Note on a Property of Circulating Decimals with an even number of Repeating Figures equivalent to a Vulgar Fraction with a Prime Number as Denominator.

By LAWRENCE CRAWFORD, M.A., D.Sc.

1. The property is, that if such a decimal has 2k repeating figures, the first k are a_1 , a_2 , &c., in order, and the second k are b_1 , b_2 , &c., in order, and the a's and b's are such that

$$a_1 + b_1 = a_2 + b_2 = \&c. = 9;$$

for example, $\frac{42}{73} = .57534246$.

2. The proof of this is as follows. Let n be the prime number, then by Fermat's Theorem $10^{n-1} - 1$ is a multiple of n;

 \therefore any number x/n will, at most, give a repeating decimal with $\overline{n-1}$ repeating figures.

Now $10^{n-1} - 1 = (10^m - 1)(10^m + 1)$, *n* being of course odd, where $m = \frac{1}{2}(n-1)$, and *n* is prime, \therefore *n* is a factor of $10^m - 1$ or of $10^m + 1$, not of both. Take the case that it is not a factor of $10^m - 1$, then the decimal must have (n-1) repeating figures.

The first *m* figures are got by dividing $x \cdot 10^m$ by *n*. Then if $10^m + 1 = yn$, where *y* is an integer,

 $x. 10^{m}/n = x(y - 1/n) = xy - x/n = xy - 1 + (n - x)/n;$

 \therefore the remainder is (n - x), and the first *m* figures arranged in order form the number xy - 1.

The second set of *m* figures is got by dividing $(n-x)10^m$ by *n*, and the result is $10^m - x \cdot 10^m/n$,

i.e.,
$$10^m - xy + x/n$$
;

 \therefore the remainder is x, and we have $\overline{n-1}$ repeating figures, as we expected.

The second set of *m* figures makes up the number $10^m - xy$, *i.e.*, a number with *m* figures, each 9, -(xy - 1). But the first set of *m* figures is the number xy - 1;

... the figures are

 $a_1, a_2, &c., and b_1, b_2, &c., where <math>9 = a_1 + a_2 = b_1 + b_2 = &c.$

If n is not a factor of $10^m + 1$, but of $10^m - 1$, then x/n becomes a repeating decimal of m figures at most. If m is odd, the case is not one under discussion; if m is even, then

 $10^{m} - 1 = (10^{i} - 1)(10^{i} + 1)$, where 2l = m,

and *n* is a factor of $10^2 - 1$ or $10^2 + 1$, and the proof is exactly as before, if *n* is a factor of the latter; if of the former, proceed to the next factorization in the same way, and continue till we have $10^p + 1$, and not $10^p - 1$, a multiple of *n*.