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LOWER SEMIMODULAR LIE ALGEBRAS

by V. R. VAREA

(Received 29th August 1997)

This paper is concerned with the relationship between the properties of the subalgebra lattice C(L) of a Lie
algebra L and the structure of L. If the lattice C(L) is lower semimodular, then the Lie algebra L is said to be
lower semimodular. If a subalgebra S of L is a modular element in the lattice C(L), then S is called a modular
subalgebra of L. The easiest condition to ensure that L is lower semimodular is that dim A/B = 1 whenever
B < A < L and B is maximal in A (Lie algebras satisfying this condition are called sj;-algebras). Our aim is to
characterize lower semimodular Lie algebras and s^-algebras, over any field of characteristic greater than
three. Also, we obtain results about the influence of two solvable modular maximal subalgebras on the
structure of the Lie algebra and some results on the structure of Lie algebras all of whose maximal
subalgebras are modular.

1991 Mathematics subject classification: Primary 17B05, Secondary 17B50.

1. Introduction

A subalgebra M of L is called modular in L if it is a modular element in the lattice
of all subalgebras of L; that is, if for each subalgebra S of L the mapping

<f>MS :[M : MvS]3 T ^-THS e[MC\S:S]

is a bijection. (Here, X v Y denotes the subalgebra of L generated by X and Y.) Note
that a maximal subalgebra M of L is modular if and only if M n S is maximal in S for
every S < L with S £ M. If every maximal subalgebra of L is modular, then L is said
to be an M{\)-algebra. A Lie algebra L is called lower semimodular if the lattice of
subalgebras of L is lower semimodular (that is, if every subalgebra of L, including L
itself, is an M(l)-algebra).

For fields F of characteristic zero, lower semimodular Lie algebras were classified
by Gein [9] and M(l)-algebras with trivial Frattini subalgebra are classified in [17].
Gein proved that L is lower semimodular if and only if L = U © F, © • •• © Pr, where U
is supersolvable, r > 0 and the Pt are mutually non-isomorphic three-dimensional
simple Lie algebras, and also r < 1 when VF < F, and the Pt are non-split when
•JF £ F. In [17], it is proved that a Lie algebra L is M(l) if and only if L/Fr(L) is lower
semimodular, where Fr(L) denotes the Frattini subalgebra of L (that is, the intersection
of the maximal subalgebras of L).

For fields of prime characteristic, Gein's result above fails. Indeed, certain
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Yermolaev algebras Y satisfy Y/FT(Y) S sl(2) (see [23]), and we will see that such
Lie algebras are lower semimodular, provided the ground field is algebraically closed
of characteristic greater than three. However, we do not know any example of an
M(l)-algebra with trivial Frattini subalgebra which is not lower semimodular.

The easiest examples of M(l)-algebras are the Lie algebras in which every maximal
subalgebra has codimension one (these algebras are called /-algebras). So, the easiest
condition to ensure that a Lie algebra L is lower semimodular is that every
subalgebra of L (including L itself) is a /-algebra (for short, Lie algebras satisfying
this condition will be called s/-algebras). /-algebras L such that <j>(L) = 0 were
classified by Towers in [15] and [16], where (f>(L) denotes the largest ideal of L
contained in Fr(L). In [23] it is proved that for any algebraically closed field of
characteristic greater than three, a nonsolvable Lie algebra L is minimal non-
supersolvable (that is, every proper subalgebra of L is supersolvable) if and only if
L/<p(L) = sl(2); so, such an algebra is in the class s/. (Note that, in characteristic zero,
L/<j>(L) = sl(2) implies L ^ sl(2).) Also, in [23] there is given a method to construct
Lie algebras L such that L/4>(L) s sl(2).

In Section 2, we study the effect that the existence of two distinct modular solvable
maximal subalgebras causes in the structure of the algebra.

In Section 3, we obtain some results on M(l)-algebras which will be needed in the
sequel. The structural problem of an arbitrary M(l)-algebra will remain open. For any
field, we prove that if L is M(l) then R(L) is supersolvable and R(L) n L" < </>(L), where
L" denotes the smallest ideal of L such that L/L" is supersolvable.

In Section 4, we study s/-algebras over fields F such that char(F) ^ 2. When
•y/F £ F, the supersolvable algebras are the only /-algebras. When ^/F < F, we prove
that L is an s/-algebra if and only if either L is supersolvable or else
L/R(L) = sl(2) ^ L"/<f)(Lu) and every strongly solvable subalgebra is supersolvable (this
last condition is superfluous when F is algebraically closed).

In Section 5, we consider lower semimodular Lie algebras over fields F such that
char(F) > 3. A central role will be played by the simple Lie algebras all of whose
subalgebras of dimension greater than one are simple (called supersimple). We will
prove that the supersimple algebras are the only simple Lie algebras which might be
lower semimodular, provided y/F ^ F. A Lie algebra of dimension greater than one is
supersimple if and only if it contains no subalgebras of dimension two ([18, Proposition
3.2]). For perfect fields of characteristic ^ 2, 3, there are no supersimple Lie algebras
other than the three-dimensional non-split simple (see [19, Lemma 1.1] and [10]). The
only known example of a supersimple Lie algebra of dimension greater than three is
that constructed by Gein in [10, Example 12] over a certain perfect field of character-
istic three. This algebra is not lower semimodular, its proper subalgebras of dimension
greater than one are three-dimensional non-split simple and it cannot be generated by
two elements. By contrast, for fields of characteristic > 3, a supersimple Lie algebra
must be bi-generated and it cannot have any three-dimensional non-split simple
subalgebra ([22, Proposition 3.1]). A special type of supersimple Lie algebras are the
Lie algebras of dimension greater than two all of whose proper subalgebras are one-
dimensional (called ^-algebras).
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In the case where */F •£ F, we obtain that a Lie algebra L is lower semimodular if
and only if L/Z(L(oo)) sz U © P, © • • • © P,, where 1/ is supersolvable, r > 0, each P, is a
lower semimodular supersimple Lie algebra and for i ^ j , none of the subalgebras of
Pj of dimension greater than one is isomorphic to a subalgebra of P). We wonder if
Z{L(oo)) — 0 when L is lower semimodular. This has an affirmative answer in the case
where F is perfect.

In the case where -Jf < F we need to impose the additional condition that there
are no /i-algebras of dimension greater than three over the field F. We obtain that the
s^-algebras are the only lower semimodular Lie algebras.

As consequences of ours results, we have the following: (1) the classification of lower
semimodular Lie algebras given by Gein [9] remains true whenever F is perfect and
•Jf ^ F; (2) if F is perfect and -fF < F, then the s^-algebras are the only lower
semimodular Lie algebras; (3) if F is algebraically closed, then lower semimodular Lie
algebras L such that L = L' are precisely the Lie algebras L such that L/4>(L) = sl(2);
and (4) if F is finite, then the supersolvable algebras are the only lower semimodular
Lie algebras.

Throughout, L will denote a finite-dimensional Lie algebra over a field F, Z(L) will
be its centre, R(L) its solvable radical, Nil(L) its nil-radical (that is, the largest
nilpotent ideal of L), 0(L) its largest ideal contained in its Frattini subalgebra Fr(L), L'
its derived subalgebra, L(oo) the last term in its derived series, L°° the last term in its
lower central series and Lu its smallest ideal such that L/L" is supersolvable. Also, we
will denote by EL(x) the Engel subalgebra of L corresponding to the element x of L (so
that EL(x) is the Fitting null-component of L corresponding to the transformation
ad x). If 11 is nilpotent, then the Lie algebra L is said to be strongly solvable. It is well-
known that the class of strongly solvable Lie algebras is between the classes of
supersolvable and solvable Lie algebras. For fields of characteristic zero, every solvable
Lie algebra is strongly solvable (see [12] or [13]), whereas for algebraically closed fields,
every strongly solvable Lie algebra is supersolvable (see [4]).

2. Modular subalgebras and the structure of the Lie algebra

There are many results in the literature on the effect that a modular subalgebra M
of a Lie algebra L causes in the structure of the Lie algebra L (see for instance [2, 10,
11, 20 and 21]). If either char(F) = 0 or L is solvable, then it is well-known that M
must be a quasi-ideal of L (this means that M v Fx = M + Fx for every x e L), except
when dim M/ML = 1 and L/ML is three-dimensional non-split simple (here ML denotes
the largest ideal of L contained in M), see [2] and [20]. So, in those cases, the structure
of the Lie algebra L/ML is known ([1, Theorem 3.6] and [2, Theorem 3.1]). However,
in [21], it is shown that the standard maximal subalgebra of the simple Lie algebra of
Cartan type W(2 : 1 : <J>(y))(l) is modular but not a quasi-ideal. In general, the structure
of the algebra L/ML is unknown.

In this section, we consider the case when L has two distinct solvable modular
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maximal subalgebras. We will need the following lemma which might have some
interest in itself.

Lemma 2.1. Let F be any field. Let Lbe a non-nilpotent Lie algebra and H a splitting
Car tan subalgebra ofL. Let M bea subalgebra ofL con taining H such that dim L/M = 1. Let
N < H such that L°° D H < JV and every element of JV is ad-nilpotent. Let M, denote the
Fitting one-component of M relative to H. Then, N + M°° = N + MX<L.

Proof. Let L, be the Fitting 1-component of L relative to H. As H is contained in
M, we have that MDL, is the Fitting 1-component of M relative to H, so that
M, = L, n M. Since M has codimension 1 in L, we have dim L,/M, = 1. We see

[JV + M,, L] = [JV, L,] + [JV, H] + [MULX] + [M,, H] < [N,Lt] + N + [M,, L,] + M,.

Since dimL,/JVf, = 1 and since JV acts nilpotently on L, we find [JV, L,] < M,. Now,
we need prove that [M,, L,] < M, + N. To do that, let L = H®Y.L* b e the
decomposition of L into its root spaces relative to H. We have L, —J2La and
£|Xct, L_x] — H n L°°, see [26]. As dim L^M, = 1, there exists a root a and a nonzero
element e e La such that L, = M, 4- Fe. We see that L^ is contained in M, for every
root P ^ <x. Also we see that Ma = L , n M , where Ma is the root space of M
corresponding to a. We find [L^, Fe] c LI + f c M, whenever /? ̂  — a, and [L_a, Fe] c
[L_a, LJ c H n L°° < JV. Therefore, [M,, Fe] < M, + JV. Moreover, we have

[M,, M,] < M, + M°° n H < M, + L°° n H < M, + JV.

This yields [M,, L,] = [M,, M,] + [M,, Fe] < M, + JV. We conclude that M, + JV is an
ideal of L. Since M°° = M,+ EfM^ M-/J]. we have

M-l>] + N < Mt+L°°nH <Mt+N <M°° + N.

Hence N + M°° = N + Mt. This completes the proof.

Also, we will need the following lemma.

Lemma 2.2. Let char(F) = p > 3. Let L be a simple Lie algebra having a maximal
subalgebra U of dimension two. Then, L = sl(2) whenever U is either nonabelian or
modular in L.

Proof. First, we consider the case where U is nonabelian. Let Fu denote the only
proper ideal of U. Since Cv(u) = Fu, we have CL{u) = Fu, since otherwise we would
have Fu<CL(u)v U = L, which is a contradiction. By [20, Lemma 1.3], the Engel
subalgebra EL(u) cannot be two-dimensional nonabelian. This yields U < EL(u) and
hence EL(u) = L. So u is a self-centralizing ad-nilpotent element of L. Then, we see that
the subspaces of L invariant under ad u are linearly ordered by inclusion and u lies in

https://doi.org/10.1017/S0013091500020496 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020496


LOWER SEMIMODULAR LIE ALGEBRAS 525

a subalgebra of L isomorphic to sl(2) (see [6, Theorem 2.8]). This yields L = sl(2).
Now we assume that U is modular in L. We prove that U is nonabelian. Suppose U is
abelian. Then U is a Cartan subalgebra of L. By Lemma 1.5 of [20] it follows that
dimL/U is even. So, dimL is even too. Pick x & U. We have that Fx is not a Cartan
subalgebra of L, since otherwise we would have that L is central-simple of rank one
and then, by [7], dimL is a power of p, which is a contradiction. Therefore
Fx < NL(Fx). By the modularity of U, we have that U (1 NL(Fx) is maximal in NL(Fx).
This yields NL(Fx) = Fx 4- NL(Fx) n U and hence dimiVL(Fx) = 2. If NL(Fx) is abelian,
then NL(Fx) r\U<Uv NL(Fx) = L, which is a contradiction. Hence NL(Fx) is
nonabelian. By the above, it follows that L ~ sl(2), which contradicts the fact that U is
abelian. We conclude that U is nonabelian and hence L = sl(2). The proof is
complete.

Now, we consider Lie algebras having two distinct modular, solvable maximal
subalgebras.

Theorem 2.3. Let F be any field. Let L be a semisimple Lie algebra. Let M and K
be distinct solvable, modular maximal subalgebras of L. Then the following hold:

(1) ifM n K = 0, then L is a n-algebra;

(2) CL(x) < K for every element x e K, x & M;

(3) if char(F) ^ 2 and if M and K are strongly solvable, then either every Cartan
subalgebra of M n K is a Cartan subalgebra of M and K or else M n K = 0;

(4) J/char(F) = p > 3 and M and K are supersolvable and if M n K contains a Cartan
subalgebra of L, then L = sl(2).

Proof. We have that M n K is a modular and maximal subalgebra of M and K.
Since M and K are both solvable, by [20] it follows that dim M/M n K —
dimK/MC\K = l. Let us first suppose MDK = 0. Then d i m M = l . This yields
M n S = 0 for every subalgebra S of L such that S £ M. Then, from the modularity of
M it follows that every maximal subalgebra of L has dimension one. This proves (1).

In order to prove (2), let x e K, x & M. We claim that CL(x) C\M < K. Assume not.
Then there exists y e M,y & K such that [x, y] = 0. We have M = M HK + Fy and
[x, M] = [x, M n K] c K. This yields that K + M is a subalgebra of L. Hence
L = K + M. It follows that dim L/M = 1 and so L = M + Fx. Let I CM be the
(unique) subspace maximal such that it is invariant under adx. We have that / is a
solvable ideal of L (see Lemma 3.7 of [6]). Since L is semisimple, 7 = 0. However, we
have y e I since [y, x] = 0. This contradiction proves the claim. Then we have

CL[x)DM < CL{x)nMHK< CL(x)n K.

On the other hand, since M is modular, we have that Ct(x) n M is maximal in CL(x).
It follows that either Ct(x)n M = CL(x)nK or CL(x)nK = CL(x). In the former case,
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we get x e KC\ CL{x) < M, which is a contradiction. Therefore, CL(x)n K — CL(x), so
that CL(x) < K.

(3): Assume M n / C / O Let C be a Cartan subalgebra ofMnJf. Suppose that C is
not a Cartan subalgebra of K. First, we prove M n K < K . We have C < NK(C) and
M n NK(C) — C. Since M is modular, C is maximal and modular in NK(C). Since NK(C)
is solvable, by [20] it follows that dimNK(C)/C = 1. Let K = K0(C) + K,(C) be the
Fitting decomposition of K relative to C. We have K0(Q = NK(C) and KX(C) C M n K.
This yields

[K, M n K] = [NK(C) + /C,(C), C + K,(Q] < C + K,(C) <Mf lK .

Therefore MDK<K.
Next, we prove that every element x e M C\K acting nilpotently on M n K is ad-

nilpotent on L. Suppose EL(x) ^ L. As M n K < K, we see that x acts nilpotently on K.
So K = EL(x). This yields £M(x) = M n/C. Since dimM/MnK=l, it follows that
the Fitting one-component M,(x) of M relative to adMx has dimension one. Put
M,(x) = Fe. Then, we see that Fe<M and Fe < M'. So M' = Fe + M' n K. On the
other hand, since e ^ M n X we have M = Fe + MHK.We obtain M' < [Fe, MC\K] +
(M n K)'. This yields (M n K)' = M'flJ(. Since M'D K is maximal in M' and since M'
is nilpotent, we have M'n K< M'. Hence M ' n K < M . We get (M n K)'< M v K = L.
Since L is semisimple, it follows that (M n JC)' = 0. This yields that M C\ K is abelian
and so C = MC\K. Since Fe < M, we have [c, e] = a(c)e where a(c) e F, for every c e C.
We see that a is a linear form of C and a root of L relative to C. For 1 < j < p — 1,
let Sjai = {v€ L\[c,v]=jx(c)v,VceC}. Put S(a) = C + £;-S;a. We see that S(a) is a
subalgebra of L containing M. Moreover, S(a) / L since NK(C) ^ C. This yields
M = S(a) and therefore S;a = 0 for every j > 1. Since C is abelian, it follows that
L;o = 0, for every j > 1, where L;a denotes the root space of L corresponding to jot.
relative to C. This yields that NL(C) © La is a proper subalgebra of L which contains K
and hence L = NL(C) © La. We see [Lx, La] < L^ = 0 and [L, LJ < L,. This yields that
La is an abelian ideal of L, which is a contradiction. Therefore, £L(x) = L, as desired.

Since M C\K<K and since K' is nilpotent, we have that every element of K' acts
nilpotently on MflK. So, by the preceding paragraph, every element of K' is
ad-nilpotent. Then K' + Nil(M) is a nilpotent subalgebra of M. Since M' is nilpotent, we
have M' <K' + Nil(M). This yields that K' + Nil(M) < M and so K' + Nil(M) < Nil(M).
Thus K' < Nil(M). Therefore, Nil(M) n K < K. On the other hand, we have that
Nil(M) n K is maximal in Nil(M), by the modularity of K. Nilpotency of Nil(M) implies
Nil(M) DK<M. Therefore, Nil(M) HK<MvK = L. This yields Nil(M) n K = 0 and
hence K is abelian. It follows that every element of M D K acts trivially on M n K. By
using the preceding paragraph again, we obtain that every element of M n K is
ad-nilpotent. Then, by using Engel's theorem, we obtain M r\K<M. This yields
MCtK<MvK — L and hence M D K = 0. This contradiction completes the proof
of (3).

(4): Let C be a Cartan subalgebra of L such that C < M n K. As M and K are both
supersolvable, we see that ad c is split for every c e C. Put T — M C\K. We have
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dim M/T = dimX/T= 1, since M and K are both modular. Thus there exists only
one root a of C for which the corresponding root space Mx of M is not contained in T.
Also, we see that there exists only one root P of C for which the corresponding root
space Kfi of K is not contained in T. Pick e e Mx, e & T and / 6 Kf, f & T. Assume
[e, f] € M + K. This yields that M + K is a subalgebra of L and hence L = M + K. It
follows dim L/M = 1 = dim L/K. Since M is solvable and L is semisimple, we see that
M contains no nonzero ideals of L. It follows that L ^ sl(2) (see [2, Theorems 3.1
and 3.2]). Suppose then that [e, f] g M + K.

Now we claim that M' C\C acts nilpotently on K. If M' n C = 0 there is nothing to
do. Assume M ' n C ^ O . Since M' is nilpotent, M'DC acts nilpotently on each root
space of M relative to C. So we only need prove that P(M' n C) = 0. Assume
p(M'nC)^0. Then, (« + fi(M'nC)/0. Put L(a + 0) = C© LJ+p © • • • © L ^ , ^ .
Since [e, / ] ^ 0, we have La+/) ^ 0. We see that L(oc + 0) is a proper subalgebra of L
and L(a + ^ ) n X = C. Since K is modular, C is maximal in L(oc + P). Since
C < M' n K' and since M' and K' are both nilpotent, we see that C acts nilpotently on
M v K — L. This yields that the Lie algebra {ad c \ c e C] of linear transformations
of L is triangulable on F (see [26]). So, there exists 0 ^ g e L(a+W such that
[c, 0] = (a + P)(c)g for every c e C. Then, we have C < C + Fgf < L(a+/D. This yields
2̂(,i+0 = 0 and therefore [[e, [e, /]], / ] e L ^ ^ = 0. By (2), it follows that

[e, [e, /]] e CJJ) < K. Since (2a + P)(M' n C) ^ 0, we see that K D L2a+? = 0. So,
[e, [e, /]] = 0. By (2) again, it follows that [e, f] e M, which is a contradiction. The
proof of the claim is complete. Analogously, we obtain that K' HC acts nilpotently
on M.

By the above claim, it follows that M ' n C + K ' n C acts nilpotently on M and K.
By Lemma 2.1, it follows that M ' n C + K ' n C + TX(C) is an ideal of M and K. Since L
is semisimple, M' n C + K' n C + 7](C) = 0. We deduce that T;(C) = 0. So T = C, C is
abelian, a is the only root of C in M and P is the only root of C in K. Now let us
suppose a ^jP for every 1 < j < p- I. We see a ^;(a + /?), for every 1 < j < p - 1. So,
L(a + p)J:L and L(a + 0) n M = C. Since M is modular, C is maximal in L(tx + j?)).
As above, this yields L2(a+W = 0 and we get a contradiction. Therefore a =;/? for some
1 < 7 < P - 1. Pick c 6 kera. We have [M, c] = [K\ c] = 0. So, c e Z(L) = 0. Therefore
kera = 0. As C is abelian, a is a linear form of C. Thus dim C = 1. This yields that M
and K are both nonabelian of dimension two. Assume that L is not simple. Then, take
a minimal ideal N of L. We have that M D N is maximal and modular in N. This
yields that every maximal subalgebra of N has dimension one and so N is a /z-algebra.
Since MnJV<M and KnN<K, we see MnN = Fe < Nx and K n N = Ff < Np.
Moreover we have [Nfi, N^^] <JVnC = 0. This yields N^^ = 0, since N is a /i-
algebra. From this it follows that JV̂  = 0, for every 1 < j < p— 1. As iVa / 0 , we get
a = p. But then we have [e, f] e [Np, Np] < N2p = 0, which is a contradiction. Therefore
L is simple. Then, by Lemma 2.2 it follows that L = sl(2). The proof is now
complete.

We finish this section by considering Lie algebras having two distinct modular
maximal subalgebras in the case where one of them is isomorphic to sl(2).
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Lemma 2.4. Let char(F) > 3. Let M and K be distinct modular maximal subalgebras
ofL. Assume M ^ sl(2). Then M<L.

Proof. Assume that M is not an ideal of L. Let 0 / N < L. We see M n N = 0.
So, dim AT = 1 by the modularity of M. Since L = M + N, we have L/N ^ sl(2). Then
we have L — N®L' (see [20, Lemma 4.1]). This yields N = Z[L) and hence M<L,
which is a contradiction. Therefore L is simple. By the modularity of K, we have that
M n K is modular and maximal in M. This yields dim MC\K = 2. Then there exists a
basis e, h for M n K with product [h, e] = e. We see M < EL(e). If £L(e) = M, then we
have CL{e) = CM(e) = Fe. But then, as char(F) > 3, Lemma 1.3 of [20] applies and
£L(e) is not isomorphic to sl(2). This contradiction shows that EL(e) = L. This yields
CL(e) / Fe, since otherwise the subspaces of L invariant under ade would be linearly
ordered by inclusion and so M — K, which is a contradiction. We have CL(e) n M = Fe.
Modularity of M implies that Fe is maximal in CL{e). This yields that CL{e) is
abelian of dimension two. It follows that ker(ad2e) is a subalgebra of L. Since
M n ker(ad2e) = Fe 4- F/i, from the modularity of M it follows that dim(kerad2e) = 3.
So ker(ad2e) = Fh + CL(e). On the other hand, since 1 is an eigenvalue of adM/i, we
have that —1 is also an eigenvalue of adM/i. So, there exists/ e M such that [h, f] — —f.
We have [e,f] = h and so [e, [e, [f, CL(e)]]] = [h, CL(e)] < ker(ad2e). This yields that
M + ker(ad2e) is a subalgebra of L and hence L = M + ker(ad2e). We get dim L/M = 1.
But then, by using [1] we obtain that either M < L or M is solvable, which is a
contradiction. The proof is complete.

3. On M(l)-algebras

A Lie algebra L is said to be an M(l)-algebra if all of its maximal subalgebras are
modular in L. Clearly, the class of M(l)-algebras is closed under homomorphic images.
For fields of characteristic zero, in [17] it is proved that if L is M(l) then L/Fr(L) is
lower semimodular. We recall that for such fields the Frattini subalgebra of any Lie
algebra L is a characteristic ideal of L (see [14]). This fails in the prime characteristic
case, although the only known examples of Lie algebras in which the Frattini
subalgebra is not an ideal are the three-dimensional split simple algebras over a field of
characteristic two and the simple Lie algebra of Cartan type H(2 :1: O(y))(l), see [21].

In this section, we obtain some results on M(l)-algebras which will be used later.
First we give the following two easy lemmas.

Lemma 3.1. Let F be any field and let Lbe a Lie algebra. Then the following hold:

(1) Z{L^) < 4>{L).

(2) IfN<L andif<f>(N)<L, then 0(N) < <j>{L).

(3) Each maximal subalgebra of L contains either R{L) or L(oo) if and only if
R(L) n L(oo) <
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Proof. Let M be a maximal subalgebra of L. To prove (1), assume Z(L{!X>)) £ M.
Then we have L = M + Z(L(0O)). This yields L(°°> = Z(Lioo)) + ( M n L(oo)) and hence
M n Z(Lloo)) < L(oo). We see that Li<x)/(M n L(oo)) is a homomorphic image of Z(Ll<x)) and
so it is abelian. This yields (L(0O))(oo) < M n L(oo) < L(oo), which is a contradiction.
Therefore Z(L(oo)) < M. To prove (2), assume that 4>(N) £ M. As (f>(N) < L, we have
that (f)(N) + M is a subalgebra of L and so 4>{N) + M = L. This yields JV = (f>{N) +
(M n N) and therefore N = MC\N, which is a contradiction. (3): Let R(L) D L(oo) < cj>(L).
Assume that R(L) £ M. Then we have L = R(L) + M and M(oo) + K(L) < L. Also, we
see that L/(M(co) + /?(L)) is solvable. Since M(oo) < L(oo), it follows that R(L) + L(oo) =
R(L) + M(0O). This yields M<00) = L(oo) and hence L(oo) < M. This completes the proof of
(3) in one direction. The converse is clear.

Lemma 3.2. Let F be any field. For a Lie algebra L, the following are equivalent:

(i) L is an M{\)-algebra;

(ii) for each maximal subalgebra M of L,M C\K is modular and maximal in K for
every maximal subalgebra K of L different from M.

Proof, (ii) =» (i): Let M be a maximal subalgebra of L. By Lemma 1 of [17], we
need only prove that M n S is maximal in S, for every proper subalgebra S of L such
that S £ M. Take a maximal subalgebra K of L containing S. Then we have that
M n K is a modular maximal subalgebra of X. This yields that M n S is maximal in S.
(i) => (ii) is clear.

Our main results on arbitrary M(l)-algebras are the two following propositions
which will be used in the sequel.

Proposition 3.3. Let F be any field. Let L be an M{\)-algebra. Then the following
hold:

(1) R(L)nL" <

(2) R(L) is supersolvable.

(3) IfL" = L, then R(L) =

Proof. (1): Let M be a maximal subalgebra of L. Assume that R(L) £ M. Then
by the modularity of M, R(L) n M is modular and maximal in R(L). By [20], it follows
that dimR(L)/(M n R(L)) = 1. Since L = R(L) + M, we have d i m L / M = l . Let ML

denote the largest ideal of L contained in M. By [2, Theorems 3.1 and 3.2], we have
either dim L/ML < 2 or L/ML is semisimple. In the latter case, since R(L) + MJML is
a solvable ideal of L/ML, we have R(L) + ML = ML. This yields R(L) <ML<M,
which is a contradiction. Therefore, dim L/ML = 2. We have L" <ML< M. Then, (1)
follows from Lemma 3.1(3). (2): Since 4>(L) < R(L) (see [14]), by (1) it follows that
R(L)/cf)(L) is a homomorphic image of R(L) + L"/L". So, R(L)/4>(L) is supersolvable.
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Then by [4] it follows that R(L) is supersolvable too. (3) follows from (1) and from
the fact that (j>(L) is a nilpotent ideal of L (see [14]).

Proposition 3.4. Let L be an M(\)-algebra over any field. Assume that
Fr(L) = M n Kfor some maximal subalgebras M and K of L. Then the following hold:

(i) Fr(L) is a modular and maximal subalgebra in each maximal subalgebra of L;

(ii) Fr(L) is modular in L.

Proof, (i): From the modularity of M and K it follows that Fr(L) is modular and
maximal in M and K. Now let T be any maximal subalgebra of L different from M. We have
Fr(L) < MC\T < M and so Fr(L) = M n T. By the modularity of M again, it follows that
Fr(L) is modular and maximal in T. (ii): Let S be a proper subalgebra of L such that
S ^ Fr(L). We have Fr(L) v S ^= L. Then, by using (i) we obtain that Fr(L) v S is maximal
in L and Fr(L) is modular and maximal in Fr(L) v S. This yields that Fr(L) n S is maximal
in S. Therefore, the mapping 4>Ft{L)iS : [Fr(L) : Fr(L) VS]BU ^ UnSe [Fr(L) n S : S]
is a bijection. So Fr(L) is modular in L, as required.

4. s^-algebras

A Lie algebra L is said to be a /-algebra if every maximal subalgebra of L has
codimension one in L. A Lie algebra L is said to be an s^-algebra if every subalgebra
of L (including L itself) is a x-algebra. The aim of this section is to determine the
structure of an s^-algebra over any field F with char(F) / 2. For such fields, a Lie
algebra L such that 4>{L) = 0 is a ^-algebra if and only if either L is supersolvable or
else >/F < F and L = U © S where U is supersolvable and S = sl(2), according to
Towers [16]. For s/-algebras we have the following.

Theorem 4.1. Let char(F) / 2. (i) If \J~F £ F, then the supersolvable algebras are the
only sx-algebras.

(ii) If y/~F < F, then a Lie algebra L is an sx-algebra if and only if either L is
supersolvable or L/R(L) = sl(2) ^ L"/<j>(L") and every strongly solvable subalgebra of L is
supersolvable.

Proof, (i): Let VF •£ F and let Lex- By Towers [16], we have that L/(j>(L) is
supersolvable. Then, by [4], it follows that L is supersolvable. (ii): Let \ff < F and let
L e s*. By using Towers [16] we obtain that L/R(L) ^ sl(2), L = R(L) + V and
R{L) r\L" < 0(L). This yields that R(L)/<$>(L) is supersolvable and hence R(L) is also
supersolvable by [4]. Also, we see that L = R(L) + L(oo). So, L(0O) = V. We now have
(Uf = L". Then, by using Proposition 3.3(3), we obtain that R(L") = <j)(L"). This
completes the proof of (ii) in one direction. To prove the converse, let L be a
counterexample of minimal dimension. As L/R{L) = sl(2) = Lu/<f>(Lu), we have
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<j>{L") = R(LU) = R(L) D V. So, 0(L") < L. By Lemma 3.1(2) it follows that 4>(LU) < <f>(L).
Then, by Towers [16], we have L e %. As L 4 sx> there exists S < L such that S ^ x-
Take a maximal subalgebra M of L containing S. We see that M & sx- Also, we have
that either M > R(L) or M > L(oo) by Lemma 3.1(3). Let us first assume that
R(L) < M. Then, we have M = R(L) + M n L". So, M' < K(L)' + (Mfl Lu)'+ [R(L), L"].
Since R(L)/4>(L) is supersolvable, so is i?(L) (see [4]). Thus R(L)' is nilpotent. Since
LU/4>(L") s* sl(2), we have that (M n L")' is nilpotent too (see the proof of Corollary 2.9
of [23]). Since [R(L), Lu] < R(L) n L" < 0(L") and since <KL") is a nilpotent ideal of L",
it follows that [R(L), Lu] is also nilpotent. We deduce that M' is nilpotent. Then, by
our hypothesis, M is supersolvable. So M e s ,̂ which is a contradiction. Therefore
L(oo) < M. Since R(L) is supersolvable and since L = R(L) + L(oo), we see that L(oo) = L".
This yields M" = Lu. We conclude that M/R(M) ^ sl(2) ^ Mu/0(M"). Then, by the
minimality of L it follows that M e s .̂ This contradiction completes the proof.

Corollary 4.2. Let F be algebraically closed and char(F) ^ 2. For a nonsolvable Lie
algebra L, the following are equivalent:

(i) L e sx,

(ii) L and L" are x-algebras,

(iii) L/R(L) s sl(2) Qi Lu/(p(Lu).

In the case where F is algebraically closed, we have that the sx-algebras L such that
11 — L are precisely the non-solvable, minimal non-supersolvable Lie algebras.

5. Lower semimodular Lie algebras

The aim of this section is to study the structure of a lower semimodular Lie algebra
over a field F of characteristic greater than three. Clearly, the class of lower
semimodular Lie algebras is closed under subalgebras and homomorphic images. It is
well-known that a solvable Lie algebra is lower semimodular if and only if it is
supersolvable. It is easy to see that the algebra sl(2) is lower semimodular if and only if
•JF < F. Clearly, every ^-algebra is lower semimodular.

Our first result is that the algebra sl(2) and the /i-algebras are the only semisimple
lower semimodular Lie algebras having more than one solvable maximal subalgebra.

Proposition 5.1. Let char(F) > 3. Let L be a semisimple lower semimodular Lie
algebra. Then, the following hold:

(i) every Cartan subalgebra C of a solvable maximal subalgebra U of L is also a
Cartan subalgebra of L;

(ii) // L has more than one solvable maximal subalgebra, then either L ^ sl(2) or L is
a fi-algebra.
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Proof, (i): Assume that C is not a Cartan subalgebra of L. We see that
C < Lo < L, where Lo denotes the Fitting null-component of L relative to C. Take a
maximal subalgebra M of L containing Lo. We see that C is not a Cartan subalgebra
of M. Then, by Theorem 2.3(3) it follows that M is nonsolvable. Since M n 17 is a
solvable maximal subalgebra of M, we have R(M) < MHU. Also, we have that
C + R(M)/R(M) is a Cartan subalgebra of M n U/R(M). Then, arguing by induction
on dim L, we obtain that C + R(M)/R(M) is a Cartan subalgebra of M/R(M). But
then, by [4], it follows that C is a Cartan subalgebra of M, which is a contradiction.

(ii): Let U and U* be distinct solvable maximal subalgebras of L. If U n C7* = 0,
then by Theorem 2.3(1) it follows that L is a /i-algebra. Assume then 1/ n U* ^ 0. Take
a Cartan subalgebra C of 17 n 17*. By Theorem 2.3(3), we have that C is a Cartan
subalgebra of U. By (i) it follows that C is a Cartan subalgebra of L. Then, by
Theorem 2.3(4) we have that L ^ sl(2). This completes the proof.

Next, we study lower semimodular Lie algebras which are not in the class %x-

Theorem 5.2. Let char(F) > 3. Let L be a lower semimodular Lie algebra such that
L 4 s%. Then there exists S < L such that S/R{S) is a ^.-algebra.

Proof. Let L be a counterexample of minimal dimension. Then we see that every
proper subalgebra of L is in the class sx- Let R(L) / 0. Then, by the minimality of L
we have L/R(L)<=sx- So, L/R(L) s sl(2) and *J¥ < F by Theorem 4.1. This yields
L = R(L) + L" and hence R(LU) = R(L) n V and LU/R(LU) ^ sl(2). On the other hand,
we have R(LU) = 4>{L") by Proposition 3.3. Then by Theorem 4.1 it follows that L e sx,
which is a contradiction. Therefore R(L) = 0. Then, by using Proposition 5.1 we obtain
that L has at most one solvable maximal subalgebra. So there must exist at least two
nonsolvable maximal subalgebras S and S* of L. By Theorem 4.1 we have
S/R(S) ^ sl(2) and VF < F. By Lemma 2.4, we have R(S) ^ 0. We claim that
R(S) < Fr(L). Assume not. Then, there exists a maximal subalgebra M of L such that
R(S) £ M. Since M n S i s maximal in S, we have S0*0 < M by Proposition 3.3 and
Lemma 3.1. This yields ( M n S ) M = S M and Mr\S is nonsolvable. Thus M is
nonsolvable and so M/R(M) ^ sl(2). It follows that R(M) £MC\S. Since M n S is
maximal in M, by Proposition 3.3 and Lemma 3.1 again we have M(oc) < S. This
yields M(oo) = (M n S)(oo) and hence M(oo) = S*00'. It follows that &oo)<MvS = L.
Since S/R(S) is simple, we see that K(S<°°)) = R(S) n S*00' < S. Then we get
i?(S(oo)) = /?(M(00)) < S v M = L. As L is semisimple, R(Sl<x)) = 0. Therefore tf00' is an
ideal of L isomorphic to sl(2). Since every derivation of sl(2) is inner, it follows that
L = &°o)® CL(S

<OO)). We see that QXS0*0) is semisimple too. So CL(S(oo)) s sl(2), by the
minimality of L. We deduce that L is isomorphic to a direct sum of two copies of sl(2).
But then we see that the diagonal subalgebra of L is not modular in L, which is a
contradiction. Therefore R(S) < Fr(L), as claimed. We conclude that R(S) + R(S*) <
Fr(L) <SnS*. Since SnS' is maximal in S, we have dim S n S*/R(S) = 2. This yields
that either SnS* = Fr(L) or R(S) < R(S) + R(S') = Fr(L)< SnS*. In the latter case,
we have that there exists a maximal subalgebra M of L such that S D S* ̂  M and so
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M n S . It follows that Fr(L)/R(S) is contained in two distinct maximal
subalgebras of S/R(S) and it is an ideal in one of them, which contradicts the fact that
S/R(S) ^ sl(2). Therefore SnS* = Fr(L). Then, by using Proposition 3.4(i) we obtain
that Fr(L) is a maximal subalgebra of Fr(L) v Fx, for every x e L, x & Fr(L). Since
F r ( L ) v F x / L , we see Fr(L) v Fx 6 x- So, dim[Fr(L) v Fx/Fr(L)] = 1. Hence
[Fr(L), Fx] < Fr(L) + Fx, for every x € L. So Fr(L) is a quasi-ideal of L. By Amayo
[1], it follows that Fr(L) < L. But then we have that Fr(L) is a nilpotent ideal of L (see
[14]). This contradiction completes the proof.

Corollary 5.3. Let char(F) > 3. Assume that there are no ^-algebras over F. Then,
every lower semimodular Lie algebra is an 5%-algebra.

Corollary 5.4. Let F be algebraically closed with char(F) > 3. Then, a Lie algebra L is
lower semimodular if and only if either L is supersolvable or L/R(L) ^ L(co)/0(.L(°o)) = sl(2).

We say that a Lie algebra L is completely split if adx is split for every x e L. Next,
we determine the structure of lower semimodular Lie algebras L in the case where
L/R(L) is isomorphic to a direct sum of simple Lie algebras which are not completely
split. To do that, we need the following lemma which might have some interest in
itself.

Lemma 5.5. Let L be a Lie algebra and let N < L be such that L/N is isomorphic to
a direct sum of simple Lie algebras which are not completely split. Assume that (adx) \N

is split for every xe L,x#N. Then L-N + CL(N).

Proof. Let P/N be a simple ideal of L/N. By our hypothesis, there exists
x e P,x & N such that adx is not split on P/N. Let SP(x) denote the largest subspace of
P on which adx is split. It is well-known that SP(x) is a subalgebra of P and that there
exists a subspace KP(x) of P invariant under ad x and such that L = SP(x) ® KP(x),
see [4]. It is easy to see that [SP(x), KP(x)] < KP(x). We have N < SP(x) < P. It
follows that [N, KP(x)] <Nn [SP(x), KP(x)] <JVfl KP(x) < SP(x) n KP(x) = 0. So KP(x) c
CP(N). This yields CP(N) £ N. Since P/N is simple, P = N + CP(N). Therefore
L = N + CL(N).

Proposition 5.6. Let L be a Lie algebra such that every solvable subalgebra is
supersolvable. Assume that L/R(L) is isomorphic to a direct sum of simple Lie algebras
which are not completely split. Then [R(L), L(oo)] = 0.

Proof. Pick x e L, x £ R(L). We have that R(L) + Fx is supersolvable. This yields
that (ad(x)) |fi(t) is split. Then, Lemma 2.5 applies and L = R(L) + CL(R(L)). This yields
L(oo) < CL(R(L)).

Our next task is to prove that every semisimple lower semimodular Lie algebra can
be decomposed into a direct sum of simple ideals. First, we prove that every
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supersimple ideal of a lower semimodular Lie algebra L is a direct summand of L.
We will use the fact that for each nonzero element a of a supersimple Lie algebra L
there exists an element b e L such that L — FawFb and that there are only finitely
many maximal subalgebras of L containing a, provided char(F) > 3 (see the proof of
Theorem 4 of [24]).

Lemma 5.7. Let char(F) > 3. Let L be a lower semimodular Lie algebra. Let N be
an ideal of L which is supersimple. Then L = N © CL(N).

Proof. Let L be a counterexample of minimal dimension. We see that dim L/N — 1
and N is the unique proper ideal of L. Let M ^ N be a maximal subalgebra of L. We
have that M C\N is a modular maximal subalgebra of N. Assume N is a //-algebra.
Then dimMnAT= 1 and so dimM = 2. By Proposition 5.1(ii) it follows that L is
simple, a contradiction. Therefore N is not a ^-algebra. This yields dim M(1JV>1 and
hence M f~l N is a supersimple ideal of M. By the minimality of L, it follows that
M = (M n N) © Z(M). We see that every maximal subalgebra of M different from
M n N must contain Z(M) (see Lemma 3.1). Now we take a third maximal subalgebra
M' of L. We have that M n M* is maximal in M. If M n M* = M n AT, then
M f\N — M* n Af. So, M n N < M v M* = L, which contradicts the simplicity of N.
Therefore M n M* > Z(M). Similarly, we obtain M n M* > Z(M*). We deduce that
Z(M) + Z(M*) is contained in every maximal subalgebra of L different from N.
Therefore (Z(M) + Z(M*)) n N is contained in the Frattini subalgebra of L. We see
that Z(M) ^ Z(M*), since otherwise we would have Z(M) < M v M* = L, which is a
contradiction. This yields N n (Z(M) + Z{M*)) ^ 0. Pick 0 / a e A f n (Z(M) + Z(M*)).
We see that Fa < Fr(L). By Theorem 4 of [24], there exists b e N such that
N — Fav Fb. Let 0 / A e F. Since every proper subalgebra of L containing an Engel
subalgebra of L must be self-normalizing (see [4]) and since L / EL(a + kb), there exists
a maximal subalgebra M(A) of L different from N containing a + Xb. Now, let
O^X eF,X jtL Assume M(A) n AT = M(A') n N. Then, a + Afo and a + Xb lie in M(X).
So a,b e M(X) n N. This yields A/ < M(A), which is a contradiction. On the other hand,
as N is supersimple, we have that the ground field F must be infinite (see [24]).
Therefore, we conclude that there are infinitely many maximal subalgebras of N
containing Fa. However, in the proof of Theorem 4 of [24] it is proved that this cannot
occur in the case when the ground field has characteristic greater than three. The proof
is now complete.

We will say that two supersimple Lie algebras P, and P2 are strongly non-isomorphic
if none of the subalgebras of P, of dimension greater than one is isomorphic to a
subalgebra of P2.

Lemma 5.8. Let L = P, © • • • © Pr, where the P, are supersimple ideals of L and
mutually non-isomorphic. Let M be a maximal subalgebra of L. Then the following
hold:
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(1) M = (MnPi)®Pi®-®Pi®--®Prfor some 1 < i < r (where Pt indicates that
Pj is omitted from the direct sum).

(2) Either M is isomorphic to a direct sum of supersimple Lie algebras or else
dim R(M) = 1 and M(oo) < L.

(3) M contains at least one solvable subalgebra ofL of maximal dimension.

(4) Every solvable subalgebra of L of maximal dimension has dimension r.

(5) L is lower semimodular if and only if P , , . . . , Pr are lower semimodular andpairwise
strongly non-isomorphic.

Proof. (l)-(4) are straightforward. (5) follows from (1) and Lemma 3.2.

Now we can prove the following.

Theorem 5.9. Let y/F £ F and char(F) > 3. Then every semisimple lower
semimodular Lie algebra is isomorphic to a direct sum of supersimple Lie algebras.

Proof. Let L be a counterexample of minimal dimension. First, we claim that L is
simple. Let N be a proper minimal ideal of L. Then we have /V<oo) = TV and Z(N) = 0.
Also, we have that N/R(N) is isomorphic to a direct sum of supersimple Lie algebras,
by the minimality of L. Then, by Proposition 5.6, it follows that R(N) = Z(N). This
yields that N is semisimple and so it is simple (see [25, p. 30]). Therefore N is
supersimple. Then, by Lemma 5.7 it follows that L — N® CL(N). We have that CL(N)
is semisimple too, so it can be decomposed into a direct sum of supersimple ideals
because of the minimality of L. We conclude that L is isomorphic to a direct sum of
supersimple Lie algebras, which is a contradiction. Therefore L is simple, as claimed.

Next we prove that L has no solvable maximal subalgebras. Let U be a solvable
maximal subalgebra of L. By Proposition 5.1(ii), we have that U is the unique solvable
maximal subalgebra of L. So, there must exist at least two nonsolvable maximal
subalgebras T and T* of L. Since U n T is solvable and maximal in T, we see that
T/R(T) must be a //-algebra. Assume that R(T) = 0. Then we see that dim T n U - 1.
This yields dim U = 2 and hence L ^ sl(2) by Lemma 2.2. But then we get -Jf < F, a
contradiction. Therefore R(T) ^ 0. We claim that R(T) < Fr(L). Assume not. Then,
there exists a maximal subalgebra S of L such that R(T) £ S. Since Sfl T is maximal in
T, by Proposition 3.3 and Lemma 3.1 we have T*00' < SD T. Thus Sn T is nonsolvable
and so S is nonsolvable too. This yields R(S) i, Sn T and so tf"' <SnT. But then
we have 7**° = (S n T)(oc) = S*00' <TvS — L, which is a contradiction. The claim
is proved. We deduce that R(T) + i?(T*) = T n T* = Fr(L). By Proposition 3.4(ii),
Fr(L) is modular in L and hence Fr(L) is self-normalizing in L (see [3]). On the
other hand, we have that R(T)nR(T) is an ideal in R(T) and K(T). Since
[T*00', R(T)] = 0 = [(r*)(oo), K(T*)] (Proposition 5.6), it follows that R(T)nR(r)<
TvT = L. So, R(T)C\R(T) = 0. This yields dimR(T) = dimR(r*) = 1 and then
R(T) = Z{T) and R(T) = Z(V). Also, we have Fr(L) = Z(T) ® Z(T). Since Fr(L) is
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self-normalizing and maximal in U and since U is supersolvable, we see that the largest
ideal of U contained in Fr(L) is just the centre of U. So dimZ(t/) = 1. We deduce that
the centre of each maximal subalgebra of L has dimension one and is contained in
Fr(L). Now we argue as in the last paragraph of the proof of Theorem 1.6 of [20]. Put
T = Fr(L) v Fx and T = Fr(L) v Fy. By Proposition 3.4, we have that Fr(L) v F(x + y)
is a maximal subalgebra of L. So, its centre has dimension one. Pick O ^ z e
Z(Fr(L) v F{x + y)). Decompose z = u + v where u e Z(T) and v e Z{T"). We see
u^O^v. We have 0 = [z, x + y] = [u, y] + [v, x]. So, [u, y] = [x, v] e T n T = Fr(L).
This yields [y, Fr(L)] = [y, Fu + Fv] < Fr(L) and hence y e Fr(L), which is a
contradiction. Consequently, L has no solvable maximal subalgebras.

Now let B be a solvable subalgebra of L of maximal dimension. We have
dim B > 1, since otherwise we would have that L has no subalgebras of dimension two
and hence L is supersimple (see [18]), which is a contradiction. Take a maximal
subalgebra M of L containing B. By the maximality of B, we have R(M) < B. We claim
that M(oo) < Fr(L). Assume not. Then, there exists a maximal subalgebra Af* of L such
that M(oo) g M*. So R{M) < M\ Since M n AT is maximal in M, by Lemma 5.8 we
have that MC\M* contains a solvable subalgebra B* such that dimB = dimB*. This
yields that B* is a maximal solvable subalgebra of L and therefore R(M') < B* < M. It
follows that R(M) + K(AT) < M n AT and so R(M) + R(M') < K(M n M*). Also, we
have that R(M)nR(M") is an ideal in R(M) and in R(M'). By Proposition 5.6,
R(M) n R(Mm)<Mv M' = L. So, R(M) ni?(M*) = 0. Let us now suppose that
R(M) ^ 0 ^ R(M*). Then we see that neither MnM'/R(M) nor MnM'/R(M') is
semisimple. Write (M n M7R(M))(OO) = A/R(M). We see (M n M*)(oo) = /l(tx>). By
Lemma 5.8(2) we have A < M. This yields (M D M*)(oo) < M. Analogously, we obtain
(M n M')(oo) < AT = L. So, (M n M*)(oo) < L, which is a contradiction. Therefore either
R(M) = 0 or R(M*) = 0. Next assume that R(M) -0 = R(M*). Then, we can
decompose M = P, © • • • © Pr and M* = Q, © • • • © Qs, where each P, is a supersimple
ideal of M and each Q, is a supersimple ideal of M*. We see that r = dimB = s, by
Lemma 5.8(4). Since MnM* is maximal in M and A/*, by Lemma 5.8(1) we can
write

M n AT = (p, n M') © p2 © • • • © p, = (Q, n M) © e2 © • • • © Qr.

From this it follows that r = 2, P2 = Q]CiM and P, n Af* = g2, since otherwise Af
and Af* would have a common nonzero ideal, which contradicts the simplicity of L. So
Af * n P, is an ideal of Af * and is maximal in P,. Now we take a third maximal
subalgebra S of L. Since Af n S is maximal in Af, we see that Af n S contains a solvable
subalgebra of dimension two. It follows that R(S) < MdS. Let R(S) / 0. As Sn M is
maximal in Af, we have that either P, < S or P2 < S. If P2 < S, then we have
SnM — P2®(PtnS) and PtnS — R(S). This yields that R(S) is maximal in P, and
hence P, is a /i-algebra, which contradicts the fact that Q2 < Pt. It follows that P2 ^ S
and so P, < S. Similarly, we obtain Q, < S. But then we have Af = P, + P2 < S, a
contradiction. Therefore R(S) = 0. Then, S (like Af and Af*) can be decomposed into a
direct sum of two supersimple ideals. Assume that Q, < S. Then we have Q2 ^ S and
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so P, ^ S. This yields that P, C\S<S and hence P, n S < S n g , , which contradicts the
simplicity of S n Q,. Therefore Q, £ S. Similarly, we obtain P, £ S. Hence P2 + Q2 < S.
This yields P, n S = Q2

 a nd hence Q2 < S v M' = L, which contracts the simplicity of L.
Consequently, either R(M) ^ 0 = R(M*) or else R(M*) / 0 = R(Af). Suppose
R(M*) ^ 0 = R(M). Take a third maximal subalgebra S of L, once again. Since
R(M) = 0, we see that M n S contains a solvable subalgebra of L of maximal dimen-
sion. By the above, we have R(S) / 0. Since R(M*) ̂  0, we find that SC\M' cannot
contain any solvable subalgebra of L of maximal dimension. This yields that neither R(S)
nor R(M*) is contained in S and therefore S0"0 + (M*)(oo) < S D M\ But then we find

S<°<» = (S n M*)(oo) = (M*)(oo) < S v M ' = L ,

which is a contradiction. By symmetry, the case where R(M) ^ 0 = i?(M*) cannot occur
either. We conclude that M(oc) < Fr(L), as claimed.

Let S be any maximal subalgebra of L different from M. Since M(oo) < S D M, we
have (M n S)(oo) = M(oo) < M. This yields that 5(oo) £ M and so R(S) < M. We see that
M n S/R(M n S) is semisimple, since otherwise by using Lemma 5.8(2) again we would
obtain (M n S)(oo) < S v M = L, which is a contradiction. We deduce that
R(M <1S) = R(S) a n d M n S = R(S) + M(o0).

Now, take a maximal subalgebra K of L such that K(oc) is maximal. Then, we see
that K is the only maximal subalgebra of L which contains /C(oo). This yields
R(K) < Fr(L). By the preceding paragraph we have R(K) + M(oo) = M HK = Fr(L).
Next, take a third maximal subalgebra S of L different from M and /£. We find
MC\S> Fr(L) = MflK. Since MDK is maximal in M, it follows MC\S = MDK. By
the preceding paragraph again, we have R(S) - R(M n S) = i?(M (1K) = K(K). This
yields R(K) < K v S = L and hence K(K) = 0. Then we get M n K = M(o0). On the other
hand, by Proposition 3.4 (ii) we see that M n K is modular in L. So, M n K is self-
normalizing by [3]. This yields M = M(oo). But then we have M = Fr(L). This
contradiction completes the proof.

Now we are able to determine the structure of a lower semimodular Lie algebra in
the case where -J¥ ^ F.

Theorem 5.10. Let char(F) > 3 and •/¥ £ F. Then, for a Lie algebra L the following
are equivalent:

(i) L is lower semimodular;

(ii) R(L) and L/R(L) are both lower semimodular;

(iii) L/Z(L(oo)) is lower semimodular;

(iv) L/Z(L(OC)) £S U 0 P, © • • • © Pr, where U is super solvable, r > 0 and the P, are
pairwise strongly non-isomorphic lower semimodular supersimple Lie algebras.

Proof, (i)^(iv): By Theorem 5.9 we have that L/R(L) is a direct sum of super-

https://doi.org/10.1017/S0013091500020496 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020496


538 V. R. VAREA

simple ideals. It follows that L = R(L) + L(oo). By Proposition 5.6, we have [R(L),
L(oo)] = 0. This yields R(L) n L(oo) = Z(L(oo)). By Theorem 5.9 and Lemma 5.8(5) we get
that L/Z(Lloo)) is as in (iv).

(iv) =• (i): Let L be a counterexample of minimal dimension. Put L/Z(L{oo)) —
A/Z(Litx)) © B/Z(L(00)), where A/Z(Lioo)) ss (/ and B/Z(L(oo)) a P, 0 • • • © Pr. As L is
not lower semimodular, by Lemma 3.2 there exists a maximal subalgebra M of L such
that MOK is not a modular maximal subalgebra of K for some maximal subalgebra
K of L different from M. We see that B = L(oo) and /I = K(L). By using Lemma
3.1(1,3) we obtain that each maximal subalgebra of L contains either A or B. If
M > B, then we have dimL/M = 1 since /I is supersolvable. So, dimM/Mr\K — 1,
which is a contradiction. Therefore M > A. Let us now suppose K > A. Then it is easy
to see that M D /C is maximal in /C. Also, we have K = A n K + B, K(oo) = L(oo) = B.
This yields that the Lie algebra K satisfies (iv) too. By the minimality of L, we have
that K is lower semimodular. It follows that the maximal subalgebra M n K of K is
also modular in K, which is a contradiction. Therefore K > A. Since L/A is lower
semimodular (Lemma 5.8), we have that M f l K i s maximal in K. On the other hand,
we see that K(oo) < L(oo) = B and (K(oo) + A)/A = (K/A)(°°\ Then, by using Lemma 5.8
we obtain K = R(K) + K(oo), and K(oo)/R(K) n K(oo) is isomorphic to a direct sum of
supersimple Lie algebras which are lower semimodular and pairwise strongly non-
isomorphic. Since R(KM) = R ( K ) n K N , from Proposition 5.6 it follows that
R(K(oo)) = Z(X(OO)). It follows that K satisfies (iv) too. By the minimality of L, we have
that K is lower semimodular. This yields that M n K is modular in K, which is a
contradiction.

(ii)=^(iv): By Theorem 5.9 and Lemma 5.8, we have that L/R(L) is isomorphic to
a direct sum of pairwise strongly non-isomorphic supersimple Lie algebras. By
Proposition 5.6 we have [R(L), L(oo)] = 0. So, R(L) n L(oo) = Z(L(oo)). Then we see that L
is as in (iv).

(iii) ^ (ii): Put I = L/Z{L{ao)). We have R(L) = R{L)IZ[JL^). SO, Z/R(L) a L/R(L).
Since L is lower semimodular, so are L/R(L) and K(L). Thus L/R(L) is lower
semimodular and /?(L)/Z(L(oo)) is supersolvable. Since Z(Lioo)) < <f>{L) (Lemma 3.1(1)),
by [5] it follows that R(L) is supersolvable. So R(L) is lower semimodular too. Clearly,
(i) implies (ii) and (iii). The proof is complete.

We recall that if the quotient of a Lie algebra G by its centre is three-dimensional
simple, then G = Z(G) © G (see [20]). We wonder if the same holds when G/Z(G) is
supersimple. If it does, then we would obtain that Z{L(<X>)) — 0 whenever L is lower
semimodular and \ff ^ F arguing as in the proof of the following.

Corollary 5.11. Let F be perfect with char(F) > 3 and */¥ £ F. Then, a Lie algebra
L is lower semimodular if and only if L = U © P, © • • • © Pr where U is a supersolvable
ideal of L,r > 0 and the Pf are mutually non-isomorphic three-dimensional non-split
simple ideals of L.

Proof. By our assumption on the ground field, we have that the three-dimensional
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non-split simple algebras are the only Lie algebras which are supersimple (see [19]
and [10]). Assume that L is nonsolvable and lower semimodular. Then, by Theorem
5.10 we can decompose L(oo)/Z(L(oo)) = P,/Z(L(oo))© •• • ePr/Z(L( o o )), where each
Pi/Z(L(00)) is three-dimensional non-split simple. We see that Z0x)) = Z(P,), for every
1 < i < r. Then we have Pf = Z(L{oo)) © P| (see [20]). This yields

L(oo) = PJ © • • • © Fr © Z(L(00)).

As (L<oo))(oo) = L(oo), it follows that Z0X)) = 0. Now, the result follows from Theorem
5.10.

Corollary 5.12. Let F be finite with char(F) > 3. Then, the supersolvable algebras
are the only Lie algebras which are lower semimodular.

Proof. It is well-known that there are no three-dimensional non-split simple Lie
algebras over F (see [8]). So, the result follows from Corollary 5.11.
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