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Abstract. For large real positive values of the parameter k asymptotic representations of
integrals of the form

f * exp {kg(u)}f(u)du,
J a

where/and g are analytic functions, can be obtained by using methods such as steepest descents.
Here methods are considered for obtaining estimates, for fixed values of &, of the minimum errors
achievable when such asymptotic representations are appropriately curtailed. A priori criteria
are derived for the optimum point at which to curtail such asymptotic representations. Both the
curtailment points and the minimum errors are related to the distance between certain marked
points on the path of integration and the singular points of /(«) and the zeros of g(u). The
analysis permits the determination of errors whose presence is not indicated by the numerical
behaviour of the asymptotic representations. It is also capable of extension to complex parameters
k and to the derivation of asymptotic representations for the most significant errors. It can
therefore be used to extend the domain of k for which asymptotic representations are available.

1. Introduction

There are various techniques available for obtaining asymptotic representa-
tions of integrals whose integrands involve a complex exponential function
containing a large parameter. However, in many cases, error estimates for these
asymptotic representations are not available even when it can be established that
the series part is asymptotic in the sense of Poincare. Problems can arise from
physical contexts in which there is considerable interest in the mathematical nature
and numerical magnitude of the error terms involved in the use of asymptotic
representation of such integrals. An example of this arose in some recent work of
the author [1 ] on the reflection of short waves by a variable medium. In that
problem the reflected wave, the determination of amplitude of which was the
primary aim of the investigation, occurs only in the transcendentally small error
term when the integrals involved are approximated by standard means. Mathema-
tically this implies that the reflection coefficient is small in comparison with any
negative power of the large parameter involved in the limit as this parameter tends
to infinity. Practically one wishes to make use of the asymptotic representations
for finite, and often only moderately large, values of the parameter. In such cases

395

https://doi.org/10.1017/S1446788700009137 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009137
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the limit statement is not helpful. What is required is an estimate of the error for
a given large value of the parameter.

In a recent article Olver [2] has drawn attention to the serious errors which
may result when asymptotic representations are used to give numerical results.
The distressing feature of the example quoted by Olver is the lack of indication
from the numbers that the results are seriously in error. Thus the usual trust that
is placed in asymptotic series whose diminution rate is sufficiently good is not
always well-founded. This paper describes an initial attempt to investigate the
factors which control the error size and hence to determine the most significant
error which arises in the determination of certain classes of asymptotic representa-
tions for fixed values of the large parameter.

Here interest will be centred on integrals of the form
•b

exp[kg(uf\f(u)du,

where g and / are holomorphic functions in the whole complex plane save for
poles and branch lines and A: is a parameter, taken here to be real, large positive.
It would appear that analytic continuation arguments will permit extension of the
results to complex values of k but this adds excessive complication to the analysis
for a preliminary investigation. Such integrals are normally estimated by one of
the related methods of steepest descents or stationary phase which lead to standard
asymptotic representations. What is of concern here is the nature of the errors
of the asymptotic representations obtained in this way. There are far too many
cases to justify a general discussion of such integrals so that only a few particular
examples, hopefully chosen to be representative of the analysis likely to be re-
quired, are considered. Throughout emphasis is placed on methods for determining
the general form of the error terms and looking at types of analysis which are
likely to be required. No attempt has therefore been made to derive complete
answers for the examples under consideration once the problem has been reduced
to a form amenable to standard techniques. The present investigation does ap-
pear to provide a reasonable guide as to what would be involved in any complete
investigation of a specific example.

2. Reflected wave integral

The first example considered is

which is of the type which arises in the reflection of short waves from a variable
medium (Mahony [1]). It will be assumed that/(w) has no poles on, nor branch
lines cutting, the real axis which is the path of integration. The standard formal
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[3] Errors for asymptotic representations 397

asymptotic representation for this integral,

(2) F(x,k)~elkxf:(ilk)n+1fM(x),
B = 0

can be obtained from equation (1) by repeated integration by parts. Further,
any finite curtailment of this series can be shown to be a valid asymptotic representa-
tion in the sense of Poincare. However the infinite series can converge only if/ is
an entire function in the complex plane. For if £/(n)(x)A:~" be absolutely con-
vergent for large enough values of k, ^/(n)(x)z"/n! must also be convergent, by
the comparison test, since

limit \f(n\x)znln\\l\fin\x)k-n\ = limit |fcz|n/n! < 1
B-»oo n-»co

for all finite z. Thus, for the class of functions under consideration in this
paper, only a finite curtailment of the series in equation (2) can be used and
then the question of estimating the remainder arises for functions / which are
other than polynomials. The discussion which follows cannot be applied when
/ is free of finite singularities but has an essential singularity at infinity and what
is appropriate in this case is not generally clear to the author.

The curtailed version, including the remainder, of the asymptotic representa-
tion (2) is

(3) F(x, k) = eikxY(ilk)n+if(n\x)+(ilk)N re'
kttfN(u)du

n = 0 J x

and the question under consideration is that of estimation of the remainder
integral for values of N large enough to make inappropriate, any further integration
by parts. To do this for the general class of functions under consideration would
excessively complicate the analysis and more convenient and illuminating results
can be obtained from representations of each function / i n terms of its singular-
ities. It will be seen that the singularities of/control the errors in a quite simple
way.

As a first stage it will be assumed that / is holomorphic save for a finite
number of poles and the analysis will be extended later to cover the case where
/ has branch lines, and even an infinite number of poles, suitably arranged. Thus
in the first stage/can be replaced by the sum of its principal parts at each pole so
that

where both sums are finite. For this class of functions it suffices to consider the
representative integral

rX elk\u-u0T
m du.f

J x
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Also a suitable choice of the origin of x can be made so that 8&\ u0 = 0 so that
the behaviour of F(x, k) is readily deducible from that of

(4) I(x, k) = r(m) I e'kudul(u-li)m

J x

where X is real and non-zero. For this particular integral the result, corresponding
to equation (3), is

A T - 1

J(x k\ — —pikx V i

(5) )J ^>->
It does not seem appropriate to investigate the remainder integral in equation

(5) in terms of two independently large parameters N and k. An easier problem
arises if one makes an appropriate choice of N, in terms of k, so that only a one-
parameter estimate of the remainder has to be obtained. It should be remembered
that representations of the type being sought are not unique so that there is a
certain arbitrariness in the choice of procedure to be adopted. To the author it
seems natural to proceed with the integration by parts until the stage is reached
when its further application would lead to terms which are increasing in magnitude.
This is merely a heuristic attempt to achieve efficiency in the arrangement of the
representation but, since no approximation is involved, the result obtained would
not be invalidated if the efficiency criterion is illusory. Since the ratio of the mag-
nitudes of the successive terms in the series in equation (5) is (r + m)/{k\x — fa\},
the application of the efficiency arguments suggests choosing N such that

(6a) N+m = k{x2 +

where

(6b) 0 S <5 < 1.

For this choice of N the remainder term can be written as

(7)

RN(x) = r(N + m)(ik)-N re'
ku(u-

J X
/•oo

m)(ikyN exp {iku-(N + m) In {u-ki)}du
J x

where, if A is positive the branch line joins fa to joo and if A negative the branch
line joins fa to — IOO. This arrangement of the integrand has produced a new form
suitable for estimation by the method of steepest descents. There is a single saddle
point at

u-fa = ~i(N+m)/k ^ -J(JC2+A2)*
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which therefore lies on the imaginary axis in the lower half plane unless x = 0
and X is positive when it may be at the origin. Also all paths of steepest descent
from points on the real axis enter the upper half plane and eventually become
asymptotically parallel to the imaginary axis. When X is negative these paths can
be completed at infinity so as to reach real positive infinity without contribution
from the completing arc. When X is positive however this is true only for those
paths which reach imaginary infinity to the right of the branch line on the imaginary
axis, namely those which originate from values x which are non-negative. For
negative values of x the closure contribution to the remainder would involve
extensive calculations if performed directly. The answer may be obtained more
simply by noting that, for x < 0, the original integral in equation (4) can be written
as

f elkudul(u-Xi)m+ !
J — 00 J X

The first integral can be evaluated exactly by applying the Residue Theorem in
the upper half-plane and the result is a term smaller than and independent of any
obtained in the asymptotic series. What is required is an estimate of the error for
a given large value of the parameter. But in second integral the path of steepest
descent now reaches infinity in a region from which there will be no completion
contribution. If L is used to denote the path of steepest descent from x to positive
imaginary infinity then it follows that for x 2: 0 or x < 0, X < 0

RN(x) = r(N + m)(ikyN \ exp {iku-(N + m) In (u-Xi)}du
JL

whilst for X > 0, x < 0

RN(x) = 2ni{ik)m-le-kk + r{N + m)(ikyN

x exp {iku— (JV + m)ln (u — Xi)}du.
JL

When the contribution from the path of steepest descent is to be estimated,
two cases must be recognized. The integral is dominated in all cases by the con-
tribution from near the terminal point x but two cases arise according to whether
this terminal is or is not near the saddle point. An examination of the Taylor series
expansion of {iku — (N+m) In (u — Xi)} about u — x reveals that the linear terms
will predominate unless X is positive and N~1x~2 is not small. Thus when X is
positive the case when [JC| is 0(N~i) needs special consideration. In both cases
there is no particular difficulty, other than the rather laborious nature of the cal-
culations, preventing a number of terms in the asymptotic series for RN from
being obtained. For the present investigation no attempt will be made to go
beyond the dominant terms which may be shown to be:
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for X < 0 all x, or X > 0 x » N~i

RN ~ r(N + m)(ik)-N(x-Xi)-^+m)ek

for A > 0, - J C > JV~*

and for X > 0, x =

RN(x) ~ (2w)*i(ife)"-1e-" f"

which is seen to join smoothly the results for x positive and negative. A careful
application of Watson's lemma would permit the demonstration of the asymptotic
nature of these results. Further it might be noted that there is nothing in principle
preventing the determination of a complete asymptotic series representation for
RN in each of the various cases. Moreover in principle the methods to be con-
sidered in later sections could be applied to derive the transcendentally small
errors involved in replacing RN by its asymptotic representation.

Here however such calculations will not be carried out but rather the results
obtained above will be examined for their implications for the more general
asymptotic representation in equation (3). Thus corresponding to each pole of
/(«), say at a+ib, there will be a normal asymptotic series which should be
curtailed at a value of N approximately equal to fc{(x—a)2+fc2}* thereafter the
remainder is more accurately represented, not by a continuation of the series, but
by the form of a product of exp—k{(x—a)2+b2}* times an asymptotic series in
inverse powers of A: or a slightly more complicated form near x = a. In addition
for certain relationships between the pole, the path and the terminal of integration
which are easily determined by inspection there will be error terms of order
km~l exp — k\b\ which can be determined exactly. In the light of these results it is
possible to state that the transcendentally small errors are of two types — (1)
those dependent on the distance of the terminal point from the pole and (2) those
dependent on the distance of closest approach of the path of integration to the
pole, provided that it lies to the left. Errors of type I are clearly indicated by the
fact that after a certain value of N the terms in the asymptotic series increase in
size so that they do not lead to hidden errors. Errors arising from the second
source however are not so obliging so that they must be clearly recognized
analytically and the asymptotic series adjusted accordingly. It is fortunate that the
errors of this type are the easiest to compute.

1 In writing this result use has been made of the Stirling approximation to the F function in
order to more clearly demonstrate the smoothness of the join of the results. In applying extensions
of this work for moderate values of k such expansions of the factorial function might be inap-
propriate.
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It should be further noted that when the asymptotic series of equation (2)
are being used for numerical purposes for moderate values of k there may be
considerable value in extracting from / t h e contributions from the poles nearest
to the terminal and treating these by extension of the methods described above.
Such processes may extend considerably the range of values of k over which
asymptotic representations can be used to obtain accurate approximations. More-
over the above results give a very quick and easy method to decide the range of k
over which the asymptotic series will give answers of a given accuracy. All that is
required is the location of the singularities of the function / and the calculation
of the error estimates from the dominant estimates obtained above.

The derivation of these results has been based on the assumption that / ha s
a finite number of poles and is without branch lines but these restrictions can be
removed at least under a variety of useful assumptions. Thus if/has in addition
a finite number of branch lines across which the discontinuity is finite2, then the
function/can be represented in the form

Lj t~U

where Lj denotes a branch line, (pj the discontinuity in / across this branch line.
This representation is valid provided that <pj satisfies a Holder condition on the
open line and appropriate conditions near the branch points. The integrals are
only to be interpreted for u not on Lj but this restriction is of no importance here
because the representation will be used only on contours which are completely
disjoint from the Lj. Thus, when considering the contribution from any branch
line to the integral in equation (1), it is valid to interchange the order of integration
so that the typical contribution from any one branch line is

(2m)-1 f tp
JLj

The inner integral is of the type considered above and so the appropriate result
from that theory can be inserted for the inner integral, the exact form depending
on the geometrical relationship between the singularity and the path of integration.
Whatever the relationship the inner integral will have a behaviour predominantly
described by exp —kh(t) where h(t) is a monotonic increasing function of the
distance of A from the branch point closest to the contour. The outer integral can
thus be evaluated by standard asymptotic methods. In particular the results will
be simplest when the branch line lies above and to the right of the point x.
For such cases the contribution from such branch-lines merely has to be added to
the formal result given by equation (2). In other cases there is some complication
arising from the fact that the curtailment value of TV will be a function off. Methods

2 This condition appears capable of relaxation in the light of subsequent analysis.
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for dealing with such examples will be discussed in section 4 through a particular
example.

It would appear plausible, but no proof is offered, that the assumption of a
finite number of poles and branch lines may be relaxed. Each pole or branch
point gives to a series dominated by either exp {— k[(x—a,)2 + b2 ]*} or exp — k\b,\
and it is therefore interesting to speculate that the formal answer will therefore
have meaning provided these terms can be arranged in a sequence of non-decreasing
distance without a finite limit point. It is tempting to regard such series as providing
suitable asymptotic representations of the integrals. If this is so then the results
obtained may well apply to entire functions like/?"1 tanh/?.

3. The simplest saddle point

Here the simplest case of the analysis of a saddle point will be investigated.
Integrals will be considered for which g(u) is — u2 and again only those functions
/, which can be decomposed into their singularities, will be investigated. Thus the
typical integral of interest, at least for the infinite range, is

(9) G(fc)= f" e-ku2dul(u-y)
J -co

where y is a complex constant whose imaginary part is non-zero. The large
parameter k will again be assumed real although this restriction is not necessary.
There are many modifications of standard methods available by which the
asymptotic representation of G(k) may be obtained and the following has been
chosen because, although it is far from the most direct method of obtaining the
asymptotic series, it does provide a very suitable form for the error. The above
integral can be expressed in terms of the error integral3, as follows.

G(fc)= f e-ku2dul(u-y)+ f"V*"2dul(u-y)
J -co JO

f
Jo

V*u2du/(u2-a2)

where a is that square root of y2 which lies in the upper half-plane. The integral
G(k), regarded as a function of a is holomorphic in the upper half a-plane but in
the sector, 7t/4 < q> = arg a < 3^/4, the following manipulations are valid:

3 A suggestion for which the author is grateful to Dr. P. B. Chapman.
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fV*"2rfM/(u2-a2) = r^-'We-^
Jo Jo

a. J o

a J o

= {i/(2x)}r(iy erfc z*,

where the z-plane is cut along the negative real axis, which result follows from
the identification of the integral with the confluent hypergeometric function and
the complete error integral (see Erdelyi (3)). The analytic continuation
{i/(2a)}f(^) exp ( — ka.2) erfc ( — A:a2)*, which is holomorphic in the upper half
a-plane, is thus the value of the integral in this upper half-plane.

For the present purposes it is convenient to derive the asymptotic representa-
tion from the integral formula

erfc ( - fez2)* = f exp (-12) dt)* = f
and its asymptotic representation. In deriving such representations, two cases
must be recognized, dependent on the sign of Ml{—kct2}*. When this is non-
negative the path of steepest descent goes to +oo. But when it is negative, it
goes to — oo, so that one first writes

erfc(-/ca2)* = f°° exp(-t2)dt + f"
• - 0 0 •> ( - fci2)*

exp(-<2)rff
- f a . 2 ) *

and then this integral may be treated as when 0ll{—ka.1}* is non-negative. It
thus follows that in the sectors 0 < arg a < n/4 and 3n/4 < arg a < n, there are
additional terms in the asymptotic representation of G(k) which were exponentially
small and whose presence is not necessarily indicated by the numerical behaviour
of the asymptotic series.

The above analysis indicates that the complete asymptotic representation of
G(k) can be deduced once the, corresponding type representation is known for

erfc co = exp ( -12) dt
J m

when \co\ is large and 3$lco ^ 0. If only the conventional type asymptotic
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representation is required the standard representation of erfc co for real large
positive co provides the series. If however error estimates are required other
methods may be more useful. The forms of error that may arise can be deduced
most readily from the results of section 2 by transforming the error integral into
an integral closely analogous to that considered in that section. This may be
achieved as follows, where the appropriate transformation is indicated after each
equation,

/*0O ("00

exp(-t2)dt = exp (-co2) exp {-2(ou-uz}du (t = a> + u)
J a JO

= ^exp( — co2) I exp( — v)dv(v + a>2)~i (v = 2uco + u2)
Jo

(•tOO

= \ exp ( — ca2) exp (— v) dv(v + eo2)~* (by deforming contour)
Jo

= |exp(-ct)2 + m/4) exp(~it)dt(t-(o2i)~i (v = it)
Jo

(•OD

= i\co\ exp (-co2+ m/4)| exp(-iM|a)|2)du(u-cr2i)~i((T = co/|co|).
Jo

The factor (— 1) inside the exponential in the integrand changes the locations of
the branch points which call for special consideration but the essentials of the
analysis are those of section 2. Thus when the path of steepest descent, now in
the lower half plane, passes near the branch-line erfc terms will occur which will
effect the smooth transition between the cases where there is a term n* and when
there is not. In all cases the techniques considered in section 2 could be applied
but a rather more direct route is available for the function with the specific branch
line in the above integral.

Thus if one works with the second of the above equations, namely

erfc co = \e'ml- ^e~vdv(vl+(o
2yi,

Jo

and applies the standard integration by parts technique, one obtains

V2 e°>2 erfc co = V
r=0 ( r - 1 ) ! (JV —1)!

x
'o

A straightforward investigation reveals that the last term in the series will not be
the smallest if N(N-%)(N-1)~x exceeds |co|2 so that, as before, N is chosen as
the greatest integer for which this is not true and then one seeks an alternative
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[11] Errors for asymptotic representations 405

method of estimating the error integral. Thus one writes the remainder integral in
the form

f V > + «2r(2JV + 1 ) /2^ = rexp {-v-i(2N +l)ln(v + co2)}dv.
Jo Jo

where the branch line is chosen so as not to cut the real axis. If &l co2 is non-
negative, increasing the size of N merely displaces the saddle point further to the
left and the saddle point therefore does not contribute the dominant term in the
integral. This is the case which arises in the next section, and since this paper
is not intended to provide complete results, only that case will be considered here.
Then the integral is dominated by its behaviour in the neighbourhood of the
origin but it is not appropriate to use the same exponential form as previously.
If the argument of the exponential is replaced by the early terms in its Taylor series
by writing

v + i(2N + l)ln(v + (o2) = ±(2N + 1) In co2 + v{l+i(2N+l)co~2}

-i(2N + l ) o T V + O(NCO~6V3)

and use is made of the fact that N is O(\a>\2), it is apparent that the integral is
dominated by the first two terms in this series and that the additional terms
contribute only small corrections which can be calculated by standard means.
Thus

re-°(v + <o2)-(2N + 1)l2dv = m-(2N + 1) r
Jo Jo

It thus follows by combining these results that,

( 2 r + i ) / 2

for 5n/4 < arg y a injA.
If it were so desired the factorial functions could be replaced by their Stirling

formula approximations. However in cases where it is desired to apply these
results for only moderate values of A: this might be inadvisable. Such a replacement
gives the estimate O(N~i exp —N) for the remainder term.

4. A more general saddle point

The analysis in this section has been undertaken with the view of clarifying
the factors which control the orders of the errors when asymptotic representations
of integrals of the form
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exp[/c0(u)]/(u)rfur
are obtained by saddle point methods. The results of the previous two sections
indicate clearly the importance of the singularities of f(u) and their distance from
the end-points, the path (for certain geometries) and the saddle point in section
(3). Here a simple example will be considered in order to obtain a guide as to
how the properties of g(u), assumed to be entire, may affect the errors in the
asymptotic representations. With this aim in view, it seems appropriate to choose
the simplest possible f{u), namely unity, and to choose a g(u) of the simplest
form which is not essentially equivalent to the linear and quadratic forms considered
in the previous sections. A cubic form for g{u) leads to integrals related to the
Airy Functions and the particular integral chosen is the one taking exponentially
small values in the range of values of k of interest so that the answers obtained
will not be those obtained more simply by deforming the path of integration.

Thus consider the integral

(10) I(k) = I exp k(u -\u3)du
J L

where L is a simple arc joining oo exp (47ti/3) to oo exp (2ni/3) so that this integral
can be expressed as 2ni kiAi(ki). The standard asymptotic representation of
this function can be obtained by deforming the path of integration to pass through
the saddle point at u = — 1 and making appropriate series expansions about that
point. This leads to an exponential function of argument ( — 2k/3) times an
asymptotic series in negative fractional powers of k. Here interest will centre
on the nature of the error if the asymptotic series is curtailed at its smallest term
and the problems involved if additional terms are then sought which lead to
accurate answers for smaller values of k than those for which the normal asymp-
totic series may be used.

The integral may be transformed to the type considered in the previous section
by means of the mapping defined by

(11)

This mapping has been chosen so that the saddle point at u = — 1 coincides with
the origin in the £-plane and with an appropriate choice of the square root for
I; the mapping of a neighbourhood of u = 1 onto a neighbourhood of ^ = 0 is
one-one. Further, let the branch be chosen so that the sense of direction of L is
mapped onto the sense of direction of the real line in the positive direction. The
global mapping is not one — one without the introduction of an additional branch
line which originates at the other zero of the derivative of u—(y)«3. It is apparent
that for general g{u) there will be branch lines associated with every other saddle-
point other than the one being used for the method of steepest descents so
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that the present example does serve to indicate the necessary lines of development
for more general functions g{u). For the simple case of equation (10), where there
is only one other saddle-point, namely that at u = 1, the region to the left of the
curve Im{« —yu3—y} = 0 will be mapped, in a one-one manner, onto the
^-plane cut from I, = — (y)*i to — IOO.

It follows that equation (10) may be rewritten therefore in the form

J - 0 0

where

Because of the one-one mapping of the neighbourhood of u = — 1 onto £, = 0 the
only singularities of/(<!;) arise from the discontinuity in/(<!;) across the branch
line on the negative imaginary axis. Further an explicit determination of this dis-
continuity could be derived from an examination of the relevant roots of Car-
dan's solution of the cubic equation (11) for u in terms of £. In more general cases
the evaluation of the discontinuity in /(£) would need numerical evaluation. Of
greater importance here is the fact that equation (12) is of the form of integrals
considered in section 3 so that it is possible to say, almost immediately, something
about the minimum error which can be achieved using the conventional asymptotic
representation

l(k)e2k'3 ~ (2n)
r = 0

For/(£) admits of the integral representation

where <p is related to the discontinuity in/across the branch line. Thus equation
(12) may be rewritten as

I(k)e2k'3 = (2m)-1 P <p(t) f

where the inversion of the order of integration is justified. Direct application of
the procedures of section (3) to the inner integral would produce some difficulty,
because the value of N would depend upon /, so that the order of summation and
integration with respect to t would not be easily interchanged. It is therefore
convenient to choose N as the largest integer such that N(N—i)(N— I )"1 does
not exceed 4k/3. With N so chosen it follows from the analysis of the previous
section that
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+ (2N-l)l 2_(2JV_
' J o(N-iy.

It follows from the extended Cauchy formula that

I{k)e2kl3 = (2;r
r = 0

Jo

(2N-1)! 1

In the inner integral in the remainder term, one uses Taylor expansions to show

exp -{v + i(2N + 1) In (v + kt2)} = (kt2y{2N+l)/2 exp {»[l + i(2N + l)(ikt2)"1

so that, since N is approximately 4k/3, the method of steepest descents may be
applied. The remainder term is therefore

This integral is dominated by the contribution from near t = (f)* and may be
evaluated by relatively standard applications of the method of steepest descents
when allowance is made for the fact that q>(t) has a square root singularity at
that point. It can also be shown, as at the end of section 3, that the remainder
term, apart from an algebraic factor, is O {exp(—4k/3)}. It therefore follows that
I(k) admits of the asymptotic representation

where <5 and cr are constants which could be determined by standard, but laborious,
methods. The last series is merely asymptotic but computationally it would not
seem practicable to determine the appropriate point of curtailment and the
asymptotic form of the further remainder by the methods of this paper. It might
however be possible to determine its exponential order.
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5. Conclusions

Conventional methods for the determination of asymptotic representations for
integrals of the form \b

af{u) exp {kg{u)}du yield contributions from the endpoints
a and b, any saddle points which must be used on paths of minimum ascent
between the end-point and from any singularities of f(u) which must be crossed
in deforming the path of integration to one of steepest descent. The analysis of this
paper, incomplete though it is, clearly indicates the factors which control the orders
of the smallest errors which may be achieved by appropriately curtailing the
asymptotic representations. It also provides a clear indication as to the optimum
method of curtailing a given series. It has been shown, at least for a fairly broad
class of functions/and g, that the minimum errors are controlled by the singular
points of the function/(w) and the zeros of the derivative g'{u). In all the cases
examined the magnitude of these minimum errors is governed by the distance
between the singular point of f(u) or the zero of g'(u) from either the end-points
or the saddle-points about which conventional methods would lead one to make
expansions. The exponential factor in the minimum error estimate can be written
down simply in terms of the appropriate distance but more accurate estimates
require more extensive calculation. The methods thereby provide relatively simple
'a priori' estimates of the range of k for which the conventional asymptotic series
will provide numerical estimates of a given accuracy, purely from a knowledge of
the singularities of/(w) and the zeros of g'{u).

Further there are cases when the source of biggest error is too close to the
path of integration so that a potentially good asymptotic expansion is rendered
relatively useless. In many such cases an extension of the methods of the present
paper would permit the computation of extended expansions which would in-
crease the useful domain of the expansions. It should be noted that this would
require merely the discussion of a simpler form of function based on the awkward
singularity or saddle point and the remainder of the contributions could be
calculated by conventional means. There is the additional feature of the present
analysis that is clearly indicates when certain terms, whose presence is not in-
dicated by the numerical convergence of the standard asymptotic series, actually
occur and how large their contribution will be. It thus provides a means of en-
suring that asymptotic representations, apparently well behaved numerically,
are not used if they lead to significant errors. It would appear to warrant further
investigation as to whether these methods would provide means of obtaining
better asymptotic representations near the boundaries of arg k for which the
standard representations become invalid. It appears to the author that results of
the present form may well provide an answer to the serious limitations of present
methods which occur in the cases such as discussed by Olver [2].

https://doi.org/10.1017/S1446788700009137 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009137


410 J. J. Mahony [16]

Acknowledgments

This work was done at the United States Army Mathematics Research Center,
University of Wisconsin. The author gratefully acknowledge the hospitality of
that institution and support under Contract No.: DA-31-124-ARO-D-462.

References

(1] J. J. Mahony, 'The reflection of short waves by a variable medium', Quart. App. Math. 25
(1967), 313.

[2] F. W. J. Olver, 'Error Bounds for Asymptotic Expansions', (an article in C. H. Wilcox,
(Ed.) Asymptotic solutions of differential equations and their applications, Wiley, New York,
1964.)

[3] A. Erdelyi, (Ed.) Higher Transcendental Functions, Volume I (McGraw Hill, New York,
1953, p. 266 and p. 255.)

Department of Mathematics
University of Western Australia

https://doi.org/10.1017/S1446788700009137 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009137

