an enumeration of T. Also Tis a subgroup of R isomorphic to the rationals
and so can easily be shown to be dense in R. Finally, So is closed under addition
of elements of T.

Since Tis dense in R, one can use the enumeration of Tto express (y, y + 1)
as the union of the chain of intervals (sk, tk) k = 0,1, ••• where sk,tkeT.
h — sk ~* 1 as fc -> oo, so (0,1) is the union of the chain (0, tk — sk). But, since So is
closed under addition of elements of T, each So n (sk, tk) translates to So n (0, tk—sk).
Thus, taking measures of unions of countable chains, Sor\(y,y + 1) and
So n (0,1) have the same measure as required.

COROLLARY. Theorem 1 cannot be proved in ZF (Zermelo-Fraenkel set
theory) with out the additional use of A.C.

PROOF. Solovay (1960) demonstrates the existence of a model for ZF in
which every set of real numbers is Lebesgue measurable, thus showing that the
conclusion of Theorem 2, and so its premise, cannot be proved in ZF.

For those interested in weaker forms of A.C, is should be observed that in the
model of Solovay (1970) the Principle of Dependent Choices (D.C.) holds. Thus
C ^ R cannot even be proved in ZF with D.C. (while for many other results in
analysis—for example the Baire category theorem—this form of A.C. suffices).

A more familiar version of A.C. is the Countable Axiom of Choice (the
existence of a choice function for every countable family of non-empty sets)
usually designated by AC,,,.

ACro is easily shown to be implied by D.C, so the same model shows the
Countable Axiom of Choice (while sufficient for many results in measure theory
and analysis) is insufficient to prove C ^ R.

REMARKS. If Q is the additive group of rationals, then Q © R s R as in
Theorem 1. Q © R = R implies, as in Theorem 2, the existence of a non-measurable
set of reals, and so its proof again requires A.C. The assertions Q ®R s R and
R © R ^ R do not seem to be related in the absence of A.C.

Similarly, without A.C. one cannot show the existence of any subgroup
of R with countably index. I do not know, however, whether the existence of an
uncountable S < R with R/S uncountable requires A.C
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Added in proof

In deriving the corollary to theorem 2, I have unwittingly assumed the
existence of an inaccessible cardinal, since the model of [4] is constructed under
this assumption. The corollary, and the following remarks are nevertheless demo-
nstrable without this assumption, by appeal to the model of theorem 4.2-4.26
of Sacks (1969), Measure theoretic uniformity, Trans. A.M.S. 142, 381-419, and
to the fact that Theorem 2 may be applied to any countably additive translation
invariant extension of Lebesgue measure.
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