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Yago Antoĺın and Andrei Jaikin-Zapirain

Dedicated to Warren Dicks, for his generosity

Abstract

The Hanna Neumann conjecture is a statement about the rank of the intersection of
two finitely generated subgroups of a free group. The conjecture was posed by Hanna
Neumann in 1957. In 2011, a strengthened version of the conjecture was proved inde-
pendently by Joel Friedman and by Igor Mineyev. In this paper we show that the
strengthened Hanna Neumann conjecture holds not only in free groups but also in non-
solvable surface groups. In addition, we show that a retract in a free group and in a
surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and
surface groups.

1. Introduction

Let G be a group. We say that G satisfies the Howson property if the intersection of two finitely
generated subgroups of G is again finitely generated. This property was introduced by How-
son [How54] where he proved that it holds for free groups. In fact, Howson gave an effective
bound for the number of generators of the intersection which was improved few years later by
H. Neumann [Neu56].

Let d(G) denote the number of generators of a group G. H. Neumann showed that if U and
W are non-trivial finitely generated subgroups of a free group, then

d(U ∩ W ) − 1 ≤ 2(d(U) − 1)(d(W ) − 1)

and she conjectured that, in fact, the factor 2 can be omitted. This conjecture became known as
the Hanna Neumann conjecture.

In 1980, W. Neumann improved the result of H. Neumann. For a group G we put d(G) =
max{0, d(G) − 1}. W. Neumann showed that if U and W are finitely generated subgroups of a
free group F , then ∑

x∈U\F/W

d(U ∩ xWx−1) ≤ 2d(U)d(W )

and he also conjectured that again the factor 2 can be omitted. This conjecture became known as
the strengthened Hanna Neumann conjecture. It was proved independently by Friedman [Fri14]
and by Mineyev [Mine12] in 2011. These were also the first proofs of the Hanna Neumann
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The Hanna Neumann conjecture

conjecture. Dicks presented two simplifications of the previous proofs (see [Dic11] and [Fri14,
appendix]).

In [Jai17], the second author proved the strengthened Hanna Neumann conjecture for free
pro-p groups. The proofs of Friedman and Mineyev used combinatorial and geometric aspects
of free groups. This kind of techniques are not available (or probably not enough developed) in
the world of pro-p groups and, therefore, Jaikin-Zapirain’s proof used a homological approach.
It turned out that this new method (with suitable modifications) gave also a new proof of the
original strengthened Hanna Neumann conjecture for free groups. In [JS19], Jaikin-Zapirain
and Shusterman developed further the pro-p part of [Jai17] and showed that the strengthened
Hanna Neumann conjecture holds for non-solvable Demushkin pro-p groups (the Demushkin
pro-p groups are the Poincaré duality pro-p groups of cohomological dimension 2).

By a surface group we mean the fundamental group of a compact closed surface of neg-
ative Euler characteristic. In the orientable case, surface groups admit presentations of the
form 〈x1, . . . , xn, y1, . . . , yn| [x1y1] · · · [xn, yn] = 1〉 (n ≥ 2); and in the non-orientable closed case
it is 〈x1, . . . , xn| x2

1 · · ·x2
n = 1〉 (n ≥ 3). Although free groups arise as fundamental groups of

non-closed surfaces of negative Euler characteristic, we do not consider free groups as surface
groups.

We note that all surface groups but 〈a, b, c | a2b2c2 = 1〉 are limit groups, and the latter
has an index two subgroup that is a limit group. The class of virtually limit groups plays an
important role throughout this work.

In this paper, we develop the discrete part of [Jai17], and we prove the strengthened Hanna
Neumann conjecture for surface groups.

Theorem 1.1. Let G be a surface group. Then for any finitely generated subgroups U and W
of G, ∑

x∈U\G/W

d(U ∩ xWx−1) ≤ d(U)d(W ).

In the context of the Hanna Neumann conjecture, the best previous bound when G is an
orientable surface group was obtained by Soma in [Som90, Som91]: d(U ∩ W ) ≤ 1161 · d(U)d(W ).

Theorem 1.1 is obtained from the following generalization of the strengthened Hanna
Neumann conjecture. Let Γ be a virtually FL-group. Then we define its Euler characteristic
as

χ(Γ) =
1

|Γ : Γ0|
∞∑
i=0

(−1)i dimQ Hi(Γ0, Q),

where Γ0 is an FL-subgroup of Γ of finite index.
Let χ(Γ) = max{0,−χ(Γ)}. Observe that for a non-trivial finitely generated free group Γ,

χ(Γ) = d(Γ), for a surface group Γ we have χ(Γ) = d(Γ) − 1 and for a finitely generated virtually
abelian group Γ, χ(Γ) = 0.

Theorem 1.2. Let G be a surface group. Then for every two finitely generated subgroups U
and W of G, ∑

x∈U\G/W

χ(U ∩ xWx−1) ≤ χ(U)χ(W ).

We conjecture that the previous theorem holds in a greater generality. Recall that the class
of limit groups coincides with the class of constructible limit groups, and from that one can
deduce that they are fundamental groups of finite CW -complexes [Wil09, Corollary 4.11], and,
thus, they are FL. As finitely generated subgroups of limit groups are limit groups, and limit

1851

https://doi.org/10.1112/S0010437X22007709 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007709
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groups satisfy Howson’s property [Dah03], we see that the family of finitely generated subgroups
of a limit group is a family of FL-subgroups closed under intersections and conjugations. We
believe that Theorem 1.2 can be extended further and we propose the following conjecture.

Conjecture 1 (The geometric Hanna Neumann conjecture). Let G be a limit group. Then for
every two finitely generated subgroups U and W of G,∑

x∈U\G/W

χ(U ∩ xWx−1) ≤ χ(U)χ(W ).

Note that by Theorem 9.4, the left-hand side of the above inequality is known to be finite.
The L2-independence and L2-Hall properties are two new technical notions that we introduce

in this paper (see § 4 for definitions). In this paper, we prove that retracts in free and surface
groups are L2-independent. In particular, this implies that surface groups are L2-Hall. Further
understanding of these new concepts would help to make progress on Conjecture 1. For example,
the proof of L2-Hall property for limit groups would lead to the solution of the conjecture in the
case of hyperbolic limit groups.

Theorem 1.3. Let G be a hyperbolic limit group. Assume that G satisfies the L2-Hall property.
Then the geometric Hanna Neumann conjecture holds for G.

Recall that a subgroup U of a group G is called inert if for every subgroup H of G, d(H ∩ U)
≤ d(H). In addition, to Theorem 1.1, the consideration of L2-independence helps us to show
that a retract in a free or a surface group is inert.

Theorem 1.4. Let G be either a free or a surface group. Then any retract in G is inert.

As a consequence we obtain the Dicks–Ventura inertia conjecture for free groups [DV96,
Problem 5], [Ven02, Conjecture 8.1] and the analogous result for surface groups. This conjecture
has its origin in an influential paper of Bestvina and Handel [BH92], where a conjecture of Scott
was proved: the subgroup of elements of a free group of rank n fixed by a given automorphism
has rank at most n.

Corollary 1.5 (The Dicks–Ventura inertia conjecture). Let G be either a free or a surface
group and let F be a finite collection of endomorphisms of G. Then

Fix(F) = {g ∈ G : φ(g) = g for all φ ∈ F}
is inert in G. In particular, d(Fix(F)) ≤ d(G).

Proof. Assume first that G is a finitely generated free group. The fact that the inertia conjecture
follows from inertia of retracts (i.e. our Theorem 1.4) is well-known (see the discussion of [Ven02,
Conjecture 81]) and we reproduce it for the convenience of the reader.

As the intersection of inert subgroups is inert, without loss of generality, we can assume
that F consists of a single endomorphism φ. The case when φ is injective was proved in [DV96,
Theorem IV.5.5]. Consider an arbitrary endomorphism φ. Let

φ∞(G) = ∩∞
i=0φ

i(G).

Then by [Tur96, Theorem 1], φ∞(G) is a retract in G, and, thus, by Theorem 1.4, we only have
to show that Fix(φ) is inert in φ∞(G). By [IT89, Theorem 1], the restriction of φ on φ∞(G) is
an automorphism. Thus, [DV96, Theorem IV.5.5] gives us the desired result.

Ventura has pointed out to us that the same reduction argument works in the case of a
surface group G.

If φ is not an automorphism, then φ(G) has infinite index and, hence, it is free. In particular,
φ∞(G) is still a retract of G and the argument applies verbatim. The only difference is when
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φ is an automorphism. However, this case was proved already by Wu and Zhang in [WZ14,
Corollary 1.5]. �

Let us briefly describe the structure of the paper. In § 2 we include main definitions and facts
that we use in the paper. In § 3 we introduce L2-Betti numbers β

K[G]
k (M) for K[G]-modules

M with K a subfield of C and explain the Atiyah and Lück approximation conjectures. The
L2-independence and L2-Hall properties are discussed in § 4. In § 5 we prove Theorem 1.4. In § 6
we introduce an auxiliary ring Lτ [G] which already played an important role in Dicks’ simplifica-
tion of Freidman’s proof. We finish the proof of Theorems 1.2 and 1.1 in § 7. In § 8 we reformulate
the geometric Hanna Neumann conjecture in terms of an inequality for β

Q[G]
1 . A key step of our

proof of Theorem 1.3 is to find a specific submodule of K[G/U ] ⊗ K[G/W ] with trivial β
K[G]
1 .

This is done in § 11. However, previously we present two auxiliary properties. In § 9 we prove
a generalization of Howson property for quasi-convex subgroups of hyperbolic groups and for
subgroups of limit groups and in § 10 we prove the Wilson–Zalesskii property for quasi-convex
subgroups of hyperbolic virtually compact special groups. We finish the proof of Theorem 1.3
in § 12 and we describe also some limitations of our methods in order to extend them to more
cases of Conjecture 1.

Remark 1.6. Theorems 1.2 and 1.4 and Corollary 1.5 hold also for fundamental groups of sur-
faces of non-negative Euler characteristic (i.e. the trivial group, Z/2Z, Z2 and 〈a, b | a2b2〉, the
fundamental group of a Klein bottle). However, the results are either trivial, or use simple argu-
ments specific for these cases. On the other hand, it is easy to produce a counter-example of
Theorem 1.1 when G is virtually Z2.

2. Preliminaries

Although our main result is about surface groups, many steps of our proof hold in more general
contexts of word hyperbolic, limit or virtually special compact groups. In this section, we recall
all the relevant definitions and facts about these groups.

Let Y be a geodesic metric space. A subset Z ⊆ Y is called quasi-convex if there exists ε ≥ 0
such that for any points z1, z2 ∈ Z, any geodesic joining these points is contained in the closed
ε-neighborhood of Z.

A geodesic metric space Y is called (Gromov) hyperbolic if there exists a constant δ ≥ 0 such
that for any geodesic triangle Δ in Y , any side of Δ is contained in the closed δ-neighborhood of
the union of other sides. A finitely generated group G is said to be hyperbolic if its Cayley graph
with respect to some finite generating set is a hyperbolic metric space. Quasi-convex subgroups
of G are very important in the study of hyperbolic groups. Such subgroups are themselves
hyperbolic and are quasi-isometrically embedded in G (see, for example, [ABCF+90]). Moreover,
for finitely generated subgroups of hyperbolic groups, being quasi-isometrically embedded in G
is equivalent to be quasi-convex. The intersection of two quasi-convex subgroups in a hyperbolic
group is quasi-convex by a result of Short [Sho91].

For a subgroup H ≤ G, we write Hg = gHg−1. A subgroup H of a group G is called
malnormal if for every x ∈ G \ H, Hx ∩ H = {1}.

A finitely generated group G is a limit group if, for any finite subset X of G, there exists
a homomorphism f : G → F to a free group so that the restriction of f on X is injective. By
a result of Wilton [Wil08], a finitely generated subgroup of a limit group is a virtual retract.
Therefore, in a limit group all finitely generated subgroups are quasi-isometrically embedded
and, in particular, in hyperbolic limit groups finitely generated subgroups are quasi-convex.
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A right-angled Artin group (RAAG) is a group which can be given by a finite presentation,
where the only defining relators are commutators of the generators. To construct such a group,
one usually starts with a finite graph Γ with vertex set V and edge set E. One then defines the
corresponding RAAG A(Γ) by the following presentation:

A(Γ) = 〈V | uv = vu whenever {u, v} ∈ E〉.
We always view A(Γ) as a metric space with respect to the word metric induced by V when
considering quasi-convexity of subgroups.

Special cube complexes were introduced in [HW08]. A group is called (compact) special if it
is the fundamental group of a non-positively curved (compact) special cube complex. If G is the
fundamental group of X, a (compact) special cube complex, then X̃, the universal cover of X, is
a CAT(0) cubical complex where G acts. By a quasi-convex subgroup of G we mean a subgroup
of H with a quasi-convex orbit of vertices in X̃ with respect to the combinatorial metric. A nice
group theoretic characterization of these groups is that a group is (compact) special if and only
if it is a (quasi-convex) subgroup of a RAAG (see [Hag08, HW08]). By [Hag08, Theorem F],
quasi-convex subgroups of RAAGs are virtual retracts. Thus, we have the following theorem
that will be used several times.

Theorem 2.1. Any quasi-convex subgroup of a virtually compact special group is a virtual
retract.

By a result of Wise [Wis12, Corollary 16.11], a limit group is virtually compact special.
In this paper, we explore profinite properties of virtually compact special groups. Recall that

if S = {S1, . . . , Sk} is a family of disjoint subsets of a group G, we say that a normal subgroup
N , of G separates S if S1N, . . . , SkN are disjoint. The family S is separable if there exists a
normal subgroup of G of finite index that separates S. A subset S of G is separable if for every
g ∈ G \ S, the family {S, g} is separable. A group is residually finite if the trivial element is
separable. For example, since a quasi-convex subgroup H of a virtually compact special group G
is virtually a retract and G is residually finite, any finite family {x1H, . . . , xkH} of left cosets of
H is separable. For hyperbolic groups this is the property GFERF introduced in [Mina06] and
we use the following theorem.

Theorem 2.2 [Mina06, Theorem 1.1 and Remark 2.2]. Assume G is a virtually compact spe-
cial hyperbolic group (or, more generally, a GFERF hyperbolic group), and H1, . . . , Hs are
quasi-convex subgroups of G, s ∈ N and g0, . . . , gs ∈ G. Then the product g0H1g1 . . . gs−1Hsgs is
separable in G.

3. L2-Betti numbers, the strong Atiyah conjecture and the Lück approximation

Let G be a discrete group and let l2(G) denote the Hilbert space with Hilbert basis the elements
of G; thus, l2(G) consists of all square summable formal sums

∑
g∈G agg with ag ∈ C and inner

product 〈 ∑
g∈G

agg,
∑
h∈G

bhh

〉
=

∑
g∈G

agbg.

The left- and right-multiplication action of G on itself extend to left and right actions of G on
l2(G). The right action of G on l2(G) extends to an action of C[G] on l2(G) and so we obtain
that the group algebra C[G] acts faithfully as bounded linear operators on l2(G). The ring N (G)
is the ring of bounded operators on l2(G) which commute with the left action of G. We often
consider C[G] as a subalgebra of N (G). The ring N (G) satisfies the left and right Ore conditions
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(a result proved by Berberian in [Ber82]) and its classical ring of fractions is denoted by U(G).
The ring U(G) can be also described as the ring of densely defined (unbounded) operators which
commute with the left action of G.

The computations of L2-Betti numbers have been algebraized through the seminal works
of Lück [Lüc98a, Lüc98b]. The basic observation is that one can use a dimension function
dimU(G), which is defined for all modules over U(G) and compute the kth L2-Betti number of a
C[G]-module M using the following formula:

β
C[G]
k (M) = dimU(G) TorC[G]

k (U(G), M).

We recommend the book [Lüc02] for the definition of dimU(G) and its properties.
The ring U(G) is an example of a ∗-regular ring. Already in the case G = 〈t〉 ∼= Z it is quite

complicated as a ring (it is isomorphic to L1(S1)). Therefore, sometimes, it is more convenient
to consider a smaller object RC[G] introduced by Linnell and Schick [LS12].

Let K be a subfield of C. We define RK[G] as the ∗-regular closure of K[G] in U(G), i.e. RK[G]

is the smallest ∗-regular subring of U(G) that contains K[G]. We can also define a dimension
function dimRK[G]

on RK[G]-modules and use it in order to define the L2-Betti numbers (see
[Jai19a, Jai19b]). If M is a K[G]-module, then its L2-Betti numbers are computed using the
formula

β
K[G]
k (M) = dimRK[G]

TorK[G]
k (RK[G], M).

The object RK[G] is much simpler that U(G). For example, in the case G = 〈t〉 ∼= Z, RK[G]

is isomorphic to K(t) and dimRK[G]
is the dimension of K(t)-vector spaces. More generally,

the strong Atiyah conjecture (see [Lüc02]) predicts that if G is torsion-free, then all numbers
β

K[G]
k (M) are integers, RK[G] is a division algebra and dimRK[G]

is the dimension of RK[G]-vector
spaces.

In this paper, we use the solution of the strong Atiyah conjecture in the case where G is a
torsion-free virtually compact special group.

Proposition 3.1 [DLMS+03, Sch14, Jai19a]. Let G be a torsion-free virtually compact special

group, and let K be a subfield of C. Then all numbers β
K[G]
k (M) are integers and RK[G] is a

division algebra.

Another important conjecture about L2-Betti numbers is the Lück approximation conjecture
(see [Lüc02]). In this paper, we use the solution of this conjecture in the case of approximation
by sofic groups.

Proposition 3.2 [Lüc94, DLMS+03, ES05, Jai19a]. Let G be a group and let G > G1 > G2 >
. . . be a chain of normal subgroups with trivial intersection such that G/Gi are sofic. Let K be
a subfield of C and let M be a finitely presented K[G]-module. Then

dimRK[G]
(RK[G] ⊗K[G] M) = lim

i→∞
dimRK[G/Gi]

(RK[G/Gi] ⊗K[G] M).

In this paper, we consider only the fields K which are subfields of C. Let M be a K[G]-module.
By [Jai19a, Corollary 1.7], if G is sofic, then β

K[G]
k (M) does not depend on the embedding of K

into C. Thus, in what follows, if the group G is sofic, we do not indicate the embedding of K
into C.

Recall that the kth L2-Betti number of a group G is defined as b
(2)
k (G) = dimU(G)

Hk(G;U(G)). Thus, we obtain that

b
(2)
k (G) = dimU(G) TorZ[G]

k (U(G), Z) = dimRK[G]
TorK[G]

k (RK[G], K) = β
K[G]
k (K),
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where K is arbitrary subfield of C. In the case when G is a virtually limit group, we have a good
control of its L2-Betti numbers.

Proposition 3.3. Let G be a virtually limit group and K a subfield of C. Then

β
K[G]
k (K) = b

(2)
k (G) = 0 if k ≥ 2.

In particular,

χ(G) = b
(2)
1 (G) = β

K[G]
1 (K).

Proof. See, for example, [BK17, Corollary C]. �

If U is a subgroup of a group G, then RK[G] is a flat right RK[U ]-module and for every left
RK[U ]-module M ,

dimRK[G]
RK[G] ⊗RK[U ]

M = dimRK[U ]
M.

This implies the following result.

Proposition 3.4. Let U be a subgroup of a group G and let M be a left K[U ]-module, then
for every k,

β
K[U ]
k (M) = β

K[G]
k (K[G] ⊗K[U ] M).

4. The L2-Hall property for surface groups

Let U be a subgroup of G. The embedding of U into G induces the corestriction map

cor : H1(U ;U(G)) → H1(G;U(G)).

We say that U is L2-independent in G if

dimU(G) ker(cor) = 0.

We say that the group G is L2-Hall, if for every finitely generated subgroup U of G, there
exists a subgroup H of G of finite index containing U such that U is L2-independent in H.

The L2-independence can also be characterized in terms of RK[G].

Lemma 4.1. Let G be a group and K a subfield of C. Then a subgroup U of G is L2-independent
if and only if

dimRK[G]
ker(cor) = 0,

where cor : H1(U ;RK[G]) → H1(G;RK[G]) is the corestriction.

Proof. As RK[G] is von Neumann regular, U(G) is a flat RK[G]-module and we are done. �

If RK[G] is a semi-simple algebra, Lemma 4.1 implies that in order to show that U is
L2-independent in G, one has to prove that ker(cor) = {0}. In the case of virtually limit groups,
we can give also the following description.

Proposition 4.2. Let G be a virtually limit group and let H1 ≤ H2 be two finitely generated
subgroups of G. Let K be a subfield of C. Consider the exact sequence

1 → M → K[G/H1] → K[G/H2] → 0.

Then H1 is L2-independent in H2 if and only if β
K[G]
1 (M) = 0.
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Proof. We have the following exact sequence of Tor-functors:

TorK[G]
2 (RK[G], K[G/H2]) → TorK[G]

1 (RK[G], M)

→ TorK[G]
1 (RK[G], K[G/H1])

α→ TorK[G]
1 (RK[G], K[G/H2]).

By Proposition 3.3, TorK[G]
2 (RK[G], K[G/H2]) ∼= TorK[H2]

2 (RK[G], K) = 0. In addition, the
Shapiro lemma provides canonical isomorphisms

γi : TorK[G]
1 (RK[G], K[G/Hi]) → TorK[Hi]

1 (RK[G], K) = H1(Hi; RK[G]) (i = 1, 2)

such that cor = γ2 ◦ α ◦ γ−1
1 . Thus, dimRK[G]

ker(cor) = 0 if and only if dimRK[G]
ker α = 0 if and

only if β
K[G]
1 (M) = 0. �

Corollary 4.3. Let U be a finitely generated subgroup of a virtual limit group G and K a

subfield of C. Then U is L2-independent in G if and only if β
K[G]
1 (IG/IG

U ) = 0.
Here IG (respectively, IU ) is the augmentation ideal of K[G] (respectively, K[U ]) and IG

U is
the left ideal of K[G] generated by IU .

Proof. Use Proposition 4.2 and take into account that K[G/U ] ∼= K[G]/IG
U . �

In this section, we show that surface groups are L2-Hall.

Theorem 4.4. Finitely generated free groups and surface groups are L2-Hall.

Let P be a pro-p group. We denote by d(P ) the minimal cardinality of a topological generating
set of P . If P is finitely generated and L is an Fp[[P ]]-module, then the functions β

Fp[[P ]]
k (L) are

defined in the following way. Fix a chain P1 > P2 > P3 > . . . of open normal subgroups of P with
trivial intersection and we put

β
Fp[[P ]]
k (L) = lim

i→∞
dimFp Hk(Pi, L)

|P : Pi| ,

assuming that all dimFp Hk(Pi, L) are finite. The limit always exists and it does not depend on
the chain (see [Jai19b, Proposition 11.2]).

An (infinite) Demushkin pro-p group is a Poincaré duality pro-p group of cohomological
dimension 2. For the purposes of this paper, it is enough to know that the fundamental group
of a closed surface is residually finite 2-group and its pro-2 completion is Demushkin. First,
let us present the following result whose proof is essentially contained in the proof of [JS19,
Proposition 7.2].

Proposition 4.5. Let P be an infinite Demushkin pro-p group and let H be a proper closed
subgroup of P such that the map H1(H; Fp) → H1(P ; Fp) is injective. Let L be the kernel of the
map Fp[[P/H]] → Fp. Then

β
Fp[[P ]]
1 (L) = 0 and β

Fp[[P ]]
0 (L) = d(P ) − d(H) − 1.

Proof. As H is a proper subgroup of P and H1(H; Fp) → H1(P ; Fp) is injective, H is of infinite
index, and, thus, H is a free pro-p group. Moreover, because the map H1(H; Fp) → H1(P ; Fp) is
injective, H is finitely generated.

In the proof of [JS19, Proposition 7.2], it is shown that L is an one-relator Fp[[P ]]-module.
Thus, we can produce an exact sequence

0 → C → Fp[[P ]]d → L → 0,
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where C is a non-trivial cyclic Fp[[P ]]-module. As Fp[[P ]] is a domain, C ∼= Fp[[P ]]. By [JS19,
Corollary 6.2], β

Fp[[P ]]
1 (L) = 0. Hence, β

Fp[[P ]]
0 (L) = d − 1 = χP (L), where χP (L) is the Euler

characteristic of L as a Fp[[P ]]-module.
On the other hand, using the exact sequence

0 → L → Fp[[P/H]] → Fp → 0,

we obtain that

χP (L) = χP (Fp[[P/H]]) − χP (Fp) = χH(Fp) − χP (Fp)

= 1 − d(H) − (2 − d(P )) = d(P ) − d(H) − 1.

In the penultimate equality we have used that H is free and P is Demushkin. �

The previous proposition leads to a criterion for L2-independence of a subgroup of a free or
a surface group.

Proposition 4.6. Let G be a finitely generated free group or a surface group and U a retract
of G. Then U is L2-independent in G.

Proof. Without loss of generality, we assume that U is non-trivial and proper. Thus, G is infinite
and U is a free group. First consider the case where G is a surface group.

As U is a retract, H1(U ; F2) → H1(G; F2) is injective. Let P be the pro-2 completion of G.
As we have mentioned, G is a Demushkin pro-2 group. Let P1 > P2 > P3 > · · · be a chain of
open normal subgroups of P with trivial intersection. We put Gi = G ∩ Pi. Let H be the closure
of U in P . As U is a retract of G, H is a free pro-2 group, and, thus, it is a proper subgroup
of P .

The condition H1(U ; F2) → H1(G; F2) is injective implies that H1(H; F2) → H1(P ; F2) is
injective and d(H) = dimFp H1(U ; F2) (and, thus, d(H) = d(U)).

Consider two exact sequences

0 → M → Z[G/U ] → Z → 0 and 0 → L → F2[[P/H]] → F2 → 0.

Tensoring the first sequence with F2 over Z, we obtain another exact sequence of F2[G]-modules,

0 → F2 ⊗Z M → F2[G/U ] → F2 → 0.

Put M = F2 ⊗Z M . As G is pro-2 good (see [GJPZ14]),

H1(G; F2[[P ]]) = TorF2[G]
1 (F2[[P ]], F2) = 0.

Therefore, the sequence

0 → F2[[P ]] ⊗F2[G] M → F2[[P ]] ⊗F2[G] F2[G/U ] → F2 → 0

is also exact. As F2[[P ]] ⊗F2[G] F2[G/U ] ∼= F2[[P/H]], we obtain that L ∼= F2[[P ]] ⊗F2[G] M as
F2[[P ]]-modules. In particular,

dimF2 H0(Gi; M) = dimF2 H0(Pi; F2[[P ]] ⊗F2[G] M) = dimF2 H0(Pi, L).
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Thus,

lim
i→∞

dimQ TorQ[Gi]
0 (Q, Q ⊗Z M)
|G : Gi| = lim

i→∞
dimQ TorZ[Gi]

0 (Q, M)
|G : Gi|

≤ lim
i→∞

dimF2 TorZ[Gi]
0 (F2, M)

|G : Gi| = lim
i→∞

dimF2 H0(Gi; M)
|G : Gi|

= lim
i→∞

dimF2 H0(Pi, L)
|P : Pi|

Proposition 4.5
= d(P ) − d(H) − 1

= d(G) − d(U) − 1.

Consider again the exact sequence 0 → M → Z[G/U ] → Z → 0. It induces the exact sequence

0 → Q ⊗Z M → Q[G/U ] → Q → 0.

The long exact sequences of Tor-functors implies that

dimQ TorQ[Gi]
1 (Q, Q ⊗Z M) ≤ dimQ TorQ[Gi]

2 (Q, Q) + dimQ TorQ[Gi]
1 (Q, Q[G/U ])

− dimQ TorQ[Gi]
1 (Q, Q) + dimQ TorQ[Gi]

0 (Q, Q ⊗Z M)

− dimQ TorQ[Gi]
0 (Q, Q[G/U ]) + dimQ TorQ[Gi]

0 (Q, Q).

Observe that

dimQ TorQ[Gi]
2 (Q, Q) = dimQ TorQ[Gi]

0 (Q, Q) = 1,

lim
i→∞

dimQ TorQ[Gi]
1 (Q, Q[G/U ])
|G : Gi| = d(U) − 1, lim

i→∞
dimQ TorQ[Gi]

1 (Q, Q)
|G : Gi| = d(G) − 2

and, because we assume that U is not trivial,

lim
i→∞

dimQ TorQ[Gi]
0 (Q, Q[G/U ])
|G : Gi| = 0.

Putting all limits together, we obtain that

β
Q[G]
1 (Q ⊗Z M)

Proposition 3.2
= lim

i→∞
dimQ TorQ[Gi]

1 (Q, Q ⊗Z M)
|G : Gi| = 0.

By Proposition 4.2, U is L2-independent in G.
The remaining case is the case where G is a finitely generated free group. The proof works

verbatim just bearing in mind that in Proposition 4.5 one has to change P to be a free pro-p group
in the hypothesis, and in the conclusion β

Fp[[P ]]
0 (L) = d(P ) − d(H). In addition, in the proof of

Proposition 4.6, one has that the groups Gi are free and, hence, dimQ TorQ[Gi]
2 (Q, Q) = 0. �

Proof of Theorem 4.4. Let G be a finitely generated free group or a surface group and U a finitely
generated subgroup of G. There exists a subgroup S of finite index in G, containing U and such
that U is a retract of S (see [Hal49, Sco78]). Now, we can apply Proposition 4.6. �

5. The proof of Theorem 1.4

In this section, we prove Theorem 1.4. A similar argument is used later in our proof of
Theorem 1.2. A key observation is the following proposition.
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Proposition 5.1. Let G be a surface group or a free group and H a subgroup of G. Let K be
a subfield of C.

(1) Any K[G]-submodule of a K[G]-module of projective dimension 1 is also of projective
dimension 1.

(2) If M is a K[G]-module of projective dimension 1 and β
K[G]
1 (M) = 0. Then β

K[H]
1 (M) = 0.

Proof. Part (1) is clear when G is free, because K[G] is of global dimension 1. If G is not free,
then K[G] is of global dimension 2 and for such rings a submodule of a module of projective
dimension 1 is also of projective dimension 1.

In order to show part (2) we have to prove that TorK[H]
1 (RK[H], M) = 0. By Shapiro’s lemma,

TorK[H]
1 (RK[H], M) ∼= TorK[G]

1 (RK[H] ⊗K[H] K[G], M).

Observe that RK[H] ⊗K[H] K[G] is naturally embedded in RK[G] (see, for example, the discus-

sion after [Lin06, Problem 4.5]). As M is of projective dimension 1 and TorK[G]
1 (RK[G], M) = 0,

TorK[G]
1 (RK[H] ⊗K[H] K[G], M) = 0 as well. �

Proposition 5.2. Let G be a free group or a surface group and U an L2-independent subgroup
of G. If H is a finitely generated subgroup of G, then H ∩ U is L2-independent in H. In particular,
d(H ∩ U) ≤ d(H).

Proof. Without loss of generality we may assume that G �= U . Hence, G is infinite and U is free.
By Corollary 4.3, because U is an L2-independent subgroup of G, β

K[G]
1 (IG/IG

U ) = 0.
As U is free, K[G/U ] ∼= K[G]/IG

U is of projective dimension 1. By Proposition 5.1(1), IG/IG
U

is also of projective dimension 1. Therefore, by Proposition 5.1(2), β
K[H]
1 (IG/IG

U ) = 0 as well.
Put M = IG/IG

U and L = IH/IH
U∩H . In the previous paragraph we have obtained that

TorK[H]
1 (RK[H], M) = 0.

As IH
U∩H = IH ∩ IG

U , L is a K[H]-submodule of M . Let T ⊂ G be a set of representatives of the
double (H, U)-cosets in G and assume that 1 ∈ T . Consider the K[H]-module M/L. Then we
have that

M/L ∼= K[G/U ]/K[H/(U ∩ H)] ∼= ⊕t∈T\{1}K[H/(U t ∩ H)].

As U t ∩ H are free groups, M/L is of projective dimension 1 as a K[H]-module, and, thus,

TorK[H]
2 (RK[H], M/L) = 0.

Thus, from the exact sequence

TorK[H]
2 (RK[H], M/L) → TorK[H]

1 (RK[H], L) → TorK[H]
1 (RK[H], M)

we obtain that TorK[H]
1 (RK[H], L) = 0 and β

K[H]
1 (L) = β

K[H]
1 (IH/IH

U∩H) = 0. Thus, H ∩ U is
L2-independent in H by Corollary 4.3. �
Proof of Theorem 1.4. Let U be a retract of G and H a subgroup of G. By Proposition 4.6, U
is L2-independent in G. Thus, the theorem follows from Proposition 5.2. �

A subgroup U of G is called compressed if d(U) ≤ d(H) for every subgroup H of G containing
U . Dicks and Ventura conjectured that every compressed subgroup of a free group is also inert.
We finish this section with the following natural question.

Question 2. Is any compressed subgroup of a free group also L2-independent?
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6. The structure of acceptable Lτ [G]-modules

Let L be a field and let τ : G → Aut(L) be a homomorphism. We denote by Lτ [G] the twisted
group ring: its underlying additive group coincides with the ordinary group ring L[G], but the
multiplication is defined as follows:( n∑

i=1

kifi

)( m∑
j=1

ljgj

)
=

n∑
i=1

m∑
j=1

kiτ(fi)(lj)figj , ki, lj ∈ L, fi, gj ∈ G.

The main advantage of working with Lτ [G]-modules instead of L[G]-modules is stated in the
following lemma.

Lemma 6.1 [Jai17, Claim 6.3]. Let G be a group and L a field. Let τ : G → Aut(L) and H =
ker τ . Assume that H is of finite index in G. Then:

(1) L is an irreducible Lτ [G]-module if we define( k∑
i=1

lifi

)
· l =

k∑
i=1

liτ(fi)(l) (l, li ∈ L, fi ∈ G);

(2) up to isomorphism, L is the unique irreducible Lτ [G]-module on which H acts trivially.

Our next task is to prove a version of the strong Atiyah conjecture for Lτ [G]-modules where
G is a torsion-free virtually compact special group. We use the fact that a torsion-free virtually
compact special group G has the factorization property. This means that any map from G to
a finite group factors through a torsion-free elementary amenable group. This was proved by
Schreve (see Corollary 2.6, Lemma 2.2 and the proof of Theorem 1.1 in [Sch14]).

Proposition 6.2. Let G be a torsion-free virtually compact special group, L a subfield of C

and τ : G → Aut(L). Assume that H ≤ ker τ is of finite index in G. Let M be an Lτ [G]-module

with finite β
L[H]
k (M). Then |G : H| divides β

L[H]
k (M).

Remark. In order to understand better the significance of this proposition, consider the case
when τ sends all elements of G to the identity automorphism (Lτ [G] = L[G] in this case). Then,
by the multiplicative property of L2-Betti numbers,

β
L[H]
k (M) = |G : H| · βL[G]

k (M),

and so what we want to prove is that βL[G](M) is an integer number. This is the strong Atiyah
conjecture for G (see Proposition 3.1).

The idea of the proof of the proposition for general τ is to define β
Lτ [G]
k (M) by

β
Lτ [G]
k (M) =

β
L[H]
k (M)
|G : H| ,

and using the Lück approximation, show, in a similar way as in [DLMS+03], that β
Lτ [G]
k (M) is

an integer.

Proof. Recall that G is residually finite. Using the factorization property, we can construct a
chain G ≥ H > T1 > T2 > · · · of normal subgroups of G with trivial intersection such that for
each i, Ai = G/Ti is torsion-free elementary amenable.

As τ sends the elements of Ti to the trivial automorphism of L, abusing slightly the nota-
tion we can construct Lτ [Ai]. By a result of Moody [Moo89] (see also [KLM88] and [Lin98,
Corollary 4.5]), Lτ [Ai] has no non-trivial zero-divisors. As Ai is amenable and Lτ [Ai] is a domain,
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Lτ [Ai] satisfies the left Ore condition. Thus, Lτ [Ai] has the classical division ring of fractions
Q(Lτ [Ai]).

Let Bi = H/Ti. As Bi is of finite index in Ai, Q(Lτ [Ai]) is isomorphic to the Ore localization
of Lτ [Ai] with respect to non-zero elements of L[Bi]. Thus,

Q(Lτ [Ai]) ∼= Q(L[Bi]) ⊗L[Bi] Lτ [Ai] (1)

as (Q(L[Bi], Lτ [G]))-bimodules. Equivalently, Q(Lτ [Ai]) is isomorphic to a crossed product
Q(L[Bi]) ∗ (Ai/Bi).

Let M be a finitely presented Lτ [G]-module and let

Mi = M/(Ti − 1)M ∼= Lτ [Ai] ⊗Lτ [G] M.

Then from (1) we obtain that

Q(L[Bi]) ⊗L[Bi] Mi
∼= (Q(L[Bi]) ⊗L[Bi] Lτ [Ai]) ⊗Lτ [G] M ∼= Q(Lτ [Ai]) ⊗Lτ [G] M.

In particular, again taking (1) into account, we conclude that

dimQ(L[Bi])(Q(L[Bi]) ⊗L[Bi] Mi) = |G : H|dimQ(Lτ [Ai])(Q(Lτ [Ai]) ⊗Lτ [G] M). (2)

The groups Bi are torsion-free elementary amenable groups, and, thus, they satisfy the
strong Atiyah conjecture [Lin93]. Hence, the rings RL[Bi] are division rings. Therefore, by
Proposition 3.2, there exists i such that

β
L[H]
0 (M) = dimRL[Bi]

(RL[Bi] ⊗L[H] M) = dimRL[Bi]
(RL[Bi] ⊗L[Bi] Mi).

Observe that RL[Bi] is isomorphic to the classical division ring of fractions Q(L[Bi]) of L[Bi] as
L[Bi]-ring (see, for example, [Lin93] and [Jai19b, Corollary 9.4]). Therefore,

β
L[H]
0 (M) = dimQ(L[Bi])(Q(L[Bi] ⊗L[Bi] Mi)

by (2)
= |G : H|dimQ(Lτ [Ai])(Q(Lτ [Ai]) ⊗Lτ [G] M).

This proves that |G : H| divides β
L[H]
0 (M). Therefore, the proposition holds in the case k = 0

and M is finitely presented. In particular, the following Sylvester module rank function on Lτ [G]
(see [Jai19b] for definitions)

dim M :=
dimRL[H]

(RL[H] ⊗L[H] M)

|G : H| =
β

L[H]
0 (M)
|G : H|

is integer-valued. This Sylvester function is induced by the canonical embedding of Lτ [G] into
Mat|G:H|(RL[H]) (here the endomorphisms act on the right-hand side):

Lτ [G] ↪→ EndL[H](Lτ [G])) ↪→ EndRL[H]
(RL[H] ⊗L[H] Lτ [G]) ∼= Mat|G:H|(RL[H]).

By an argument of Linnell (see [Lin93, Lemma 3.7]), the division closure DG of Lτ [G] in
Mat|G:H|(RL[H]) is a division ring and

dim M = dimDG
(DG ⊗Lτ [G] M).

The division closure of L[H] in Mat|G:H|(RL[H]), and so in DG, is isomorphic to RL[H] as
L[H]-ring. By [Jai20, Proposition 2.7], the canonical map of (RL[H], Lτ [G])-bimodules

α : RL[H] ⊗L[H] Lτ [G] → DG is bijective. (3)

This is an analog of the isomorphism (1). In particular, dimRL[H]
DG = |G : H|.
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Note that Lτ [G] is a free L[H]-module. Thus, every free resolution of an Lτ [G]-module is also
a free resolution of it viewed as an L[H]-module. Thus, (3) implies that for every Lτ [G]-module
M we have that

TorL[H]
k (RL[H], M) ∼= TorLτ [G]

k (DG, M).

Therefore,

β
L[H]
k (M) = dimRL[H]

TorL[H]
k (RL[H], M) = |G : H|dimDG

TorLτ [G]
k (DG, M),

and, thus, |G : H| divides β
L[H]
k (M) if it is finite. �

We say that an Lτ [G]-module M is acceptable if there exists an Lτ [G]-submodule M0 of M
such that:

(1) dimL(M/M0) < ∞;
(2) H = ker(τ) ≤ CG(M/M0);
(3) β

L[H]
k (M0) = 0 for every k ≥ 1.

In this paper, acceptable Lτ [G]-modules appear using the construction presented in the
following lemma.

Lemma 6.3. Let G be a group. Let M be a Q[G]-module, and let M0 be a submodule of M such
that:

(i) dimQ M/M0 < ∞;
(ii) H = CG(M/M0) is of finite index in G;

(iii) β
Q[G]
k (M0) = 0 for k ≥ 1.

Put F = G/H = {f1, . . . , ft} and let L = Q(xf |f ∈ F ) be the field of rational functions on t
variables over Q. Define τ : G → Aut(L) via the formula

τ(g)(p(xf1 , . . . , xft)) = p(xgf1 , . . . , xgft), p(xf1 , . . . , xft) ∈ L.

Put M̃ = Lτ [G] ⊗Q[G] M . Then M̃ is an acceptable Lτ [G]-module. Moreover, if M̃0 =
Lτ [G] ⊗Q[G] M0, then:

(1) dimL(M̃/M̃0) is finite;

(2) H ≤ CG(M̃/M̃0);
(3) β

L[H]
k (M̃0) = 0 for every k ≥ 1.

Proof. (1) As Lτ [G] is a flat Q[G]-module, we obtain that M̃0
∼= Lτ [G] ⊗Q[G] M0 and M̃/M̃0

∼=
Lτ [G] ⊗Q[G] (M/M0). In particular, dimL(M̃/M̃0) = dimQ(M/M0) < ∞.

(2) As H = ker τ , ker τ acts trivially on M̃/M̃0.
(3) Observe that M̃0 as an L[H] module is isomorphic to L[H] ⊗Q[H] M0. Hence,

β
L[H]
k (M̃0) = β

L[H]
k (L[H] ⊗Q[H] M0) = β

Q[H]
k (M0) = |G : H|βQ[G]

k (M0) = 0. �
Proposition 6.4. Let G be a torsion-free virtually limit group and let L be a subfield of C. Let
τ : G → Aut(L) be a homomorphism with finite image. Put H = ker τ . Let M be an acceptable
Lτ [G]-module. Then there exists an L[H]-submodule M ′ of M such that

β
L[H]
1 (M ′) = 0, dimL M/M ′ ≤ β

L[H]
1 (M)
|G : H| and H ≤ CG(M/M ′).
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Proof. Let M0 be from the definition of an acceptable Lτ [G]-module. By induction on dimL N/M0

we prove that for every Lτ [G]-submodule N of M , satisfying M0 ≤ N , there exists an
L[H]-submodule M0 ≤ N ′ ≤ N , such that

β
L[H]
1 (N ′) = 0 and dimL N/N ′ ≤ β

L[H]
1 (N)
|G : H| .

The base of induction, when N = M0, is clear, because β
L[H]
1 (M0) = 0. Assume now that the

proposition holds if dimL N/M0 < n and let us prove it in the case where dimL N/M0 = n.
Let N1 be a maximal Lτ [G]-submodule of N that contains M0. By Lemma 6.1, N/N1

∼= L.
Then, because dimL N1/M0 < n, there exists an L[H]-submodule N ′

1 of N1, containing M0, such
that β

L[H]
1 (N ′

1) = 0 and

dimL(N1/N
′
1) ≤

β
L[H]
1 (N1)
|G : H| .

As G is a virtually limit group, by Proposition 3.3, β
L[H]
2 (L) = 0. Therefore (see

Proposition 8.1(3) for a more general statement),

β
L[H]
1 (N1) ≤ β

L[H]
1 (N).

By Proposition 6.2, β
L[H]
1 (N) and β

L[H]
1 (N1) are divisible by |G : H|. Hence, β

L[H]
1 (N) ≥

β
L[H]
1 (N1) + |G : H| or β

L[H]
1 (N) = β

L[H]
1 (N1). In the first case, we simply take N ′ = N ′

1 and
we are done. Thus, let us assume that β

L[H]
1 (N) = β

L[H]
1 (N1).

Take a ∈ N\N1 and let N ′ be the L[H]-submodule generated by a and N ′
1. As H acts trivially

on N/M0, dimL N ′/N ′
1 = 1. Therefore, we have that

N1 + N ′ = N and N1 ∩ N ′ = N ′
1.

This leads to the following exact sequence of L[H]-modules:

0 → N ′
1 → N1 ⊕ N ′ → N → 0.

Using the long exact sequence for Tor, we obtain that

β
L[H]
1 (N1) + β

L[H]
1 (N ′) = β

L[H]
1 (N1 ⊕ N ′) ≤ β

L[H]
1 (N) + β

L[H]
1 (N ′

1) = β
L[H]
1 (N1).

Thus, β
L[H]
1 (N ′) = 0. The construction of N ′ implies also that

dimL(N/N ′) = dimL(N1/N
′
1) ≤

β
L[H]
1 (N1)
|G : H| =

β
L[H]
1 (N)
|G : H| . �

7. The proofs of Theorems 1.2 and 1.1

In this section, we finish the proof of Theorem 1.2 and deduce from it Theorem 1.1.

Proof of Theorem 1.2. Let G be a surface group and K a subfield of C. As

K[G/W ] ∼=
⊕

x∈U\G/W

K[U/U ∩ xWx−1]

as K[U ]-modules we have

β
K[U ]
1 (K[G/W ]) =

∑
x∈U\G/W

χ(U ∩ xWx−1).
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Let M = Q[G/W ]. Using Theorem 4.4, we obtain that there exists a normal subgroup H of
G of finite index such that if M0 denotes the kernel of the map Q[G/W ] → Q[G/WH], then

β
Q[G]
1 (M0) = 0.

Define the ring Lτ [G] as in Lemma 6.3 and put

M̃ = Lτ [G] ⊗Q[G] M.

Then, by Lemma 6.3, M̃ is an acceptable Lτ [G]-module. Thus, by Proposition 6.4 there exists
an L[H]-submodule M̃ ′ of M̃ such that

β
L[H]
1 (M̃ ′) = 0, dimL(M̃/M̃ ′) ≤ β

L[H]
1 (M̃)
|G : H| and H ≤ CG(M̃/M̃ ′).

Let us show that β
L[U∩H]
1 (M̃ ′) = 0. If W is of finite index in G, then M̃ ′ = {0}, thus,

we assume that W is of infinite index in G. Then Q[G/W ] is of projective dimension 1 as a
Q[G]-module, and so M̃ is of projective dimension 1 as an L[H]-module. By Proposition 5.1,
β

L[U∩H]
1 (M̃ ′) = 0. Therefore, we obtain

β
Q[U ]
1 (Q[G/W ]) =

β
Q[H∩U ]
1 (M)
|U : H ∩ U | =

β
L[H∩U ]
1 (M̃)
|U : H ∩ U |

≤ β
L[H∩U ]
1 (M̃ ′) + β

L[H∩U ]
1 (M̃/M̃ ′)

|U : H ∩ U |

≤ β
L[H∩U ]
1 (L)βL[H]

1 (M̃)
|U : H ∩ U ||G : H| =

β
Q[H∩U ]
1 (Q)βQ[H]

1 (M)
|U : H ∩ U ||G : H|

= β
Q[U ]
1 (Q)βQ[G]

1 (M) = χ(U)χ(W ). �
Proof of Theorem 1.1. First consider the case when U and W are of finite index. Let r be the
number of the double (U, W )-cosets in G. Observe that r ≤ |G : U | ≤ χ(U). Therefore, we have∑

x∈U\G/W

d(U ∩ xWx−1) = r +
∑

x∈U\G/W

χ(U ∩ xWx−1)
Theorem 1.2≤ r + χ(U)χ(W )

= d(U)d(W ) + r − 1 − χ(U) − χ(W ) ≤ d(U)d(W ).

If U or W is of infinite index, then U ∩ xWx−1 is free. Thus, we obtain∑
x∈U\G/W

d(U ∩ xWx−1) =
∑

x∈U\G/W

χ(U ∩ xWx−1)
Theorem 1.2≤ χ(U)χ(W )

≤ d(U)d(W ). �

8. A module theoretic reformulation of the geometric Hanna Neumann conjecture
for limit groups

Let G be a group and let K be a field. Let N and M be two left K[G]-modules. Consider the
tensor product N ⊗K M . The diagonal action on N ⊗K M ,

g(n ⊗ m) = (gn) ⊗ (gm) (g ∈ G, n ∈ N, m ∈ M),

defines on N ⊗K M a structure of a left K[G]-module.
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For every k ≥ 1, we put

β
K[G]
k (N, M) = β

K[G]
k (N ⊗K M).

This definition is different from that used in [Jai17]. In light of [Bro82, Proposition III.2.2]
and the Lück approximation (Proposition 3.2) one sees that two definitions are closely related.
However, we do not claim that these two definitions always define the same invariant. We are
very grateful to Mark Shusterman who suggested this new definition to us.

In the following proposition, we collect the main properties of β
K[G]
k (N, M).

Proposition 8.1. Let G be a group and let K be a subfield of C.

(1) Let N and M be left K[G]-modules. Then

β
K[G]
1 (N, M) = β

K[G]
1 (M, N) and β

K[G]
1 (N, K) = β

K[G]
1 (N).

(2) Let H be a subgroup of finite index in G. Let N and M be left K[G]-modules. Then

β
K[G]
k (N, M) =

1
|G : H|β

K[H]
k (N, M).

(3) Let 0 → M1 → M2 → M3 → 0 be an exact sequence of left K[G]-modules. Assume that
dimK M3 < ∞ and H = CG(M3) is of finite index in G. Then for any left K[G]-module N
and any k ≥ 1, we have

β
K[G]
k (N, M1) − (dimK M3)β

K[G]
k+1 (N) ≤ β

K[G]
k (N, M2)

≤ β
K[G]
k (N, M1) + (dimK M3)β

K[G]
k (N).

Proof. (1) This follows directly from the definitions.
(2) Observe that RK[H] ⊗K[H] K[G] is isomorphic to RK[G] as a right K[G]-module and

dimRK[G]
= |G : H|dimRK[H]

. Let L = N ⊗K M . Then we obtain that

β
K[G]
k (N, M) = β

K[G]
k (L) = dimRK[G]

TorK[G]
k (RK[G], L)

= dimRK[G]
TorK[H]

k (RK[H], L) =
1

|G : H| dimRK[H]
TorK[H]

k (RK[H], L)

=
1

|G : H|β
K[H]
k (L) =

1
|G : H|β

K[H]
k (N, M).

(3) From the long exact sequence for the Tor functor, corresponding to the exact sequence

0 → N ⊗K M1 → N ⊗K M2 → N ⊗K M3 → 0,

it follows that

β
K[G]
k (N, M1) − β

K[G]
k+1 (N, M3)) ≤ β

K[G]
k (N, M2)

≤ β
K[G]
k (N, M1) + β

K[G]
k (N, M3).

Observe that

β
K[G]
k (N, M3) =

1
|G : H|β

K[H]
k (N, M3)

=
dimK M3

|G : H| β
K[H]
k (N, K) = (dimK M3)β

K[G]
k (N).

This finishes the proof of part (3). �
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In the following proposition, we give an algebraic reinterpretation of the sum which appears
in Conjecture 1.

Proposition 8.2. Let G be a limit group and let K a subfield of C. Let U and W be two
finitely generated subgroups of G. Then

β
K[G]
1 (K[G/U ], K[G/W ]) =

∑
x∈U\G/W

χ(U ∩ xWx−1).

Proof. First let us show that

β
K[G]
1 (K[G/U ]) = χ(U). (4)

Indeed, Proposition 3.4 implies that β
K[G]
1 (K[G/U ]) = β

K[U ]
1 (K). Now, from Proposition 3.3, it

follows that β
K[U ]
1 (K) = χ(U).

Observe that

K[G/U ] ⊗K K[G/W ] ∼=
⊕

x∈U\G/W

K[G/(U ∩ xWx−1)]

as K[G]-modules. Therefore, we obtain

β
K[G]
1 (K[G/U ], K[G/W ]) =

∑
x∈U\G/W

β
K[G]
1 (K[G/(U ∩ xWx−1)])

by (4)
=

∑
x∈U\G/W

χ(U ∩ xWx−1). �

Corollary 8.3. Conjecture 1 for a limit group G is equivalent to the following statement: for
any finitely generated subgroups U and W of G,

β
Q[G]
1 (Q[G/U ], Q[G/W ]) ≤ β

Q[G]
1 (Q[G/U ]) · βQ[G]

1 (Q[G/W ]).

9. The strengthened Howson property for hyperbolic limit groups

The Howson property for limit groups was proved by Dahmani [Dah03]. In the case of hyperbolic
limit group, we can prove the strengthened Howson property (see the statement of Theorem 9.1).
In fact, the strengthened Howson property holds for the family of stable subgroups of a given
group.

Let f : R≥1 × R≥0 → R≥0 be a function. Let H ≤ G be finitely generated groups, and fix
some word metrics.

A quasi-geodesic γ in G is f -stable if for any (λ, ε)-quasi-geodesic η with endpoints on γ,
we have η is contained in the f(λ, ε)-neighborhood of γ. The subgroup H is f-stable in G if the
inclusion of H is a quasi-isometrically embedding (with respect to the word metrics) and the
image of any geodesic in H is an f -stable quasi-geodesic in G. A subgroup H is stable if it is
f -stable for some f as previously.

Examples of stable subgroups include quasi-convex subgroups of hyperbolic groups, sub-
groups quasi-isometrically embedded in the cone-off graph of relatively hyperbolic groups and
convex cocompact subgroups of mapping class groups or Out(Fn). Note that any stable sub-
group must be word hyperbolic and that being a stable subgroup is a property preserved under
conjugation. See [AMST19] and references therein for details.
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Theorem 9.1. Let U and W be two stable subgroups of a finitely generated group G. Then for
almost all x ∈ U\G/W , the subgroup U ∩ xWx−1 is finite. In particular, if U is torsion-free, the
sum

∑
x∈U\G/W d(U ∩ xWx−1) is finite.

Proof. The theorem follows from [AMST19, Lemma 4.2] which states that, under the hypoth-
esis of our theorem, there is a constant D ≥ 0 such that whenever |Ug1 ∩ W g2 | = ∞ for some
g1, g2 ∈ G then the cosets g1U and g2W have intersecting D-neighborhoods.

Suppose that U ∩ W g is infinite. Then gW intersects the D-neighborhood of U . By multi-
plying g by an element of U on the left, we can assume that gW is a distance at most D from
the identity. Thus, by multiplying g by an element of W on the right, we can assume that the
length of g is less than D. Therefore, for all UxW ∈ U\G/W , having no representative in the
ball of radius D and center the identity, the subgroup U ∩ xWx−1 is finite.

By [AMST19, Lemma 3.1], the intersection of stable subgroups is stable and, hence, finitely
generated. Therefore, the ‘in particular’ claim follows. �

As hyperbolic limit groups are torsion-free and every finitely generated subgroup is quasi-
convex (and, hence, stable), we obtain the following corollary.

Corollary 9.2. Let G be a hyperbolic limit group and let U and W be two finitely generated
subgroups of G. Then the sum

∑
x∈U\G/W d(U ∩ xWx−1) is finite.

The strengthened Howson property is not true for limit groups that are not hyperbolic.
A simple example can be constructed on abelian groups, because all conjugates of a subgroup
are equal, regardless of conjugating by representatives of different cosets. This is essentially the
only reason for which the strengthened Howson property fails for limit groups. For limit groups,
or more generally relatively hyperbolic groups, one has a similar statement to Theorem 9.1
if one restricts to non-parabolic intersections.

Let G be a group and H = {Hλ}λ∈Λ a collection of subgroups. Let H be the disjoint union
�λ∈ΛHλ. A group G is hyperbolic relative to a family of subgroups H if it admits a finite rela-
tive presentation with linear relative isoperimetric inequality. The group G has a finite relative
presentation with respect to H if G is generated by a finite set X together with the collection
of subgroups in H and it is subject to a finite number of relations involving elements of X and
elements of H, formally

G = (〈X |〉 ∗ (∗λ∈ΛHλ))/〈〈R〉〉,
with X and R finite. Here 〈〈R〉〉 denotes the normal closure of R in 〈X |〉 ∗ (∗λ∈ΛHλ). Let R
be all the words over H that represent trivial elements. The relative presentation has linear
isoperimetric inequality, if there is a constant C such that for every w ∈ (X ∪H)∗ representing 1
in G, then w is equal in 〈X |〉 ∗ (∗λ∈ΛHλ) to a product of conjugates of elements of R ∪R using
at most C(w) + C conjugates of R. Here (w) denotes the length of w.

An important property that will be used is that the Cayley graph of G with respect to X ∪H,
denoted Γ(G, X ∪H), is hyperbolic.

A subgroup U � G is relatively quasi-convex if U is a quasi-convex set in Γ(G, X ∪H). Being
relatively quasi-convex is independent of the generating set X.

Conjugates of elements of H are called parabolic. Non-parabolic infinite-order elements are
called loxodromic and, indeed, they act as a loxodromic isometry of Γ(G, X ∪H). Note that
parabolic subgroups are bounded subsets of Γ(G, X ∪H) and, therefore, they are relatively
quasi-convex.

Connecting with the previous notion of stability, if a subgroup of a relatively hyperbolic
group is quasi-convex and has no non-trivial parabolic elements, then it is stable.
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Lemma 9.3. Let U and W be two relatively quasi-convex subgroups of a finitely generated,
relatively hyperbolic group G. Then for almost all x ∈ U\G/W , the subgroup U ∩ xWx−1 does
not contain a loxodromic element.

Proof. The key arguments of this proof are contained in [HW09, Lemma 8.4] whose proof we
follow closely. We assume that X is a finite generating set of G.

Suppose that U ∩ gWg−1 does contain a loxodromic element f . As f is a loxodromic isometry
of Γ = Γ(G, X ∪H), the subgroup 〈f〉 has two different accumulation points {f∞, f−∞} ∈ ∂Γ,
the Gromov boundary of Γ. As f ∈ gWg−1, we have that 〈f〉g ∈ gW and note that 〈f〉g has also
{f∞, f−∞} as accumulation points because it is at finite Hausdorff X-distance from 〈f〉. Thus,
the accumulation points of 〈g−1fg〉 � W in ∂Γ are {g−1f∞, g−1f−∞}.

By [HW09, Lemma 8.3] there are bi-infinite geodesics γU and γW in Γ from f−∞ to f∞

and g−1f−∞ to g−1f∞, respectively, and they are at a finite Hausdorff X-distance from 〈f〉 and
〈g−1fg〉, respectively. Finally, the vertices of γU lie in the σ-neighborhood of U and the vertices
of γW lie on the σ-neighborhood of W , where σ is the quasi-convexity constant of U and W .

Note that gγW has the same end points at infinite as γU . Now, by [HW09, Lemma 8.2], there
is a constant L, only depending on Γ, such that the vertices of the geodesics γU and gγW are
at most L Hausdorff X-distance of each other. Thus, 〈f〉 and 〈f〉g are at Hausdorff X-distance
at most L + 2σ. This implies that U and gW have intersecting D = L + 2σ neighborhoods. By
multiplying g by an element of U on the left, we can assume that gW is a distance at most
D from the identity. Thus, by multiplying g by an element of W on the right, we can assume
that the length of g is less than D. Therefore, for all UxW ∈ U\G/W , having no representative
in the X-ball of radius D and center the identity, the subgroup U ∩ xWx−1 does not contain
loxodromic elements. �
Theorem 9.4. Let G be a limit group and let U and W be two finitely generated subgroups
of G. Then for almost all x ∈ U\G/W , the subgroup U ∩ xWx−1 is abelian. In particular, the
sum

∑
x∈U\G/W χ(U ∩ xWx−1) is finite.

Proof. The case where G is hyperbolic follows from Theorem 9.2.
If G is a non-hyperbolic limit group, then G is finitely generated and hyperbolic relative to

the family H of maximal abelian non-cyclic subgroups (see [Dah03, Theorem 4.5]).
Recall that by [Dah03, Proposition 4.6], finitely generated subgroups of limit groups are

relatively quasi-convex. In particular, U and W are relatively quasi-convex. By Lemma 9.3, for
almost all x ∈ U\G/W the subgroup U ∩ xWx−1 does not contain a loxodromic element. As limit
groups are torsion-free, this implies that for almost all x ∈ U\G/W , the subgroup U ∩ xWx−1 is
contained in a parabolic subgroup and, hence, it is abelian. Moreover, because limit groups have
the Howson property [Dah03, Theorem 4.7], each U ∩ xWx−1 is finitely generated and, hence,
a limit group. Hence, χ(U ∩ xWx−1) is well-defined and zero when U ∩ xWx−1 is abelian. �

Theorem 9.1 implies also that a quasi-convex subgroup of a hyperbolic virtually compact
special group is virtually malnormal.

Corollary 9.5. Let G be a hyperbolic virtually compact special group and H a quasi-convex
subgroup of G. Then H is virtually malnormal and a virtual retract.

Proof. By Theorem 2.1, H is a virtual retract.
As G is virtually a subgroup of a RAAG, G is virtually torsion-free and residually finite. By

passing to a finite index subgroup of G, we can assume that H is torsion-free. By Theorem 9.1,
there is only a finite number of double cosets HxH such that Hx ∩ H �= {1}. By Theorem 2.2,
each of these double cosets is separable. As a finite collection of disjoint separable sets is separable,
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there exists a normal subgroup N of G of finite index that separates these double cosets. Hence,
H is malnormal in HN . �

10. The Wilson–Zalesskii property in virtually compact special hyperbolic groups

Let G be a residually finite group and let U and W two subgroups of G. We say that U and W
satisfy the Wilson–Zalesskii property if

U ∩ W = U ∩ W.

Here U denotes the closure of U in the profinite completion Ĝ of G. When G is virtu-
ally free, the Wilson–Zalesskii property for G was proved by Wilson and Zalesskii in [WZ98,
Proposition 2.4] for every pair of finitely generated subgroups (see also [RZ96, Lemma 3.6] for
the case when U and W are cyclic). In this section, we show that a pair of quasi-convex sub-
groups of a virtually compact special hyperbolic group satisfies the Wilson–Zalesskii property.
Our argument essentially follows the original argument of Wilson and Zalesskii. It uses a beau-
tiful idea of double trick that goes back to the work of Long and Niblo [LN91]. Let us start with
the following useful lemma.

Lemma 10.1. Let G be a residually finite group and let U and W be two finitely generated
subgroups of G. Let H be a subgroup of Ĝ of finite index. Assume that

(U ∩ H)(W ∩ H) ∩ G = (U ∩ H)(W ∩ H) and U ∩ H ∩ W ∩ H = U ∩ W ∩ H.

Then U ∩ W = U ∩ W .

Proof. Note that one always has that U ∩ W ⊆ U ∩ W . Let v ∈ U ∩ W . Then we can write
v = u1u2 = w1w2, where u1 ∈ U , u2 ∈ U ∩ H, w1 ∈ W and w2 ∈ W ∩ H. Thus,

k = u−1
1 w1 = u2w

−1
2 ∈ (U ∩ H)(W ∩ H) ∩ G = (U ∩ H)(W ∩ H).

Therefore, there are u3 ∈ U ∩ H and w3 ∈ W ∩ H such that k = u3w
−1
3 . Hence,

u1u3 = w1w3 ∈ U ∩ W and u−1
3 u2 = w−1

3 w2 ∈ U ∩ H ∩ W ∩ H = U ∩ W ∩ H.

Thus,

v = u1u2 = (u1u3)(u−1
3 u2) ∈ U ∩ W. �

Lemma 10.2. Let G be a hyperbolic virtually compact special group, U a malnormal retract of
G and W a quasi-convex subgroup of G. Put K = W ∩ U . Then G ∗U G is hyperbolic virtually
compact special and W ∗K W is quasi-convex in G ∗U G.

Proof. As U is a retract in G, U is quasi-isometrically embedded in G and, hence, quasi-convex.
By [Git96, Lemma 5.2], G ∗U G is hyperbolic and by [HW15, Theorem A], it is virtually compact
special.

For the sake of the proof, let G′ denote a copy of G and U ′, W ′ and K ′ the corresponding
copies of U , W and K in G′. Let B = G ∗U=U ′ G′ and A = 〈W, W ′〉 � B. From Bass–Serre
theory (or normal forms on amalgamated free products), it follows easily that the natural map
W ∗K=K′ W ′ → 〈W, W ′〉 � G ∗U=U ′ G′ is injective and, hence, an isomorphism.

Fix finite generating sets Y and Y ′ of G and G′, respectively, and let X = Y ∪ Y ′ a finite
generating set of B. In [Git96] terminology, a path p on the Cayley graph of Γ(B, X) is in normal
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form if p is the concatenation of subpaths

p ≡ p1p2 . . . pn,

such that the label of each pi is the label of a geodesic word either on Γ(G, Y ) or on Γ(G′, Y ′),
no two labels of consecutive subpaths pi and pi+1 lie in the same set Y or Y ′ and, finally, no
label represents an element of U = U ′ except maybe the label of p1. Now, [Git96, Lemma 4.1]
in view of [Git96, Lemma 5.2] claims that there is a constant C such that any geodesic path
in Γ(B, X) is in the C-neighborhood of any path in normal form with the same endpoints.
From this, it easily follows that A is quasi-convex in B. Indeed, let q be any geodesic path in
Γ(B, X) with endpoints in A. By the equivariance of the action, we can assume that q goes
from 1 to a ∈ A. As A ∼= W ∗K W ′, there is a path p in normal form p ≡ p1 . . . pn from 1 to a
where the labels of each pi represents an element of W or W ′. By the mentioned result of Gitik,
q is in the C-neighborhood of p. Let σ denote the quasi-convexity constant of W and W ′ as
subspaces of Γ(G, Y ) and Γ(G′, Y ′), respectively. We claim that each pi is in the σ-neighborhood
of A. Indeed, let a0 = 1 and ai ∈ A be the element represented by the label of p1p2 . . . pi−1.
Suppose that the label of pi is a word in Y . The case where the label of pi is a word in Y ′ is
analogous. Then a−1

i pi is a geodesic path in Γ(G, Y ) with endpoints in W , and therefore lies in the
σ-neighborhood of W . Thus, pi lies in the σ-neighborhood of aiW ⊆ A as claimed. Therefore,
p is in the σ-neighborhood of A. �

Theorem 10.3. Let G be a virtually compact special hyperbolic group and U and W quasi-
convex subgroups. Then U and W satisfy the Wilson–Zalesskii property.

Proof. Put K = U ∩ W . We want to show that U ∩ W = K. By Corollary 9.5, there exists a
subgroup H of G of finite index, containing U , such that U is retract and malnormal in H.
Moreover, by Lemma 10.1, it is enough to prove that (U ∩ H)(W ∩ H) ∩ G = (U ∩ H)(W ∩ H)
and U ∩ W ∩ H = K ∩ H. The first condition follows from Theorem 2.2. Thus, without loss of
generality, we may assume that H = G.

Let G′ = {g′ : g ∈ G} be a group isomorphic to G such that the map g �→ g′ is an isomorphism
between G and G′. Put F = G ∗U G′. In the following, we identify U and U ′ in F . Let P be a
subgroup of F generated by W and W ′. As G ∩ G′ = U , we obtain that W ∩ W ′ = W ∩ W ′ ∩ U =
K, and so P ∼= W ∗K W ′.

Observe that G is a retract of F . Hence, the closure G of G in F̂ is isomorphic to Ĝ.
Thus, the closures of U , W and K in F̂ are isomorphic to the closures of U , W and K in Ĝ,
respectively. In particular, F̂ is isomorphic to the profinite amalgamated product G∗̂UG′, and so
G ∩ G′ = U .

As W is quasi-convex in G, it is virtually a retract (Theorem 2.1). Hence, W = Ŵ . Thus,
the closures of K in Ŵ and Ĝ are isomorphic. Therefore, P̂ is isomorphic to the profinite
amalgamated product W ∗̂KW ′.

By Lemma 10.2, P is quasi-convex in F and F is virtually compact special. Therefore, by
Theorem 2.1, P is virtually retract in F , and so the closure P of P in F̂ is isomorphic its profinite
completion W ∗̂KW ′. Hence, W ∩ W ′ = K. On the other hand,

W ∩ W ′ = U ∩ W ∩ W ′ = U ∩ W.

We conclude that U ∩ W = K. �

Corollary 10.4. Let G be a hyperbolic limit group and let U and W two finitely generated
subgroups of G. Then for every normal subgroup T of G of finite index, there exists a finite-index
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normal subgroup H of G such that

UH ∩ WH ≤ (U ∩ W )T.

Proof. Assume that for every normal subgroup H of G of finite index there exists xH ∈ (UH ∩
WH) \ (U ∩ W )T . Let G > H1 > H2 > · · · be a chain of normal subgroups of G of finite index
that form a base of neighbors of 1 in the profinite topology of G. Without loss of generality, we
may assume that there exists

x = lim
i→∞

xHi ∈ Ĝ.

Clearly, x ∈ U ∩ W . By Theorem 10.3, U and W satisfy the Wilson–Zalesskii property. Hence,
x ∈ U ∩ W . Therefore, there exists n such that if i ≥ n, xHi ∈ (U ∩ W )T . We have arrived at a
contradiction. �

11. Constructions of submodules with trivial β
K[G]
1

In this section, we assume that G is an L2-Hall hyperbolic limit group. For example, by
Theorem 4.4, G can be the fundamental group of a closed orientable surface. Let K be a subfield
of C. Let W be a finitely generated subgroup of G. Then, because G is L2-Hall, there exists a
normal subgroup H of G of finite index such that W is L2-independent in WH. Let N0 be the
kernel of the map K[G/W ] → K[G/HW ], then by Proposition 4.2, β

K[G]
1 (N0) = 0.

Now, let U be another finitely generated subgroup of G. The main result of this section is the
proposition which generalizes the result described in the previous paragraph (it is a particular
case corresponding to U = G).

Proposition 11.1. Let G be an L2-Hall hyperbolic limit group and U, W two finitely generated
subgroups of G. There exists a normal subgroup H of G of finite index such that if L0 denotes
the kernel of the map

K[G/U ] ⊗K K[G/W ] → K[G/U ] ⊗K K[G/WH],

then β
K[G]
1 (L0) = 0.

Remark. Let N0 denote the kernel of the map K[G/W ] → K[G/WH]. Then

L0
∼= K[G/U ] ⊗K N0.

Proof. By Corollary 9.2, there are only finitely many double cosets UxW such that U ∩ xWx−1

is non-trivial. By a result of Minasyan (Theorem 2.2), each of these double cosets is separable.
It is easy to see that a finite family of disjoint separable sets is separable. Therefore, there exists
a normal subgroup H0 of G of finite index that separates these cosets.

Let UsW be a double coset with U ∩ sWs−1 non-trivial. Recall that

K[G](1U ⊗ sW ) ∼= K[G/(U ∩ sWs−1)]

as K[G]-modules. Let Ts be a normal subgroup of G of finite index such that U ∩ sWs−1 is
L2-independent in (U ∩ sWs−1)Ts. By Corollary 10.4, there exists a normal subgroup Hs of G
of finite index such that U ∩ sWHss

−1 ≤ (U ∩ sWs−1)Ts.
Now we put H = H0 ∩ (∩sHs), where the intersection is over double cosets UsW with

U ∩ sWs−1 non-trivial.
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Let S be a set of representatives of the (U, HW )-double cosets and extend it to S̃, S ⊂ S̃, a set
of representatives of the (U, W )-cosets. Observe that if x ∈ S̃ \ S, then U ∩ xWx−1 is trivial.
Define the map π : S̃ → S in such way that Uπ(x)WH = UxWH. Then we obtain the following
decomposition of K[G/U ] ⊗K K[G/W ]:

K[G/U ] ⊗K K[G/W ] = (⊕s∈SK[G](1U ⊗ sW )) ⊕ (⊕
x∈S̃\SK[G](1U ⊗ (xW − π(x)W ))). (5)

Moreover, if s ∈ S and x ∈ S̃ \ S, then

K[G](1U ⊗ sW ) ∼= K[G/(U ∩ sWs−1)] and K[G](1U ⊗ (xW − π(x)W )) ∼= K[G].

Observe also that

K[G/U ] ⊗ K[G/WH] = ⊕s∈SK[G](1U ⊗ sWH).

Moreover, K[G](1U ⊗ sWH) ∼= K[G/U ∩ sWHs−1].
For each s ∈ S we denote by Is the kernel of the map

K[G/U ∩ sWs−1] → K[G/U ∩ sWHs−1].

Then, from the decomposition (5), we obtain that

L0
∼= (⊕s∈SIs) ⊕ (⊕

x∈S̃\SK[G](1U ⊗ (xW − π(x)W ))).

If x ∈ S̃ \ S, then K[G](1U ⊗ (xW − π(x)W )) ∼= K[G]. Hence,

β
K[G]
1 (K[G](1U ⊗ (xW − π(x)W ))) = 0.

If s ∈ S, then Is is a submodule of the kernel Js of the map

K[G/U ∩ sWs−1] → K[G/(U ∩ sWs−1)Ts].

As U ∩ sWs−1 is L2-independent in (U ∩ sWs−1)Ts, β
K[G]
1 (Js) = 0. Hence, by Proposition 8.1(3)

(applied with N = K, M1 = Is and M2 = Js), β
K[G]
1 (Is) = 0. Thus, β

K[G]
1 (L0) = 0. �

12. The geometric Hanna Neumann conjecture

12.1 The proof of Theorem 1.3
Let G be a hyperbolic limit group, and assume that G is L2-Hall.

Let N = Q[G/U ] and M = Q[G/W ]. Using Proposition 11.1, we obtain that there exists a
normal subgroup H of G of finite index such that:

(1) if N0 denotes the kernel of the map Q[G/U ] → Q[G/UH], then

β
Q[G]
1 (N0) = 0;

(2) if M0 denotes the kernel of the map Q[G/W ] → Q[G/WH], then

β
Q[G]
1 (N, M0) = 0.

Observe that H ≤ CG(M/M0) ∩ CG(N/N0).
Define the ring Lτ [G] as in Lemma 6.3 and put

M̃ = Lτ [G] ⊗Q[G] M and Ñ = Lτ [G] ⊗Q[G] N.
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Then, by Lemma 6.3, Ñ is an acceptable Lτ [G]-module. Thus, by Proposition 6.4 there exists
an L[H]-submodule Ñ ′ of Ñ such that

β
L[H]
1 (Ñ ′) = 0, dimL(Ñ/Ñ ′) ≤ β

L[H]
1 (Ñ)
|G : H| and H ≤ CG(Ñ/Ñ ′).

Let us show first that β
L[H]
1 (Ñ ′, M̃) = 0:

β
L[H]
1 (Ñ ′, M̃)

Proposition 8.1(3)

≤ β
L[H]
1 (Ñ ′, M̃0)

Proposition 8.1(3)

≤ β
L[H]
1 (Ñ , M̃0) = β

Q[H]
1 (N, M0) =

β
Q[G]
1 (N, M0)
|G : H| = 0.

Thus,

β
L[H]
1 (Ñ , M̃)

Proposition 8.1(3)

≤ dimL(Ñ/Ñ ′)βL[H]
1 (M̃) + β

L[H]
1 (Ñ ′, M̃)

= dimL(Ñ/Ñ ′)βL[H]
1 (M̃) ≤ β

L[H]
1 (Ñ)βL[H]

1 (M̃)
|G : H| .

Therefore,

β
Q[G]
1 (N, M)

Proposition 8.1(2)
=

β
Q[H]
1 (N, M)
|G : H| =

β
L[H]
1 (Ñ , M̃)
|G : H|

≤ β
L[H]
1 (Ñ)βL[H]

1 (M̃)
|G : H|2 =

β
Q[H]
1 (N)βQ[H]

1 (M)
|G : H|2 = β

Q[G]
1 (N)βQ[G]

1 (M).

By Corollary 8.3, we are done.

12.2 The geometric Hanna Neumann conjecture beyond the surface groups
As we have shown in order to settle the case of hyperbolic limit groups of Conjecture 1, it is
enough to prove the L2-Hall property for these groups. We strongly believe that L2-Hall property
holds for arbitrary limit groups.

In the case of limit groups, the generalized Howson property holds if one replaces d by χ
(Theorem 9.4) because the reduced Euler characteristic for finitely generated abelian groups is
zero. However, if G is a limit group, we do not know whether the double cosets with respect to two
finitely generated subgroups are separated (in the hyperbolic case this follows from [Mina06]) and
we do not know whether the Wilson–Zalesskii property holds for every pair of finitely generated
subgroups of a limit group1.

As quasi-convex subgroups of hyperbolic virtually compact special groups satisfy the Howson
property we may ask whether they satisfy also the conclusion of the geometric Hanna Neumann
conjecture. This is not true. Fix a natural number d. In a 2-generated free group F , we can find
a finitely generated malnormal subgroup H with d(H) = d. Then, by [Git96, Corollary 5.3] and
[HW15, Corollary B], G = F ∗H F is hyperbolic and virtually special compact. The two copies
of F are quasi-convex in G, and their intersection has rank d.

In addition, we want to mention that a hyperbolic virtually special compact group is not
always L2-Hall with respect to a quasi-convex subgroup. For example, take a free non-abelian

1 After this paper was accepted, Minayan [Mina22] proved that the Wilson–Zalesskii property holds for limit
groups in general.
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retract H in the fundamental group of a compact hyperbolic 3-manifold group G. Then the first
L2-Betti number of G and, thus, of all its subgroups of finite index are equal to zero. However,
β

(2)
1 (H) > 0.
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Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Madrid, Spain

1877

https://doi.org/10.1112/S0010437X22007709 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007709

	1 Introduction
	2 Preliminaries
	3 L2-Betti numbers, the strong Atiyah conjecture and the Lück approximation
	4 The L2-Hall property for surface groups
	5 The proof of Theorem 1.4
	6 The structure of acceptable L[G]-modules
	7 The proofs of Theorems 1.2 and 1.1
	8 A module theoretic reformulation of the geometric Hanna Neumann conjecture for limit groups
	9 The strengthened Howson property for hyperbolic limit groups
	10 The Wilson–Zalesskii property in virtually compact special hyperbolic groups
	11 Constructions of submodules with trivial 1K[G]
	12 The geometric Hanna Neumann conjecture
	12.1 The proof of Theorem 1.3
	12.2 The geometric Hanna Neumann conjecture beyond the surface groups

	Acknowledgements
	References

