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The plate spacing of sea ice

Sönke Maus

Department of Civil and Environmental Engineering, NTNU, Trondheim, Norway

Abstract

Columnar sea ice grows with an interface of tiny parallel ice plates, the distance of which is
known as plate spacing. While it has been proposed as a fundamental microstructure scale of
sea ice, the physics behind its formation has not been fully understood. Here the problem is ana-
lysed on the basis of morphological stability theory to propose a model that results in a physically
consistent prediction of the relationship between the plate spacing a0 and growth velocity V. The rela-
tionship may be divided into two regimes. In the diffusive regime, for V above ≈2 × 10−4 cm s−1 one
finds a0∼V−2/3 to first order. In the convective regime, the extent of diffusive boundary layer is
controlled by solutal convection near the interface, which leads to the proportionality a0∼V−1/3.
From a comparison to observations it is evident that the plate spacing is predictable over 5 orders
of magnitude in the growth velocity, covering the range from fast laboratory ice growth to slow
accretion at the bottom of marine ice shelves. The predictability opens new paths towards concise
modelling of marine and sea-ice microstructure and physical properties.

Introduction

Sea-ice growth from sea water is a unidirectional freezing process. Under quiescent conditions
freezing is normally directed downwards, with a sea-ice layer growing in thickness. The ice–
water interface during this freezing process is known to be cellular, with concentrated sea water
sandwiched between elongated vertical plates. This structure involves the entrapment of con-
centrated brine between the plates and makes sea-ice saline. First notes of this microstructure
date two centuries back, describing the ice as spongy and porous (Scoresby, 1815), with a ver-
tically striated structure (Walker, 1859) and lamellar (Ruedorff, 1861). It was also noticed that
the vertical orientation of the ice plates or lamellae, in the direction of freezing, corresponds to
the horizontal orientation of the c-axis, normal to the ice plates (Hamberg, 1895; Drygalski,
1897).

An early documentation of this structure, a drawing after a tinfoil replica from the bottom
of sea ice, is reproduced in Figure 1. The figure shows two basic microstructure length scales
emerging from horizontal cross-sections – the plate spacing or brine layer spacing and the
grain size. Within each grain, a few centimetres in dimension, one observes elongated sub-
grains that are parallel within each grain and spaced by less than a millimetre. So far the
most frequently used technique to determine the plate spacing is via optical micro-graphs
of thin sections (Weeks and Ackley, 1986; Shokr and Sinha, 2015). More recently X-ray micro-
tomographic imaging has been used (Maus and others, 2015). Figure 1 also shows a slice from
a 3-D image obtained by this technique.

The first quantitative descriptions of the plate spacing, a0, ranged from 0.2 to 0.5 mm for
thin ice (Fukutomi and others, 1952; Anderson and Weeks, 1958; Weeks and Hamilton, 1962)
and 0.5 to 1 mm for thick Arctic sea ice (Assur, 1958; Schwarzacher, 1959). The largest plate
spacings in sea ice were 1.3–1.5 mm and have been documented by Cherepanov (1964) for a
10–12 m thick ice island.

A search for the predictability of the plate spacing was once motivated by two aspects – its
relevance for the ice salinity and its strength. Anderson and Weeks (1958) were the first to
present a microstructure-based strength model, where the plate spacing was a constant.
Assur and Weeks (1963) extended this study by introducing a relationship between plate spa-
cing and growth velocity, to construct a model of sea-ice strength evolution based on growth
conditions. However, the relationship was only based on limited field data. Since then there
has been little interest in this problem, presumably because large scale sea-ice properties
have been in the focus, and there is little knowledge about their dependence on small-scale
sea-ice properties. With the ongoing development of more advanced sea-ice models the role
of microstructure scales like the plate spacing is likely to receive more interest again (Weiss
and Dansereau, 2017). Regarding the salinity, an early approach to relate it to the plate spacing,
via structural entrapment of brine in layers between ice plates, was proposed by Tsurikov
(1965) and considered extremely interesting by Weeks and Lofgren (1967). However, the
ideas by Tsurikov (1965) and Weeks and Lofgren (1967) did not merge into a consistent the-
ory of plate spacing and salinity. This is likely related to the large discrepancy between field
and laboratory observations that followed. Lofgren and Weeks (1969) performed an extensive
set of laboratory experiments of freezing NaCl solutions with salt concentrations ranging from
1 to 100 g kg−1. The results differed in several ways from other observations. The obtained
concentration dependence was non-linear and rather different from the one obtained experi-
mentally by Rohatgi and Adams (1967) for higher growth velocities. Most importantly for
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sea-ice problems, the plate spacing observations from Lofgren and
Weeks (1969) were a factor of 2–3 smaller than in the field
(Weeks and Hamilton, 1962; Assur and Weeks, 1963). The
authors attributed the considerable complexity and deviation
from field data to uncontrolled convection processes in their
laboratory set-up.

Nakawo and Sinha (1984) found a rather different inverse cor-
relation between growth velocity and plate spacing, and were also
able to show that plate spacing strongly correlates with salinity in
the ice. The authors also suggested, based on limited data, a
dependence between crystal orientation and plate spacing. In a
later study, the results were basically confirmed (Sinha and
Zhan, 1996), yet the growth velocity range covered was still lim-
ited to 0.5–2 cmd−1. The authors proposed that a much larger
set of ice cores would be needed to resolve the problem of how
plate spacing and salinity depend on growth conditions.

In the latest study on the topic the author had compiled avail-
able observations of plate spacings from other studies and pro-
posed a model for the plate spacing (Maus, 2007a, 2007c). The
model has two main ingredients: (i) it is based on morphological
stability theory (MST) developed by Mullins and Sekerka (1964)
and (ii) contains a parameterisation of convection due to brine
release. With only a few parameters adjustable within plausible
ranges it is able to predict the observations over 5 orders of mag-
nitude in the growth velocity. It was further shown by the author
that a model for the plate spacing allows for prediction of the
salinity of sea ice (Maus, 2008). Compared to other convection-
based approaches that do not consider microstructure to predict
salinity summarised by Worster and Rees Jones (2015), such a
micro-structural model depends on less adjustable parameters.
Strength and salinity are likely not the only physical sea properties
influenced by the plate spacing. As first discussed by Anderson
and Weeks (1958), the plate spacing is the starting point of an
evolving sea-ice microstructure, and a concise prediction of this
point is essential to understand the role of sea ice in the environ-
ment (Weeks and Ackley, 1986; Weeks, 2010; Shokr and Sinha,
2015).

In the current study I present a simplified model that appears
to be more consistent with the observations. To the data compil-
ation of plate spacings from Maus (2007a, 2007c) the results of
some more studies are added (Fukutomi and others, 1952;
Paige, 1966; Jeffries and others, 1993; Sinha and Zhan, 1996).
I also suggest a different presentation of the results from
Lofgren and Weeks (1969), rather using the temperature gradient
to relate plate spacings to growth velocity. This removes most of
the inconsistency between the dataset from Lofgren and Weeks
(1969) and all other observations. The data compilation and
model results are then analysed to identify processes that lead
to the variability in the plate spacing, and to derive a relationship
between growth velocity and plate spacing.

Observations of plate spacing

Table 1 summarises studies where both plate spacings and growth
velocities were documented, or may be deduced from observa-
tions and images. Some of these studies were already mentioned
in the Introduction. Most of these studies reveal an increase of
plate spacing with decreasing growth velocity. In practice growth
velocity often decreases with thickness which leads to an increase
of plate spacing with depth. Such a relationship has been reported
in other studies (Tabata and Ono, 1962; Paige, 1966; Lange, 1988).
In a few studies no such depth dependence was found (Gow and
Weeks, 1977; Jeffries and others, 1993). However, as growth vel-
ocities in the latter studies were not reported, this behaviour
might be related to some unusual growth-thickness relationship
(e.g. persistent temperature decrease after freeze-up) and/or to
the general scatter of observations.

Table 1 lists the studies of the plate spacing in chronological
order: Fukutomi and others (1952) reported plate spacings for a
1–2 cm thick initial ice crust. They also reported the thermal gra-
dients in the ice, which here were converted to growth velocities.
Weeks and Hamilton (1962) reported five sets of plate spacing
and growth velocity for natural sea ice at Barrow, Alaska and
six data points for laboratory grown NaCl ice. Paige (1966)
reports the vertical variation of plate spacings for 3 m thick land-
fast ice for three stations in his Figure 15 with as much as 31 data
points. However, the thickness evolution for the stations in
Figure 3 of that paper only allows to estimate the growth rate
for the two bottom-most observations at station 2. Rohatgi and
Adams (1967) reported plate spacings in ice growing upwards
from different aqueous solutions in the laboratory. The four
data points for a 0.25 N NaCl solution were picked from their
Figure 16 (not using data at much higher and lower concentration
than sea water). Growth rates were estimated by assuming linear
temperature gradients between a −70°C cold surface and the
freezing temperature. Lofgren and Weeks (1969) measured plate
spacings for ice grown at different NaCl concentrations
(1–100 g kg−1 NaCl) in a cylindrical tank of 14 cm diameter.
These authors estimated growth velocities by fitting a 4th order
polynomial to the thickness data. Here we selected the four
runs (at 15–30 g kg−1 concentration NaCl) that most closely
reflect natural growth conditions with 23 data points in total.
Milosevic-Kvajic and others (1973) report plate spacing for ice
grown upwards from 1% NaCl aqueous solutions. As these
authors did not explicitly report growth velocities, we use the tem-
perature gradient to estimate the latter. Nakawo and Sinha (1984)
performed a detailed study of plate spacing observations in 1.1 m
thick sea ice in Eclipse Sound, including crystal orientation to be
discussed below. The data of growth velocity and plate spacing
analysed here were obtained from their Figure 10. From Gow
and others (1987) two values for an outdoor tank experiment
(CRRELEX-84) are estimated from Figure 6, with growth veloci-
ties from Figure 3 (see also Arcone and others, 1986); one value
for CRRELEX-85 was obtained from Figure 16 with velocity
from Figure 13. Jeffries and others (1993) observed plate spacings
in ice cores from different places in McMurdo Sound. They dis-
tinguish between regimes of strict congelation (most studies
reported here) and interstitial congelation ice that formed
between platelets (The term platelets is used for crystals that either
settle from the water column or grow at the ice–water interface
(e.g., Dempsey and others, 2010), not to be confused with the
plate spacing of lamellae, the current study’s subject.). As these
authors found little difference between plate spacings formed
under simple congelation and those measured between platelets
(their Fig. 15 and Table 4), we do not distinguish between these
growth modes. All plate spacings from Figure 14, were averaged
for 10–15 cm spaced levels between 1.4 and 2.25 m depths, for

Fig. 1. Left: Drawing after a tinfoil replica from the bottom of sea ice (Drygalski, 1897)
showing the crystal structure of grains and sub-grains. Right: Slice from a 3-D X-ray
micro-tomographic image near the bottom of ice grown in a tank study (S. Maus,
unpublished), revealing the same features.
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which ice growth velocities were obtained from Figure 3 of that
paper. Nghiem and others (1997) report two plate spacing –
growth rate data points from a tank experiment and one from a
natural lead in their Figure 6 (showing both a0 and V). Cole
and others (1995) show the growth history for ice from Elson
Lagoon, Barrow, with nine data points of plate spacing
(Table 3) and growth velocity (Fig. 3). Sinha and Zhan (1996)
report the vertical distribution of plate spacings in 2 m thick sea
ice from Resolute Bay, together with growth velocity estimates
based on a polynomial fit to ice thickness data. They compare
these with their earlier study (Nakawo and Sinha, 1984). Here
we plot their laboratory measurements from Figure 5.

Crystal structure observations from the 10 m thick ice island
SP-6, on which the drifting station North Pole 6 was installed,
were presented by Cherepanov (1964). The vertical extent of the
parallel fibres was very large – some lengths over 2.5 m were mea-
sured, indicating slow uniform growth of this ice. The authors
also concluded that a considerable part of the ice island, likely
6–8 m, must have melted from its top. The origin of this ice island
is unclear, yet the strong horizontal c-axis orientation would be
consistent with very thick land-fast ice that existed over many
years. The plate spacing for SP-6 was reported as 1.3 mm at 0.5
m depth, 1.4 mm at 2.5 m and 1.5 mm at 8 m depth. We make
the following approach to associate these horizons with certain
growth rates. We add to all depths the estimated 7 m ablation
to obtain the thickness 7.5, 9.5 and 15 m, when these ice levels
were at the ice–water interface. For an estimate of the ice growth
rate we consider modelled and observed vertical temperature dis-
tributions (Maykut and Untersteiner, 1971; Legen’kov and others,
1974). Based on these we assume that considerable ice growth is
prevalent over 8 months of the year. Next, the result of a 1-D
sea-ice model from Maykut and Untersteiner (1971) is consid-
ered. While models have been advanced since them, these authors
performed simulations with forcing from the 1950s and 1960s,
and for absence of oceanic heat flux, which we assume to allow
the large thickness of ice island SP-6. Simulations for zero oceanic
heat flux give 0.39 m a−1 bottom accretion (and surface melting)
when the 5.7 m equilibrium ice thickness is reached. For the
thicker ice from SP-6 this equilibrium growth rate is scaled by
the thickness ratios 5.7/7.5 and 5.7/9.5 and 5.7/15, and multiplied
with 12/8 to account for growth restricted to the coldest 8 months.
Such a scaling is not exact, but accounts for the dominating effect
of increased thickness. One then arrives at typical growth veloci-
ties of 0.12, 0.09 and 0.06 cm d−1 for the 0.5, 2.5 and 8 m

horizons. Due to the assumptions made, model uncertainties
and the unknown origin of ice island SP-6, these values are the
most uncertain, but probably valid within a factor of 2.

The largest a0 to date of 5 mm has been documented for the
bottom of an Antarctic Ice Shelf (Zotikov and others, 1980).
The authors obtained two consistent estimates of the growth vel-
ocity. A value of 2 cm a−1 was based on the conjecture of growth
of a distinct bottom layer since a drilling event with a flame jet,
while a slightly smaller number of 1.6 cm a−1 was estimated
from the temperature gradient.

In Figure 2 all observations are shown. It is seen that, while
observations agree reasonably well for certain growth velocities,
the data from Lofgren and Weeks (1969) deviate from all other
datasets. I believe that, most likely, in their laboratory experiments
there were strong lateral heat fluxes as well as thermal convection
present, that led to low growth velocities, even when the tempera-
ture difference between the ice surface and the tank water was
large. However, if one uses the temperature gradient in the ice
to compute a ‘virtual growth velocity’ these data match observa-
tions at similar growth velocities much better. In this study we
will thus only show these virtual growth velocity data points
from Lofgren and Weeks (1969) when compared to model predic-
tions. Note that also for the laboratory dataset from
Milosevic-Kvajic and others (1973) growth velocities are esti-
mated from the temperature gradient. For the latter study growth
velocities were also obtained from their Figure 4, which resulted in
slightly (10%) different values (not shown).

Several investigators fitted their observations empirically and
the figure summarises these fits: Assur and Weeks (1963)
assumed a relationship a0∼ V−1/2 arguing with findings from
the solidification of metals (magenta curve). Nakawo and Sinha
(1984) also considered research from the metallurgical literature
and proposed that the solution at low velocities from Bolling
and Tiller (1960) would yield a0∼ V−1 (red curve). In the double-
logarithmic plot these power laws appear as straight lines with
constant slopes −1/2 and −1. Lofgren and Weeks (1969), in an
extensive laboratory study, were not able to find a constant
power law exponent, and proposed some other relationship
found by trial and error, yet without a physical basis. While
these three empirical fits are consistent with the respective limited
datasets, they disagree strongly over most of the parameter space
and none of them is able to predict the plate spacings variation
over the whole growth velocity regime 0.005–500 cmd−1. The
prediction by Maus (2007c) is the only solution that is based on

Table 1. Studies of plate spacing versus growth velocity

Source Location Hice Growth S Plate spacing n

m cm d−1 ‰ mm
Fukutomi and others (1952) Lab, NaCl 0.02 2.7–8.4 Not reported 0.32–0.61 7
Weeks and Hamilton (1962) Barrow 0.3 0.5–3.1 31 0.56–0.71 5
Weeks and Hamilton (1962) Lab, NaCl Not rep. 2.7–8.4 Not reported 0.32–0.61 7
Cherepanov (1964) Arctic Ocean 10 ≈ 0.1 Sea water 1.3–1.5 3
Paige (1966) McMurdo Sound 3.0 0.5 Seawater 1.0–1.02 2 (32)
Rohatgi and Adams (1967) Lab, NaCl, ⇑ 0.04 100–1000 5.8–146 0.05–0.17 4 (14)
Lofgren and Weeks (1969) Lab, NaCl 0.1–0.2 1–400 1–100 0.04–0.55 23 (75)
Milosevic-Kvajic and others (1973) Lab, NaCl, ⇑ 0.04 20–180 10 0.12–0.24 18
Zotikov and others (1980) Ross Ice Shelf 416 0.005 Seawater 5 1
Nakawo and Sinha (1984) Eclipse Sound 1.1 1.0–1.8 32 0.43–0.95 15
Gow and others (1987) Pool, NaCl 0.2–0.3 0.9–3 ≈24 0.45–0.57 3
Jeffries and others (1993) McMurdo Sound 2.3 0.8–1.4 Seawater 0.49–0.82 24 (88)
Nghiem and others (1997) Pool, Lead 0.1–0.2 4–16 ≈30 0.32–0.46 3
Cole and others (1995) Barrow 1.7 0.3–1.3 32–44 0.6–1.0 11
Sinha and Zhan (1996) Resolute Bay 2.1 0.3–1.8 Seawater 0.60–1.00 19

In all studies except for those of Rohatgi and Adams (1967) and Milosevic-Kvajic and others (1973), denoted with ⇑, the ice growth was downwards, in the direction of gravity. The columns
from left to right give the study reference, location, typical ice thickness, growth rate and water salinity (if reported), followed by the observed range of plate spacings and the number of
observations for which growth velocities were reported or could be deduced from ice thickness observations. The bracketed values indicate the total number of observations, including those
for which ice growth velocities are unavailable or, in the study from Lofgren and Weeks (1969), those where solution salinities were rather different from sea water.
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a physically based model (grey curve). In this model regimes of
solute diffusion and convection are distinguished, predicting a
behaviour that is reasonably consistent over the whole range of
growth velocities.

Morphological stability theory

During the 1960s the problem of cellular pattern formation during
solidification received increasing interest in the field of metallurgy.
Rutter and Chalmers (1953) formulated qualitatively the theory of
Constitutional Supercooling based on the following considerations:
solute, rejected at the freezing interface, lowers the freezing point
and a solutal boundary layer forms by diffusion. Due to much faster
thermal than solutal diffusion, the thermal boundary layer has a
much larger extension than the solute boundary layer and the liquid
will be constitutionally supercooled near the freezing interface. A
small perturbation of the freezing interface moving into this super-
cooled liquid will have the tendency to grow spontaneously. This is
the basic mechanism of cellular instability. The wavelength of the
most rapidly growing perturbations is expected to increase with
the solutal boundary layer width (and thus ∝D). As more rapid
growth allows less time for lateral diffusion normal to the solidifi-
cation direction, this leads to smaller cell sizes. Rutter and
Chalmers (1953) supported all their qualitative arguments by obser-
vations. Tiller and others (1953) postulated an appropriate quanti-
tative solution of the problem. They proposed that the necessary
condition for cellular growth is

Gb

mGc
≤ 1 (1)

mGc = −mC1
1− k
k

V
D
, (2)

wherein V is the growth velocity, D the coefficient of solute diffu-
sion and k the solute distribution coefficient at the freezing inter-
face, defined as Cs/Cint, the ratio of salinity in the ice to that at
the interface in the liquid. C∞ is the liquid salinity outside the solu-
tal boundary layer, distant from the interface, and m the variation
of freezing point with salinity (∂Tf/∂Sb). Hence for a constant m the
freezing temperature Tf is the same as −m C∞. In the steady state

these properties determine the interfacial gradient mGc in the freez-
ing temperature, that has to exceed the actual temperature gradient
Gb = ∂Tb/∂z in the liquid for constitutional supercooling to occur.

Although a considerable theoretical step forward, Eqn (1) was
not capable of predicting the cell size of instabilities, and the
first attempts to do so were not fully convincing (Tiller, 1963).
However, a decade later Mullins and Sekerka (1964) came up
with an elegant solution to this problem, known today as
Morphological Stability Theory (MST). The original analysis
from Mullins and Sekerka (1964) has later been presented with
slight modifications (Sekerka, 1968; Langer, 1980; Coriell and
McFadden, 1993). The following description refers to the derivation
by Coriell and others (1985) and Coriell and McFadden (1993).

Linear stability of a planar interface

Consider the z-directional solidification of a saline solution at
constant velocity V in a (x-y-z) coordinate system. Assume the
limit of large ratios of thermal to solutal diffusivity (κb/D≫ 1).
In the steady state the diffusion equations to be fulfilled for the
temperature Tb and Ti in the (liquid) brine and (solid) ice are

kb∇2Tb + V
∂Tb

∂z
= 0, (3)

and

ki∇2Ti + V
∂Ti

∂z
= 0. (4)

The solute concentration Cb in the liquid obeys

D∇2Cb + V
∂Cb

∂z
= 0. (5)

In the solid solute diffusion is neglected and Ci

Ci = kCint (6)
is given by Cint at the interface in the liquid and the interfacial sol-
ute distribution coefficient k. The other boundary conditions at

Fig. 2. Plate spacing observations from various sources summarised in Table 1. (a) The three coloured curves are empirical fits by Assur and Weeks (1963), Lofgren
and Weeks (1969) and Nakawo and Sinha (1984) based on the data points with the same colour. The grey curve from Maus (2007a) is based on a morphological
instability model prediction. In addition to the blue open circles showing the fitted growth velocities from Lofgren and Weeks (1969) these data are also presented
by estimating the growth velocities based on the temperature gradient (blue dots, see text for the justification).
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the interface are

LvV · n = Ki∇Ti − Kb∇Tb( ) · n (7)

for heat and

CintV · n = D∇Cb · n (8)
for solute, where V is the local solidification velocity (in x–y–z
direction) and n the unit vector normal to the interface. Lv is
the volumetric latent heat of fusion, Kb and Ki are the thermal
conductivities of the brine and ice and m is a linearised local
liquidus slope. The boundary condition for C∞ in the liquid far
away from the interface is

Cint = C1
k

(9)

Equilibrium at the interface implies

Tb = Ti = Tf +mCint − GK, (10)
with melting temperature Tf of the pure liquid (water). Γ is the
Gibbs–Thomson parameter

G = Tfgsl
Lv

, (11)

where γsl is the solid–liquid surface free energy per unit area. Γ
has unit Kelvins × metres and multiplying it with the local
mean curvature K of the interface gives the freezing point depres-
sion due to surface tension. For an interface given by z = h(x, y)
the linearised mean curvature is given as

K = ∂2h
∂x2

+ ∂2h
∂y2

( )
. (12)

All transport coefficients are assumed constant for a certain concen-
tration range Cint to C∞. They are computed at C∞ throughout the
current study. Fluid flow due to the change in density upon solidi-
fication is neglected. The assumption of a thermal steady state is jus-
tified for large ratios of thermal to solutal diffusivity as for the ice–
brine system (κi/D≈ 1.6 × 103 and κb/D≈ 2 × 102 near 0°C).

In a linear stability analysis approach the temperature and con-
centration fields are now written as the sum of an unperturbed
part only depending on z and a perturbed part exp(Σt + i(ωx

x + ωy y)). This analysis leads to the following equation for the
freezing interface (defined as z = 0 in the steady state) for the
perturbed state:

z = h(x, y, t) = dexp St + i vxx + vyy
( )( )

. (13)

Therein Σ describes the time-dependent behaviour of an infini-
tesimal perturbation and ωx and ωy its horizontal wave number
vectors. As shown in several similar treatments (Mullins and
Sekerka, 1964; Coriell and others, 1985; Coriell and McFadden,
1993) this analysis leads to the following dispersion relation

S = −Geff − Gv2 +mGc
v∗ − (V/D)

v∗ − (1− k)(V/D)

( )

× Lv
(Kb + Ki)v

+ mGc

V(v∗ − (1− k)(V/D))

( )−1
(14)

The parameters therein are

v∗ = V
D
+ V

D

( )2

+v2

( )1/2

, (15)

a horizontal wave number

v = (v2
x + v2

y)
1/2, (16)

while

Geff = GiKi + GbKb

Ki + Kb
(17)

is an effective temperature gradient at the interface, based on the
temperature gradients Gb and Gi in the liquid and ice, respectively.
At equilibrium freezing the solute gradient Gc at the interface is
given by

Gc = C1
1− k
k

V
D
. (18)

Equation (14) is valid in thermal steady state. It solves for
those wavelengths λ = 2π/ω with Σ > 0 where the interface is
unstable to infinitesimal perturbations, while it is stable for wave-
lengths with Σ < 0. To understand the influence of different terms
in Eqn (14) it is useful, with help of the z-component of Eqn (7),
to express the effective temperature gradient Geff in the form

Geff = LvV + 2GbKb

Ki + Kb
= LvV

Ki

1+ (2GbKb/LvV)
1+ (1/nk)

( )
, (19)

with nk = Ki/Kb. This emphasises the important role of latent heat
Lv in the problem.

To proceed to a solution of Eqn (14) one defines two other
non-dimensional parameters. These are the absolute stability
parameter A from Mullins and Sekerka (1964)

A = kGV2

mGcD2
= k2GV

m(1− k)C1D
, (20)

that contains the surface energy as an important property, and the
ratio

G = Geff

mGc
= LvD

Ki

k
mC1(k− 1)

1+ (2GbKb/LvV)
1+ (1/nk)

( )
, (21)

which characterises the degree of constitutional supercooling. As
discussed by Mullins and Sekerka (1964), absolute stability
implies A ≤ 1 and corresponds to the state when surface energy
completely dominates the solute effect of constitutional super-
cooling. The parameter G is the ratio of the effective temperature
gradient at the freezing interface, Geff, and the freezing tempera-
ture gradient due to the solute gradient, m Gc. It needs to be <1
for constitutional supercooling to occur.

Sekerka (1965) showed that the stability of a planar freezing
interface depends on the parameters A ≤ 1 and G, as well as
the solute distribution coefficient k. For an explicit validation of
this dependence he derived the following characteristic equation
for the solution of the stability problem

S(A, k) = 1+ A
4k

− 3A1/2r
2

−A(1− 2k)r2

4k
, (22)

where the variable r is defined as r4 = 1 + (2 Dω/V )2 and deter-
mined by the one real root greater than unity of

r3 + (2k− 1)r − 2k

A1/2 = 0 (23)

while the wavelength (making use of λ = 2πω) at the onset of
instability is given as

lmi = 4p
D
V
(r4 − 1)−1/2. (24)
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The condition for the onset of instability may then be written
(Sekerka, 1965) as

G ≤ S(A, k). (25)

It expresses the modification of constitutional supercooling G for
the case of interface instability due to surface tension. In the
absence of surface tension effects, for A ≪ 1 and S ≈ 1, the con-
dition G , 1 is sufficient to render the interface unstable. The lar-
ger the effect of surface tension, the smaller the necessary S for
instability, and the higher the corresponding constitutional super-
cooling, given by smaller G according to Eqn (25).

Constitutional supercooling revised

A first principle result of MST is a re-interpretation of constitu-
tional supercooling. Writing condition (25) for instability in the
form

Geff

mGc
= LvD

Ki + Kb

k
mC1(k− 1)

1+ 2GbKb

LvV

( )
≤ S(A, k), (26)

one can simplify it for two cases. If the liquid temperature gradi-
ent Gb dominates over latent heat, stability condition becomes

Geff

mGc
= Gb

mGc

2Kb

Ki + Kb
, S(A, k). (27)

The stability function S(A, k) is mostly in the range 0.9–1 under
natural ice growth conditions, and hence the influence of surface
energy on the selected wavelength is weak (Maus, 2007a).
Neglecting a slight deviation of S from unity, this equation may
be compared to the constitutional supercooling condition
Eqn (1) from Tiller and others (1953). For Ki = Kb, equal thermal
conductivities in ice and brine, these equations are equal. For the
ice–brine system however, with Ki/Kb≈ 4, the interface will be less
stable, as Geff is smaller than Gb, and a factor ≈5/2 less constitu-
tional supercooling is needed for instabilities to grow.

For the second case it is assumed that 2GbKb is small com-
pared to LvV – corresponding to zero oceanic heat flux. Then
Eqn (26) simplifies to

Geff

mGc
= LvD

Ki + Kb

k
mC1(k− 1)

, S(A, k), (28)

where the growth velocity is no longer directly present except
through its influence on the surface tension stability function S.
Hence, the interface stability becomes independent of V when
the temperature gradient in the liquid is small, i.e. the case of
low oceanic heat flux. In summary, constitutional supercooling
implies the following qualitative aspects:

• A positive liquid temperature gradient Gb stabilises the interface
which is the classical constitutional supercooling.

• Latent heat Lv stabilises the interface as it has to be removed
before freezing can proceed.

• The larger the conductivities Ki and Kb, the more rapidly the
latent heat is removed, the less stable the interface.

• A faster removal of solute due to a larger solute diffusivity D
stabilises the interface.

• Constitutional supercooling increases with concentration C∞
and liquidus slope m, which both are destabilising.

• Surface tension stabilises the interface. This effect is only rele-
vant at small wavelengths (high growth velocities) and implied
in the decrease of S , 1.

Principal results – onset of instability

Before proceeding to a solution of the above equations, some
principal results are illustrated (To obtain quantitative results
we use the thermodynamic properties of NaCl solutions given
in the appendix.). Equation (28) may be used in the limit of
low growth velocities, when S ≈ 1, to estimate the solution salin-
ity at which a planar interface will become unstable. Assuming a
bulk interface value k≈ 10−3 for dilute NaCl solutions (Tiller,
1963), one finds that cellular instabilities should occur at solution
salinities C∞ above ≈0.0013 g kg−1.

Next, the behaviour of Eqn (14) is illustrated in Figure 3 for an
ice growth velocity of 10−4 cm s−1 and with the liquid tempera-
ture gradient Gb set to zero. Focus first on the solid curve obtained
for a value of C∞ = 0.0015 g kg−1, slightly above the stability limit.
The figure shows three wavelengths that are characteristic for the
solution. Moving from the left to larger wavelengths, the perturb-
ation growth rate becomes positive, then reaches a maximum and
becomes negative again at higher wavelength. These three wave-
lengths correspond to the surface-energy dominated lower
bound (lG), the wavelength where the growth rate is a maximum
(lmax = 31/2lG), and the longest unstable wavelength controlled
by diffusion (λD). Next, the solution is illustrated for a solute con-
centration very close to the onset of instability for a planar freez-
ing interface ≈0.0013223 g kg−1. Under this condition the
wavelengths lG, λmax and λD are very close to each other. At
the critical concentration close to the onset of instability the
Σ = 0 line is touched at a single wavelength, which is termed
λmi, the marginal stability wavelength. It has been noted by
Weeks and Ackley (1986) that, if such low salt concentration is
sufficient to create constitutional supercooling for the onset of
instabilities, it can be expected in any normal lake water. An inter-
esting early observation relating to this topic has been made by
Quincke (1905a, 1905b) based on the analysis of ice frozen
from dilute saline solutions. He observed that a remarkable ‘milki-
ness’ or ‘foam-like’ character of the ice was already observed at a
solution concentration of ≈0.001 g kg−1 NaCl.

Approximate wavelength solutions

In general, Eqn (22) needs to be solved numerically, yet one can
derive limiting cases (Coriell and others, 1985). As cell spacings
during solidification are found to decrease with V−b, yet with
an exponent b < 1 (e.g. Tiller, 1963), one finds ωD/V≫ 1 at
high growth velocities far from the onset of instability. This
leads to (Coriell and others, 1985)

lG = 2p
D
V

A
k(1− G)

( )1/2

. (29)

If one further sets G ≪ 1, the case of high supercooling, one
obtains by inserting A from (Eqn (20)) the relationship λΓ∼
(V/D)−1/2, which is an often assumed power law (e.g. Assur and
Weeks, 1963). The corresponding most rapidly growing wave-
length is λmax≈ 31/2λΓ (Coriell and others, 1985).

An approximation for the onset of instability is obtained by
assuming A1/6 ≪ 1. Equation (22) may then be written as

G = 1− 27kA
4

( )1/3

, (30)
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while the critical wavelength is now given by

lmi = 2p
D
V

2A
k2

( )1/3

= p24/3
D
V

( )2/3
G

mC1(k− 1)

( )1/3
(31)

Hence, at the onset of instability the wavelength is expected to
scale as (V/D) −2/3.

Modifications of MST for sea ice

The classical MST theory as outlined so far describes a planar
freezing interface. Based on a steady state, it cannot describe
how and under what conditions the interface evolves into a system
of plates or cells with deep grooves between them. However, one
can make the assumption that, after changing from a planar to
cellular state, the freezing interface continues to operate at the
onset of instability, as proposed by Maus (2007a). The new cellu-
lar interface then needs to be described in terms of effective ther-
mal conductivities and temperature gradients at the interface. For
lower growth velocities and growth in the direction of gravity
(most natural sea ice) also a modification of the purely diffusive
equations due to solutal convection is needed.

Marginal stability – maximum k
When the interface becomes unstable the interface solute distribu-
tion coefficient k is no longer a fixed parameter. To first order,
neglecting the ice–brine density difference, k now reflects the
brine volume fraction or porosity at the interface. As the interface
concentration and solute gradient decrease with k one wants to
know the maximum k at which the interface can stay marginally
unstable. Focusing on small A far from absolute stability the solu-
tion can be approximated by Eqn (30). We further define two new
parameters

A0 := A k− 1
k2

= GV
mC1D

(32)

and

G0 := G k− 1
k

= 1
mC1

LvD
Ki + Kb

( )
1+ 2GbKb

LvV

( )
(33)

to rewrite Eqn (30) in the form

G0
k

k− 1
= 1− 27k3A0

4(k− 1)

( )1/3

. (34)

which is a fifth-order polynomial to be solved for k. The basic
result of this solution can be illustrated in the limit of G = 1.
Then Eqn (33) becomes k = (1− G0)

−1. Assuming now zero
temperature gradient in the liquid (no oceanic heat flux) one
obtains

k = 1− LvD
mC1(Ki + Kb)

( )−1

(35)

In this approximation k only depends on material properties and
the solute concentration C∞. Inserting the properties of an
35 g kg−1 NaCl solution at its freezing point one obtains k≈
0.9693. With ΔC = Cint− C∞ one has

DC = C1
1− k
k

= − LvD
m(Ki + Kb)

(36)

for the interface salinity increase over the far field value. ΔC is to
first-order independent of growth velocity or salinity (Note that,
as Lv, D, Ki and Kb and m are all temperature and salinity depend-
ent, ΔC will also be so.). For C∞ = 35 g kg−1 one obtains ΔC =
1.1 g kg−1, and a constitutional supercooling of mΔC =−0.069 K.

Near-interface temperature gradient
Morphological stability depends essentially on temperature and sol-
ute gradients at the interface (Fig. 4). To illustrate how these are
changed for a cellular interface, consider a planar interface for the
case Gb = 0. The ice growth velocity is then given as V =GiKi/Lv.
When the growth is dendritic or cellular, this relationship is chan-
ged. Now heat is not only conducted away from the interface
through the solid ice but also through the liquid brine. This changes
the relationship between the growth velocity V and the bulk tem-
perature gradient Gi at the dendritic interface. Gi in the tips is smal-
ler to the degree to which the heat flow through the liquid enhances
the growth V of ice dendrites. For a given growth velocity the tem-
perature gradient Gi at the interface may thus be less than for a pla-
nar ice interface. To account for this Ki at the interface may be
replaced by an effective thermal conductivity Keff that obeys

V = GiKeff

Lv
(37)

Fig. 3. Characteristic wavelengths at the onset of instability. The solid curve presents
the result slightly above the critical concentration of instability, the dashed curve
gives it very close to this value. At the transition the three wavelengths lG , λmax

and λD are equal to the marginal stability wavelength λmi.

Fig. 4. Sketch of the freezing interface with plate spacing a0 and the solutal boundary
layer ahead. On the right hand the temperature gradients are indicated, with the
weaker gradient in the ice near the interface. Within the solutal boundary layer the
concentration is changing from Cint to C∞. The corresponding freezing temperature
is lower than the actual temperature which implies that this layer is constitutionally
supercooled (CS). Solid fraction ϕtp and Cint within the tip regime relate to k that sets
this supercooling. The vertical level one radius up, termed root of the tip, has solid
fraction ϕrt. When the boundary layer D/V reaches its critical thickness for the onset of
convection, the corresponding knu and ϕnu are defined slightly longer up in the ice.
The boundary layer than receives solute also from a regime between the cells.
Note that the solid fraction profiles above ϕrt are only tentative.
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To keep the problem solvable one needs to parameterise Keff in
terms of k. Assume a geometry where the edges of knife-like plates
are rounded and have a certain tip radius, and associate k with the
average solid ice volume fraction ϕtp of these tips. The salinity in this
thin interface layer can then be expressed as

Ci =
Cint(1− ftp)

1− ftp + qftp
, (38)

where q = ρb/ρi is the ratio of densities of brine and pure ice.
Combining this equation with Ci = k Cint, the solid fraction ϕtp in
the cell tips becomes

ftp(k) = 1− k
k+ q(1− k)

(39)

Let ϕtp be the average ϕs integrated from the interface (ϕs = 0) to the
value ϕs = ϕrt at the root of cell tips, one radius away from the inter-
face. Then the latter is given as

frt(k) =
p

2
ftp(k) (40)

Apparently this scaling only makes sense while ϕtp < 2/π, as at
higher solid fractions the assumed geometry is not valid and
would imply ϕrt > 1. However, in this case the present concept
can still be applied by setting ϕrt = 1. The geometric details will
not play a large role in this situation, as the effect of heat conduction
through the liquid is small anyway.

The effective thermal conductivity Keff for the tip regime can
now be written as

Keff (k) = Ki 1+ wK
1− frt

frt

Kb

Ki

( )
, (41)

where wK is the fraction of the heat flow through the liquid that
contributes to the growth of dendrites. In this study we consider
three simple bounds for wK. At the lower bound wK = 0 all heat
flowing through the intracellular liquid is drawn from the infinite
water reservoir. Then no liquid conduction effect on Gi is present,
Keff = Ki, and the temperature gradient is a maximum. For wK = 1
all heat conducted contributes to enhanced dendritic growth,
implying a minimum temperature gradient. A third solution is
constructed from simple geometric arguments based on circular
cell tips. The heat drawn vertically upwards through the brine
(at ϕrt) must come from a volume between two cell tips, bounded
laterally by the tip surfaces, and vertically by the ϕ = 0 interface.
Assuming that the heat is drawn equally through these boundaries
one has

wK = ftp

1+ ftp
(42)

which will be taken as the standard solution to be used in our
calculations.

Solutal convection
Solutal convection is incorporated into the present MST approach
based on earlier study on the convective instability of an infinite
fluid layer. For the freezing of sea water this has been addressed
theoretically and experimentally (Foster, 1968, 1969a). The critical
parameter to evaluate the onset of convection is the solutal
Rayleigh number

Ras = bDCgH3

nD
(43)

based on the concentration difference ΔC = (Cint− C∞). β, ν and g
are the haline contraction coefficient, kinematic viscosity and
gravity acceleration. H is the layer thickness that below will be
identified with D/V. When Ras exceeds a critical value, convection
sets in and the solute flux increases above its diffusive value F0 =
DΔC/H. For this enhancement we use the well-known relation

Nu = cnuRa
1/3
s , (44)

for the Nusselt number Nu. The salt flux Fs then becomes

Fs = NuF0 = cnu
bgD2

n

( )1/3

DC4/3. (45)

It is independent of the layer thickness, which is the classical 4/
3-flux law (e.g. Turner, 1973; Grossmann and Lohse, 2000).
The problem of cooling or density increase from one boundary
differs from the classical two-sided Rayleigh–Benard problem,
and in that cnu is a factor of 24/3 larger for the one-sided case,
as can be seen by inserting half thickness and density difference
in Eqn (43). We use the range cnu = 0.15 ± 0.02 (corresponding
to the range 0.052–0.068 for the two sided problem) found in
experimental studies (Turner, 1973; Katsaros and others, 1977;
Selman and Tobias, 1978; Goldstein and others, 1990) to account
for a plausible range in cnu.

The increased solute transport at the interface implies an
effective knu based on the Nusselt number that is

knu = 1− Nu(k− 1) (46)

This knu may be imagined to be related to a solid fraction increase
further up in the ice, above the root of the cell tips. It is then in
turn expected to affect ϕrt and thus the heat conduction and tem-
perature gradient given by Eqn (41). To account for this effect we
use Eqn (39) and compute

fnu(k, Nu) = 1− knu
knu + r(1− knu)

(47)

We then define a modified solid fraction ϕrt′ that replaces ϕrt in
Eqn (41) as

f′
rt = (frt + fnu)/2. (48)

With this formulation the effective thermal conductivity near the
cell tips, Keff(k), is now a function of the solid fraction ϕrt(k) near
the tip and the solid fraction ϕnu(k, Nu) further up in the ice.
While ϕrt in the tip regime is given by k and the minimum con-
stitutional supercooling, ϕnu is a higher solid fraction further up in
the ice and associated with solute transport due to convection.
The convective solute transport takes place in a thin horizontal
boundary layer situated ahead of the interface. As the interface
is cellular this layer will be deformed upwards between the cells.
The downward solute transport implies lateral cell thickening
and increase in the horizontally averaged solid fraction that
decreases the effective thermal conductivity Keff(k) at the inter-
face, Eqn (41). This effect is here approximated through an effect-
ive solid fraction ϕ′rt. While this approach ignores the details of
lateral cell growth, it keeps the problem solvable and represents
the basic feedback: the higher solid fraction leads to lower Keff,
which in turn implies a higher temperature gradient Gi near the
interface, Eqn (37). One effect of convection is thus, via increased
solid fraction, to let Keff approach Ki. However, the main effect of
convection is to increase the solute gradient Gc and the solute
transport from the ice interface into the sea water.
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The physical process behind Eqn (45) is the build-up of a dif-
fusive boundary layer, until it convects and solute is transported
away in plumes, followed by a new build-up. The critical time
for this build-up is related to a critical Ras at the onset of convec-
tion. Foster (1968) obtained such a relationship numerically.
Defining the diffusional distance as H = (D tc)

1/2, he obtained
an equation for the critical time tc at the onset of convection

tc = 59
n2

Db2g2DC2

( )1/3

. (49)

Inserting H = (D tc)
1/2 in Eqn (43) one obtains a corresponding

critical Rasc = 593/2 ≈ 453. Results from other studies with differ-
ent boundary conditions and Schmidt numbers (Sc =D/ν) cover
the range 100 < Rasc < 500 (Mahler and Schlechter, 1970; Onat
and Grigull, 1970; Gresho and Sani, 1971). To be consistent
with Eqn (44) we use Rasc = c−1/3

nu , which ensures that Nu exceeds
1 above Rasc. This gives Rasc≈ 296 for cnu = 0.15 and 204 < Rasc <
455 for the assumed range in cnu.

It is ΔC = (Cint− C∞) that enters Eqns (43) and (49). ΔC in
turn is obtained from MST assuming marginal stability and min-
imum supercooling, given by Eqn (36) yet modified for surface
tension effect (recall the role of A). The computation of critical
time tc as well as Rayleigh number Ra thus becomes possible
through this boundary condition of minimum constitutional
supercooling. For the present steady state solution the critical
time will rather represent the characteristic time scale for inter-
mittent build-up and breakdown of the boundary layer (Foster,
1968). However, it is well known that D/V is the appropriate
length scale of a diffusive boundary layer in solidification pro-
blems (e.g. Trivedi and Kurz, 1994) (This may be seen by differ-
entiating the diffusion length (2Dt)1/2 with respect to t to obtain
V = (D/2t)1/2, which leads to D/V = (2Dt)1/2.). Inserting D/V in
Eqn (43) one can compute, for a given critical Ras value, the crit-
ical growth velocity Vc at which convection sets in as

Vc = DCbgD2

nRasc

( )1/3

(50)

This gives Vc≈ 15 cm d−1 for Rasc = 296. Based on the 4/3-law
parameterisation, for growth velocities below Vc the salt flux
will be given by Fs =DΔC/(D/Vcr) = ΔC Vc and only depend on
ΔC, not on the growth velocity V. Given the process of intermit-
tence, a concise incorporation of the convection scaling into MST
would be rather complex and is not attempted here. However, one
can make an approach based on the approximate solution (31) for
the wavelength at the onset of instability. Assuming Geff≈m Gc

for marginal stability it may be written in the form

lmi = p24/3
D
V

( )1/3
DT
Geff

( )1/3
G

DTk

( )1/3

(51)

This equation contains three length scales on the right hand side:
a thermal length (ΔT/Geff), the solutal diffusion length D/V, and
the capillary length Γ/ΔT. Assuming that after the onset of solutal
convection the solutal length scale is given by D/Vc, the main
effect of convection will be a change from Eqn (31) to

lmi = p24/3
D
V

( )1/3 D
Vc

( )1/3
G

mC1(k− 1)

( )1/3

(52)

with Vc given by Rasc. This implies that accounting for convection
leads to a weaker dependence of λmi on the growth velocity, and
that the expected scaling law has the form λmi∼ V−1/3.

Results

In summary, there are three modifications of MST that we pro-
pose for sea-water freezing:

(i) It is conjectured that the cellular interface is in an operating
state of marginal stability, where the constitutional super-
cooling at the interface is at a minimum. This corresponds
to maximum k obtained by solving Eqn (34) with an
approximation by Eqn (35).

(ii) The temperature gradient at the interface should be modified
for high solid fractions. A simple geometric model for the
cell tips is assumed and the effect is implemented in depend-
ence of k through Eqn (41).

(iii) Convection changes the solute flux and the thickness of the
solutal boundary layer. This happens below a critical velocity
Vc≈ 15 cm d−1. Also convection is parameterised in terms of
k, leading to a modified solution for the wavelength at the
onset of instability (Eqn (52)).

In the following the model predictions will be shown for pure dif-
fusion and with convective parameterisations included, typically
resembling the cases of upward growth and downward growth
(that is, natural sea ice).

Diffusive solution for fixed k

In Figure 5 we compare the results of MST wavelength predictions
with observations of sea-ice plate spacings. The model results are
shown as a stability balloon in growth velocity – wavelength space.
Only diffusion is taken into account and a fixed k and C∞ = 35
typical for sea water are used. Inside the balloon a planar interface
is unstable, outside it is stable. The results are shown for three
temperature gradients in the liquid, being expressed as heat fluxes
(Q =GbKb), and respectively representing the cases of very small
to moderate to very large oceanic heat fluxes during the sea-ice
growth season. Note that here k was fixed at 0.15, as this value
implies a concentration of C∞/k≈ 233 g kg−1. Lower values of k
would imply a concentration exceeding the eutectic concentration
and are therefore not considered. The wavelengths relevant for
MST are indicated – the short-wave branch on the left related
to surface free energy (λΓ), the red curve giving the wavelength
of maximum growth rate (λmax), the long-wave branch on the
right controlled by diffusion (λmax). The wavelength at the
onset of instability, (λmi) is given approximately in the middle
of the bottom of the balloon. Here all branches bifurcate. They
merge again at the top of the balloon at the absolute stability
limit indicating that at velocities larger than ≈ 102 cm s−1 the
interface is stable.

It is seen that the heat flux can affect the stability, yet that for
these settings it would be of little relevance for sea-ice growth.
Only the slowest growing ice falls out of the stability balloon
for high heat flux. In general, the heat flux is seen to have no effect
on the wavelength selection when the interface is unstable. It just
moves the onset of stability to higher growth velocities. Another
message from the figure is that the observations are one to two
orders of magnitude away from the short and long-wave branches.
Does this mean that the plate spacing cannot be predicted?

Marginal stability – the role of k

In Figure 6 the neutral stability balloon is plotted in a different
way. Now a very small oceanic heat flux is fixed, yet k is treated
as the variable parameter. The larger k, the better the agreement
between observations and theory becomes. The essence of this fig-
ure is that it supports the marginal stability hypothesis of k being
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maximised, which means that constitutional supercooling is a
minimum. Indeed when using k≈ 0.96 close to the estimate
obtained with Eqn (34) the stability balloon shrinks further and
the agreement between theory and observations starts becoming
reasonable.

Diffusive solution – λmi

Figure 6 has demonstrated the importance of marginal stability in
the problem, corresponding to the maximum k and minimum
ΔC. We now obtain the corresponding solution for λmi in two
ways. First we solve Eqn (14) numerically for k, finding the transi-
tion to positive perturbation growth rates by iteration. Second, we
use the approximation Eqn (31) with k obtained via (34). Both solu-
tions are calculated for the discussed range in temperature gradients
at the interface, by employing Eqn (41) for three values of wK. The
range of these purely diffusive solutions is shown in Figure 7. It is
seen that the numerical prediction (dashed curve) and the approxi-
mation (red dashed-dotted curve) do not differ much, the differ-
ence being largest at high velocities.

Note that the dashed curves correspond to the standard case
based on Eqn (37), and a temperature gradient 0.74 weaker
than the maximum. The solution with wK = 1 corresponds to a
temperature gradient at the interface being a factor of 5 smaller,
to be discussed further below. Above a growth velocity of
≈20 cm d−1 there is, given the data scatter and range in predic-
tions, reasonable agreement between the predicted λmi and the
observed plate spacing. Most observations fall between the pre-
dicted temperature gradient bounds. It seems that the observa-
tions are closer to the theoretical upper bound corresponding to
the minimum temperature gradient. It is also evident that at
lower growth velocities the diffusion theory predicts wavelengths
that are far too large when compared to observed plate spacings.

Solution with convection

To account for convection we solve Eqn (34) for k and ΔC, evalu-
ate the critical growth velocity Vc for the onset of convection
through Eqn (50), and compute the salt flux via Eqn (45). The
critical wavelength λmi is then obtained from the approximate
Eqn (52). The plate spacing predicted in this way is shown in
Fig. 8. The shading now indicates the bounds from the minimum

and maximum temperature gradients corresponding to 0 <wk < 1
and from the assumed uncertainty in the parameterisation of the
Nusselt number 0.13 < cnu < 0.17.

Note that Fig. 8 shows, for clarity, only the results based on the
approximate Eqn (52), not the full numerical solution shown in
Fig. 7. However, for growth velocities below 10 cm d−1 these
only differ by a few percent (compare the dashed black and red
dash-dotted curve in Fig. 7), and the approximation is thus con-
sidered as sufficiently accurate for the regime of natural sea ice
and marine ice growth.

The standard case, corresponding to our most likely tempera-
ture gradient reduction as well as cnu = 0.15, is shown as a dashed
curve. At high growth velocity this dashed curve corresponds to
the diffusive approximation shown as a red dashed curve in
Figure 7. As mentioned, in this regime the difference between
the approximation and the full numerical solution is largest.
The observations of plate spacings fall slightly above the approxi-
mated upper limits of λmi (given by the shading).

Figure 8 demonstrates, most importantly, that the MST predic-
tions based on convection also agree with plate spacing observa-
tions at lower growth velocities. They match the observations
down to the ice shelf data with a growth velocity near 2 cm a−1.
Note that the different temperature gradient scenarios, given by
the parameterisation of Keff near the interface (Eqn (41)) imply
different k and ΔC, and thus different critical velocities for the
onset of convection. While the value is Vc≈ 14.9 cm d−1 for the
standard settings, the maximum and minimum temperature gra-
dients imply 16.1 and 10.4 cm d−1. These transitions are reflected
by a change in the slope in the log–log plot that corresponds to a
shift from λmi∼ V−2/3 to ∼ V−1/3. This slope change behaviour is
crucial for the agreement of predictions and observations.

The shaded bounds of the predictions in Figure 8 show an inter-
esting behaviour, in that the range of predictions first increases once
the critical velocity for convection onset is reached, and then
decreases reaching a smaller range at low growth velocities. The
explanation is that, once convection sets in, the predicted range is
roughly created by the sum of uncertainties in the temperature gra-
dient and the convective parameterisation. With increasing convec-
tion the solute transport at the interface increases, implying a lower
knu and an increase of the solid fraction ϕnu at the root of cell tips
(Eqn (47)). With larger near-tip solid fraction also the temperature
gradient has to increase (for the same V) and all solutions approach

Fig. 5. Stability bounds based on MST for different heat flux from the liquid/ocean, shown together with plate spacing observations from sources in Table 1 and
Figure 2. The extreme branches for lG and λD are indicated, the wavelength of maximum growth rate λmax as a red dotted curve. The onset of stability (for increas-
ing growth velocity) takes place at λmi at the bottom of the balloons where the stability branches bifurcate.
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the maximum temperature gradient condition wK = 0. The uncer-
tainty that remains at low growth velocities is the uncertainty in
the convection parameterisation, which has a weaker effect than
the temperature gradient at the interface.

Discussion

The main purpose of the current study is the theoretical predic-
tion of the plate spacing over the whole range of growth rates,
based on MST from Mullins and Sekerka (1964). MST is suitable
for predicting the onset of instabilities on a planar freezing inter-
face and its breakdown into a cellular interface. For a given freez-
ing rate MST predicts that instabilities will fall between a short
wave branch governed by surface energy and a long wave branch
governed by diffusion, and that the dependence on growth vel-
ocity is λD∼ V−1 for the latter branch and lG 	 V−1/2 for the for-
mer. Wettlaufer (1992) presented theoretical calculations based
on MST and showed that observed sea-ice plate spacings indeed
fall between these bounds. However, due to the large range
spanned by the bounds (see Fig. 5) he concluded that plate spa-
cings are not predictable by linear theory and that the problem
likely requires a more complex non-linear treatment.

The current study follows and extends the proposal by Maus
(2007b). When the onset and margin of instability is considered,
MST theory implies the dependence λmi∼V−2/3 (Coriell and others,
1985). The physical background for this scaling, as well as other
length scales during freezing and directional solidification, has
been summarised by Trivedi and Kurz (1994). At the onset of
instability, there are three length scales of equal importance for pre-
dicting the critical wavelength. Combining the notation from
Trivedi and Kurz (1994) with ours these are a thermal length,
based on temperature gradient and supercooling near the cell tips
(lT∼ ΔT/Geff), the solute diffusion length (lD∼D/V) and the capil-
lary length (lG 	 G/DT). The critical wavelength at marginal stabil-
ity scales as cubic root of the product of these three length scales
which means lmi 	 (lTlDlG)

1/3. As ΔT cancels in the product
lGlT, this leads to the proportionality λmi∼ (ΓD/Geff V ) 1/3. When
the ice growth velocity mainly depends on the temperature gradient
in the ice, Geff∼V, and as Γ is velocity independent, this implies
λmi∼V−2/3. Indeed, this is the dependence found in Figure 7.

When applying this marginal stability principle, one obtains a
wavelength or plate spacing that follows from a state of minimum
constitutional supercooling. This is achieved in MST by treating
the interfacial solute distribution coefficient k as a free parameter

Fig. 6. Stability bounds based on MST for different values of k, the solute distribution coefficient at the ice–water interface. The outer stability branches for lG
and λD (refer to Fig. 5) move towards each other and the whole stability balloon shrinks while k increases. The stage when the balloon shrinks to a single point
corresponds to some maximum k and the marginal stability wavelength λmi.

Fig. 7. Marginal stability wavelength λmi predicted by
MST with plate spacing observations from sources in
Table 1 and Figure 2. The shading shows the range of
the purely diffusive numerical model prediction based
on the interfacial temperature gradients, where the
upper bound corresponds to the minimum temperature
gradient (wK = 1 in Eqn (41)). The dashed curve is the
proposed standard solution (temperature gradient 0.74
weaker than the maximum). The red dash-dotted
curve is the approximation (31).
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of a cellular interface, not as a fixed value. For the standard simu-
lations for sea water this leads to

k ≈ 0.97, DC ≈ 1.1 g kg−1, DT ≈ −0.07K (53)
The agreement of MST with observations of the plate spacing
increases considerably when the marginal stability criterion is
applied, as shown in Figure 7. However, there remains a mismatch
between model and observations that becomes larger with
decreasing growth velocity. Hence, another fundamental change
in the theory is needed – the account of convection.

The influence of convection was formulated with a Rayleigh
number-based framework assuming that convection is controlled
by the interface salinity excess related to constitutional supercool-
ing. Basically the approach formulates a coupling of the margin-
ally stable k and ΔC to the 4/3-flux law for convection, Eqn (45).
This allows to compute the critical growth velocity at the onset of
convection (Vc≈ 15 cm d−1) and the enhancement of solute
fluxes below this velocity. The fundamental change to the diffu-
sive solution is now that, below Vc for onset of convection, the
solutal diffusion length, or boundary layer thickness, becomes
constant (lD≈D/Vc). From this it emerges a relationship where
the critical wavelength is λmi∼ V−1/3.

Validations of MST parameters

The present approach predicts the marginal stability wavelength
by prescribing how an interface with an effective k interacts
with solutal and thermal boundary layers and their respective
salt and heat transport. The present predictions are consistent
with the compiled dataset of plate spacings. While there is consid-
erable scatter in the observations of a0, in particular near a sea-ice
growth velocity of 1 cm d−1, the range of plausible model parame-
terisations leads to a comparable range in predictions a0. To val-
idate and constrain the present model, it will now be discussed
where the approximations made in the model are confirmed by
other than plate spacing data (of, e.g. the temperature gradient),
and where there is potential and need for observations. Also the
observations of a0 are discussed in more detail to answer the ques-
tion if their variability in plate spacing can be related to physically
justified changes in model parameterisations. The most relevant
properties and processes in the theory are the solid fraction and
ΔC at the interface, the near interface temperature gradient in
the ice, and the parameterisation of solutal convection.

Interfacial k and ΔC
Direct observations of the concentration field near the freezing
interface are difficult to obtain. The only study known to the
author is by Terwilliger and Dizio (1970), who used micro-
conductance probes to monitor the solutal boundary layer during
upward freezing of NaCl solutions. From the observed concentra-
tion profiles the authors obtained k at several solution salinities
from 0.29 to 5.8 g kg−1, and over the freezing velocity range 4
to 40 × 10−4 cm s−1. Solving the same equations for diffusion as
in MST, the authors found k to depend on C∞, while ΔC across
the boundary layer was largely independent of the latter, in agree-
ment with Eqns (35) and (36). The slightly lower k (and larger
ΔC≈ 2) compared to MST predictions can be explained by high
liquid temperature gradients in the experiments (see Fig. 9.1 in
Maus, 2007a). Another set of observations suitable to validate
the present approach has been published for the upward freezing
of aqueous KCl solutions by Kirgintsev and Shavinskii (1969).
These authors performed experiments for a larger concentration
range at a growth velocity of V = 4.7 × 10−3 cm s−1. k was evalu-
ated based on sectioning completely frozen samples. Results
from this indirect approach to evaluate k are more scattered,
yet also agree fairly well with the present predictions (see
Fig. 9.2 in Maus, 2007a).

Looking at the concentration dependence of the plate spacing
one may insert the approximation (35) into Eqn (31) to obtain

lmi / Ki + Kb

LvD
− 1

mC1

( )1/3

(54)

With Ki + Kb/(LvD)≈ 15K−1 and mC∞ being approximately the
freezing point, one finds only a few percent change above water
salinities of 10 g kg−1, yet some influence at dilute concentrations.
This behaviour is consistent with the limited observations avail-
able (Lofgren and Weeks, 1969; Maus, 2007c).

Solutal convection
Consider now the conditions for the onset of convection as derived
from the approach above. Once the critical growth velocity of Vc≈
15 cm d−1 is reached (Eqn (50)), the diffusive boundary layer starts
to convect and emit plumes. Its thickness at this critical condition
is approximately given as Hc =D/Vc≈ 0.4 mm. The time to reach
this critical thickness according to Eqn (49) is tc≈ 4.5min and
may be associated with the frequency of intermittent convection.
In addition to this time scale Foster (1968) also proposed a

Fig. 8. Marginal stability wavelength λmi predicted by
MST with the parameterisation of solutal convection in
the approximate Eqn (31). The shading shows the
range of solutions based on bounds for convection
and the interfacial temperature gradient: The upper
bound represents lower bounds for the temperature gra-
dient (corresponding to wK = 1 in Eqn (41) and convec-
tion parameterisation cnu = 0.13, while the lower bound
of the shading represents upper bounds of temperature
gradient and convection strength (wK = 0 and cnu = 0.17).
The dashed curve is for the standard settings (wK from
Eqn (42) and cnu = 0.15). All data points as in Fig. (7).
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characteristic wavelength Lc of the convection as

Lc = 51
Dn

bgDC

( )1/3

. (55)

For our standard case the value obtained for Lc is 2.7 mm. Are there
observations available to support these numbers? Foster (1969a)
performed sea-water freezing experiments and observed the wave-
length of convection for different growth conditions by means of
optical Schlieren imaging. He observed a convection cell spacing
of 2--3 mm, consistent with the theoretical prediction. Critical
times were not well defined in his study, due to the difficulty to
know exactly the onset of freezing in the presence of supercooling.
In a more recent study by Middleton and others (2016) also
Schlieren optical photography was used to observe convection pat-
terns in a thin growth cell. In addition to streamers emerging
from the ice’s interior, the authors report on small convection
cells emerging from the ice–water interface, having a wavelength
of the order of 5mm. The latter value is larger than predicted, yet
the cell was very thin (3mm) which may affect the convection
behaviour. The observations in both studies are consistent with
the theory proposed here. In both studies the convections cells
remained at rather fixed positions.

No observations of the thin boundary layer Hc mm at convec-
tion onset have been reported so far. A closer look at the supple-
mentary material (Video 2) from Middleton and others (2016)
indicates a bright thin interfacial layer that appears to be of the
order of 0.5 mm. However, observations of this boundary layer
remain a challenge. While Middleton and others (2016) reported
that the layer associated with the influence of the plumes
remained 1–2 cm in thickness during all experiments, Foster
(1969a) traced the plumes vertically through the 25 cm deep tank.

With regards to the critical Rayleigh number for onset of con-
vection a range of 100 < Rasc < 500 has been proposed as most reli-
able based on experimental studies (Mahler and Schlechter, 1970;
Onat and Grigull, 1970; Gresho and Sani, 1971). Changing Rasc
in this range will affect the results for Lc, tc and Hc by some 20–
30%. The few observations presently available thus are insufficient
to find an optimum parameterisation of convection.

With regards to the critical Rac several authors have studies the
coupled problem of the onset of convection and morphological
instabilities at a planar interface. It was found that in a steady
state approximation (as used in MST), convective motion sets
in at rather low Rayleigh numbers when based on D/V (Hurle
and others, 1982; Caroli and others, 1985). For a solute distribu-
tion coefficient of k close to unity, convective instabilities will start
at Rasc≈ 12. At first glance this seems to be a large discrepancy to
values mentioned above and applied in this study. A plausible
explanation has been given by Foster (1969b), who observed
that critical times theoretically predicted by the diffusive penetra-
tion depth tend to be too short by a factor of 4. This implies
through Eqns (49) and (43) an eight times smaller critical Rasc.
As an explanation he proposed that the time disturbances need
to develop is long compared to the time for growth of the bound-
ary layer. Hence, while the first convective motion may be
initiated at Rasc≈ 12, manifest boundary layer convection requires
larger Ra, and the scaling laws for Nu noted above will remain
largely unchanged. Note that these considerations have been
taken by Foster (1968) into account when formulating the semi-
empirical scaling Eqns (55) and (49).

We can finally note that the critical Vc for Rasc≈ 12 would be
≈43 cm d−1. The only downward freezing experiments, with
potential convection, at such high growth rates are those from
Lofgren and Weeks (1969). A look at Figure 8 indicates that exist-
ing plate spacing observations are insufficient to evaluate the

location of the slope change. However the overall effect of an earl-
ier (in terms of higher V) convective motion on the plate spacing
is probably small, as it is the Nusselt number parameterisation
that is more relevant. Also, sea ice will very seldom grow with
that high growth velocities.

Near-interface temperature gradient
We have introduced Keff (Eqn (41)) as an enhanced modified
thermal conductivity to account for the fact that dendrite or
cell growth at the interface can be enhanced by heat flow through
the liquid between plates. For the same growth velocity this
implies a smaller temperature gradient at the interface. The for-
mulation gives Keff > Ki and notably differs from the application
to estimate an effective bulk thermal conductivity, based on
brine and ice phases. The latter is always smaller than the ice con-
ductivity Ki. In the present approach the growth velocity is pre-
scribed and the focus is on the modification of the temperature
gradient near the interface.

The three cases considered are (i) no growth enhancement at
all, (ii) a plausible geometrical model (Eqn (37)) and (iii) the min-
imum temperature gradient where all heat drawn through the
liquid brine advances the growth of ice cells. For the present
standard model setting with C∞ = 35 and k≈ 0.97 the corre-
sponding values of Ki/Keff are 1, 0.74 and 0.20. Hence, while a
plausible reduction of the interfacial temperature gradient should
be 0.74, a maximum reduction of 0.2 is possible.

Detailed observations of the temperature gradient near the
sea–ice interface have not been presented so far. However, when
looking at temperature profiles documented for young ice growth,
the near interface temperature gradients are generally reduced
(Cox and Weeks, 1975; Niedrauer and Martin, 1979; Wettlaufer
and others, 1997). With respect to the bulk ice temperature gra-
dient this reduction is typically in the range 0.6–to 0.8. Hence,
the proposed reduction in the near-interface temperature gradient
is consistent with observations.

When convective solute transport comes into play, the tem-
perature gradient bounds are changed. In the present formulation
we use two solid fraction estimates. ϕrt is controlled by diffusion in
a tiny layer representing the tip geometry, while ϕnu relates to
enhanced solute flux by convection and the lateral freezing of
cells. Increased solute transport implies a lower knu and an
increase of ϕnu at the root of cell tips (Eqn (47)). This in turn
increases the near-interface temperature gradient (for the same
V). Finally, at low enough V and large ϕnu, the maximum tem-
perature gradient condition is approached. In this regime the pre-
dicted range for the plate spacings is related to the uncertainty in
convective solute transport.

How realistic is the minimum temperature gradient approxi-
mation? We consider two settings where it might be rather rele-
vant. The first relates to ice growth in finite sample containers.
Then the heat flow drawn through the brine fraction is taken
from a finite volume that can become supercooled. This super-
cooling applies to the liquid as a whole, it is not constitutional.
It will enhance the growth of ice cells and dendrites into the
lab container, yet not affect the wavelength selection in the solutal
boundary layer. A look at the diffusive growth regime in Figure 8a
shows that most observations above 20 cm d−1 are close to the
upper limit in the plate spacing, the minimum temperature gradi-
ent limit. All these data are obtained in laboratory studies, which
are most prone to this effect. The second proposed mechanism
relates to crystal orientation. In the standard case heat conduction
aligned with brine layers and ice columns heat conduction takes
place in parallel. The ice is not advancing due to heat transport
in the brine. However, this heat transport pattern will be changed
when the dendrites are inclined. Now the heat transport near the
cells tips approaches a serial conduction model which, for high
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liquid fractions gives similar increase in Keff/Ki as for our min-
imum temperature gradient bound.

For an exact solution of the heat and solute flow near the cell
tips one would need to know the tip geometry, and employ rela-
tionships between the local supercooling and the tip radius, while
the present approach is using global values for interface.
Observations indicate a complex 3-D pattern for fresh ice dendrite
tips (Furukawa and Shimada, 1993), and similar observations
would be needed for sea ice. While models to predict plate spa-
cings based on tip radius geometry have been suggested for
other systems, these seem not to perform too well for sea ice
(Maus, 2007c).

Processes affecting the plate spacing

To evaluate the processes versus observations we now focus on
the growth velocity regime around 0.5–2 cm d−1, for which the
data and model predictions are shown in Figure 9. This appears
to be the regime with largest variability in observed late spa-
cings. Due to the discussion in the last paragraph we focus on
two candidate processes to affect the plate spacing – the role
of crystal orientation and choice of model for the solute trans-
port and Nusselt number. These are discussed based on
Figure 9, where observed plate spacings are shown along with
model predictions. The light grey shading highlights the range
due to the maximum and minimum interface temperature gra-
dient, while the darker shading the effect of convection
parameterisation.

Disregarding two extreme values from Nakawo and Sinha
(1984), one finds an overall variability in the plate spacing of
+20%. Statistics of plate spacing measurements have been pro-
vided by Weeks and Hamilton (1962) and Nakawo and Sinha
(1984). The standard deviation of the plate spacing obtained
from thin sections was typically 20--30% of the mean values.
This suggests that much of the variability in Figure 9 may be related
to the fact that always a certain range of plate spacing is observed.

Crystal alignment
Crystal alignment has been documented with plate spacing obser-
vations by Nakawo and Sinha (1984) and Sinha and Zhan (1996).
In the latter study the whole ice core showed an alignment of the
c-axis with the direction of the coast, while in the former only
bottom samples were affected. In Figure 9a all data points with
crystal alignment are highlighted with blue crosses. Overall, the
plate spacings for samples with crystal alignment appear to lie
≈10% above the average of the data. Nakawo and Sinha (1984)
investigated the dependence of plate spacing on crystal alignment
in some more detail, comparing the a0 values for crystals within a
thin section (their Fig. 8). For five of seven thin sections analysed
they found that plate spacings of crystals aligned with the coast-
line were of 5–20% larger than those with little alignment.
Jeffries and others (1993) investigated a large amount of thin sec-
tions and found slightly larger plate spacings for samples with
lower standard deviation in the crystal orientation. Although
not being statistically significant, also these results indicated an
increase of the plate spacing with crystal alignment.

Crystal alignment along the coastline or current direction has
been discussed in a couple of studies (Weeks and Gow, 1978;
Langhorne and Robinson, 1986). A possible explanation for larger
plate spacings can be based on theoretical and experimental stud-
ies (Langhorne and Robinson, 1986; Forth and Wheeler, 1992;
Huang and others, 1993). These authors showed that the inter-
action of a shear flow with the solute rejected from growing crys-
tals implies a redistribution of solute that creates the largest
supercooling on the upstream side of crystals/plate. As a conse-
quence the growing crystals turn upstream. Such inclinement

would imply a more effective vertical heat conduction from
brine to the ice cell tips, and yield a reduced temperature gradient,
corresponding to higher plate spacing predictions. As the same
time also fluid flow would enhance the heat transfer between
supercooled brine and the ice crystals, leading to the same effect.
Last but not least, the fluid flow will also decrease ΔC in the tip
layer which implies an increase in the plate spacing due to a
decrease in the salinity gradient. Models and observational studies
for other systems than sea water support both the effect of fluid
flow (Forth and Wheeler, 1992; Huang and others, 1993) and
due to the temperature field (Xing and others, 2015).

Presence of platelet ice
Many of the plate spacing observations from Jeffries and others
(1993) for McMurdo Sound are for congelation ice that grows
in the interstitials of platelets. It has been shown that this implies
higher ice growth rates (Smith and others, 2012). One may sus-
pect that this happened for the ice studied by Jeffries and others
(1993). Below 1.7 m thickness all cores contain platelets (Fig. 14 of
that paper) and the ice growth seems to speed up slightly (Fig. 3 of
that paper). While the overall data did not indicate a significant
difference between plate spacings of congelation ice and intersti-
tial congelation ice (Table 4 of that paper giving 0.71 ± 0.08
and 0.69 ±0.10 mm respectively), Figure 9 indicates the interesting
aspect that plate spacings were constant or slightly increasing with
the estimated growth velocity. This observation is consistent with
the present predictions when considering another interesting
observation from Smith and others (2012). These authors found
not only faster growth in the presence of platelet ice, but also a
larger ratio of growth velocity and temperature gradient in the
ice (their Fig. 11). In terms of the present theory this would cor-
respond to larger plate spacings at a given growth velocity. A shift
to the upper bound of predictions in Fig. 9 is indeed what is
observed. It is then worth a note that also the two data points
from Paige (1966) stem from field work in McMurdo Sound
and might have been influenced by the presence of platelet ice.
They also appear near the upper limit of plate spacing predictions
in Figure 9. While theoretical expectations and available data
regarding the presence of platelet ice appear consistent, an
alternative explanation for larger plate spacing could be the
suppression of solutal convection during freeze-front propaga-
tion into a sub-ice platelet layer. More research on this aspect is
needed.

Modelling of solutal convection
The dark shading in Figure 9 shows the bounds 0.13 < cnu < 0.17
in the 4/3-flux law for solutal convection. It is seen that, variation
of the convective parametrisation in this range only affects the
plate spacing prediction by+5%. However, two aspects of the tur-
bulent convection parameterisation are further considered as
uncertain. While the Nusselt number scaling based on Eqn (44)
and the 4/3-flux law, Eqn (45) is often used, its general applicabil-
ity is in question (e.g. Kelley, 1990). For example, with Ras based
on D/V, our model predicts Rayleigh numbers <107 when consid-
ering ice growth rates V > 0.5 cm d−1. For such a regime a differ-
ent flux law may be more reasonable. In addition, one might have
to consider a Prandtl or Schmidt number dependence
(Grossmann and Lohse, 2000).

To show the potential influence of such a modification we
adopted slightly different flux laws obtained in two recent studies
of the Nusselt–Rayleigh number relationship (Silano and others,
2010; Pandey and others, 2014). Both scaling laws have in com-
mon that they predict a larger Nusselt number at moderate
Rayleigh numbers, and thereby lead to a prediction of smaller
plate spacings, as shown by the dashed and dash-dotted curves
in Figure 9.
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Last but not least, there might be an influence of convection
emerging from the interior of the ice on the boundary layer con-
vection. In the experiments shown by Middleton and others
(2016) both processes are evident but operating on different
length and time scales. While theoretical modelling based on
mushy layer theory may be applied to predict the onset of both
convection modes (Worster and Wettlaufer, 1997), more theoret-
ical research based on real microstructure is needed.

Dependence on ageing
The plate spacing is a microstructure scale that is set at the freez-
ing interface. Based on the data of very thick ice and its consist-
ency with the predictions, it seems likely that the plate spacing
under certain conditions is retained in old ice. However, it will
be less easy to measure when the ice has become less saline and
plate boundaries are less well defined. One may suspect that
slow diffusion processes may first remove the smallest sub-grains,
and that this aspect may introduce a bias towards overestimating
the plate spacing for older ice. However, Shokr and Sinha (2015)
have presented observations of the structure for different ice age
and imaging conditions, showing that many of the original sub-
grain boundaries are retained, while discrimination may require
different techniques. Based on the limited number of studies it
seems likely that (i) during the growth season plate spacings are
well retained, (ii) for ice that has warmed considerably, even
above its freezing temperature, much (perhaps not all) of the sig-
nature will be lost and (iii) the transition between these regimes
will depend on thermal history.

In Figure 9 the data points from the bottom sections of ice
cores are marked by red dots. At first glance these appear slightly
lower than average. However, when considering all the points
marked as blue to be influenced by crystal alignment, then the
bottom observations appear as less exceptional for the remaining
data points. One finally should note that bottom growth condi-
tions often relate to decreasing ice growth at the end of the season.
Considering that plate spacings need a certain distance or time to
adjust to the new growth velocity, bottom values are likely to be
related to somewhat higher than actual growth velocities. With

regards to these processes, and the observational uncertainties,
there is no evidence of significantly larger plate spacings at the
bottom, at least for the present data sources considered.

Summary and conclusions

The plate spacing is probably the most fundamental microstructure
scale of sea ice and has been measured by many investigators.
However, the dependence of the plate spacing on growth velocity
has remained an open question. A few investigators have attempted
to derive this dependence based on experimental data, yet have
come to rather different results (Assur and Weeks, 1963; Lofgren
and Weeks, 1969; Nakawo and Sinha, 1984; Maus, 2007b). To
address this problem in detail, this study presented compiled obser-
vations from published studies, and compared these to an approach
to predict the plate spacing based on MST.

As summarised in Figure 10 the theory is suitable to predict the
plate spacing a0 of sea ice and marine ice over 5 orders of magni-
tude in the growth velocity. The model is based on a continuum
approach in which all processes and parameters at a cellular inter-
face are formulated in terms of the variable k, an effective solute dis-
tribution coefficient. This allows a broad investigation of the
model’s response to changing k and evaluation of its influence
through parameterisations of heat and convective solute transport.
The transport bounds, set by plausible parameter ranges, then yield
lower and upper bounds for a0. Based on the model results, largely
supported by observations, one can distinguish three regimes:

(i) A high velocity regime (V > 20 cm d−1) where a0∝V−2/3.
Solute diffusion is the dominant process that controls the
plate spacing. Observations fall close to the upper bound of
the present model. This is consistent with the fact that the
data in this regime stem from laboratory studies and freezing
of aqueous NaCl saline solutions in finite containers.

(ii) An intermediate velocity regime (0.1 <V < 20 cm d−1) where
a0∝V−1/3 is approached. This is the growth regime most rele-
vant for natural sea ice. Diffusion and solutal convection at
moderate Rayleigh numbers control the plate spacing. The

Fig. 9. Model predictions from MST with solutal convection implemented. Data points for the plate spacing are shown with the same symbols as in Figure 8. The
light shading shows the range of the predictions related to bounds for interfacial temperature gradient, while the dark shading refers to the effect of the 4/3 flux
law convection parameterisation. The green curves emerge from assuming convection-based Nusselt number relationships Nu = 0.313 Ra0.29 and Nu = 0.28 Ra0.309

after Pandey and others (2014) and Silano and others (2010) respectively. Measurements of samples with predominating c-axis orientation along the coastline are
marked by blue ×; bottom samples are denoted with red dots.
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latter is expected to vary between upper and lower model
bounds related to convection, fluid flow, crystal alignment
and some unaccounted microscopic details of the ice–water
interface.

(iii) A slow growth regime (V < 0.1 cm d−1) where a0∝ V−1/3.
This regime is relevant for marine ice shelves. The plate spa-
cing is controlled by diffusion and solutal convection at high
Rayleigh numbers. High solid fractions at the interface imply
more constrained model predictions than in (ii). However, so
far only a few observations exist.

The model results can be presented in the form of log–log least
square fits of a0 versus V. A fit to the diffusive and convective
model solutions gave exponents only slightly different from
−2/3 and −1/3 respectively. Fixing the exponents to these values,
the following best fits to the standard model were obtained:

a0 = 1.89V−2/3, V . 15 cmd−1, diffusion (56)

= 0.72V−1/3, V , 15˜cm d−1, convection (57)

where a0 is in mm and V in cm d−1. Note that these approxima-
tions match at a growth velocity of 18.1 cm d−1, which is slightly
different from the value deduced for Vc at the onset of convection.

The parameterisations of heat and solute transport, leading to
the present plate spacing predictions, are based on a simplified
geometry of a cellular interface. More studies on the interface
morphology, and associated heat and solute transport are needed
for fine-tuning the model parameters, in particular at low growth
velocities. As the standard deviations in the measurements of
plate spacing were typically 20–30%, well controlled laboratory
experiments followed by 3-D imaging of the interface, are one
path to improvement. It is also likely that unpublished and pub-
lished field datasets are already available for revision and reanaly-
sis to be compared with the present theory. In particular for the

low growth rates of ice shelves there is a need for more observa-
tions. If the present theory can be confirmed, this would open
new possibilities to trace growth rates based on microstructure,
both for marine ice shelves and sea ice.

Another path is detailed numerical simulations of crystal
growth into sea water. A potential method to make progress
may be the phase-field method (e.g. Steinbach, 2013) for which
some proof of concept studies for sea ice exist (Berti and others,
2013; Moravetz and others, 2017). Progress may also achieved by
computationally less expensive mesoscopic crystal growth models
that require certain assumptions about the crystal growth seeds
and morphology (e.g. Wongpan and others, 2015). While such
studies will likely lead to improvements in predictions, the present
model is a fair first step towards fundamental modelling of sea-ice
microstructure and its physical properties. An important applica-
tion, first proposed by Tsurikov (1965), is to use the plate spacing
in a structural model of sea-ice salinity entrapment and evolution.
The author showed that a simplified approach led to promising
results for the prediction of ice salinity (Maus, 2008). Concise sal-
inity prediction will depend not only on the plate spacing, but also
on internal convection and microstructure evolution within the
brine layers between the lamellae (e.g. Assur and Weeks, 1963),
suggesting the need for 3-D modelling and observations.
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Appendix

Model properties of aqueous NaCl solution at a water salinity of Sb = 35 g/kg
used in this study adopted from (Maus, 2007a):

Freezing point, Tf =−2.105°C
Liquidus slope, m = dTf/dSb =−0.0619 K‰−1

Pure ice density, ρi = 916.97 kg m−3

Brine density, ρb = 1027.1 kg m−3

Thermal conductivity of brine, Kb = 0.555Wm−1 K−1

Thermal conductivity of ice, Ki = 2.167Wm−1 K−1

Diffusion coefficient NaCl in water, D = 6.16 × 10−10 m2 s−1

Kinematic viscosity of brine, ν = 1.93 × 10−6 m2 s−1

Latent heat of fusion, Lv = 3.031 × 108 J m3

Ice–water interfacial free energy γsl = 0.0299 J m2

Gibbs–Thomson parameter, Γ = (Tf + 273.15)γsl/Lv = 2.674 × 10−8 Km
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