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We address, by means of Numerical Simulations, one of the main is-
sues of the Cosmic String Galaxy Formation Scenario, namely the existence of a 
scaling solution, which is crucial to the very existence of the scenario. After a brief 
discussion of our numerical technique, we present our results which, though still 
preliminary, offer the best support to date of this scaling hypothesis. 

I N T R O D U C T I O N 

Cosmic strings are linear topological defects that are predicted to oc-
cur in many grand unified theories. They might be at the origin of the primordial 
density fluctuations that have led to the formation of galaxies and larger scale struc-
tures, and they are expected to be formed in great abundance when the universe 
goes through some spontaneous symmetry breaking phase transition. It has been 
shown that the majority of the string length at the time of formation is in the form of 
infinitely long strings. These infinitely long strings are a potential problem because 
their energy density naively seems to scale like non-relativistic matter implying 
that they will very quickly dominate the universe in the radiation-dominated era. 
This "disaster" is supposed to be avoided by the process by which the infinitely 
long strings cross themselves and break off small loops which can radiate away 
into gravitational radiation. This scenario has been studied analytically by Kibble 
(1985) and Bennett (1986a, b) . This analytic work has shown that there are two 
possibilities: either the loop production is not sufficient to avoid a string-dominated 
universe, or the strings will settle down to a scaling solution in which the number 
of strings crossing a given horizon volume is fixed. 

A great deal of work has already been done on the cosmic string theory 
of galaxy formation, assuming that a scaling solution does indeed exist, and there 
has been a great deal of speculation as to the characteristics of the assumed scaling 
solution, like the numerical value of the energy density in infinite strings, or the 
number of loops of a given length per horizon volume. So far, however, all of this 
work is on uncertain ground because the basic details of string evolution are not 
understood. Albrecht and Turok (1985) have published preliminary results from 
their simulation two years ago. However, their program was very crude, and these 
results were criticized as inconsistent on the basis of analytical work. 
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N U M E R I C A L TECHNIQUE 

To Generate the initial conditions, we follow the general procedure in-
troduced by Vachaspati and Vilenkin (1984): one draws discretized random phases 
for each cell of a cubic periodic lattice; if their winding number around an edge 
is non-zero, the link is occupied. Sampling points and their attached pointers are 
then laid down accordingly. The one important improvement that we have made is 
to replace the generated sharp corners by arcs of circles. Physically, this seems to 
be a better representation, while numerically this helps to minimize the number of 
discontinuous derivatives that the program must deal with. 

To evolve the generated configuration, we solve the partial differential 
equations describing the strings' motion. We use the gauge used by Turok and 
Bhattarcharjee (1984): χ+2(ά/α)χί1 — χ2) = (x//e)//e, with é = —2{à/a)ex2, where 
dots denote "time" derivatives and primes partial derivatives along the string (a 
is the expansion factor of the metric). Spatial derivatives at mid-points are sim-
ply obtained by differences, while we use a modified leapfrog scheme for the time 
integration, e is evolved according to e = e(l — 6)/( l + b), b = dt(à/a)x2, where 
x2 obtains by averaging over the end points. Each loop carries its one timestep 
satisfying the Courant condition. Our timestep halving routine preserve the 0(2) 
accuracy of the overall integration. 

A major difficulty that one encounters is that the strings have physical 
discontinuities in χ and x/, which result from the constant crossings of the strings 
with each other. These "kinks" have a long lifetime, and have important implica-
tions for the pattern of loops produced. To avoid the development of instabilities 
near the kinks (where the damping term due to the expansion of the metric may go 
to zero), we introduce some numerical diffusion that we try to keep at a minimal 
level. This is accomplished by averaging the velocities over neighboring points, but 
only when wiggles start to develop, i.e. whenever the quantity x2 + ( z ' / e ) 2 gets 
to be different by a few per cent from its correct value (which is conserved by the 
equations of motion). This procedure smooths out the wiggles without increasing 
the width of the discontinuities, and seems to preserve the kinks fairly well. 

To determine if two string segments crossed during the time step, we 
check the volume of the tetrahedron spanned by the four points on the two seg-
ments. If it changed sign during the step, the configuration is checked at the time 
the volume is zero, to see if a crossing did really occur (the positions of the points 
are extrapolated linearly between time steps). This procedure is exact Also, the 
internal dynamics of loops is on a much smaller timescale than the displacement 
of complete loops. A given loop is thus checked for self-crossings at each of its 
individual timesteps, while the crossings between loops are checked only at each 
system timestep, when all loops are synchronized. 

Finally, when two segments have been determined to cross, we inter-
change partners, and average the positions and the velocities in the crossing region 
to help reduce the gauge condition violation. At this stage, we also update a "ge-
nealogical tree", which records the labels of the "parent" loops and of the "child" 
loops, as well as such relevant quantities as "birth" and "death" times, energies, 
center of mass position and velocity, etc...This enables us to get a posteriori a de-
tailed picture of the string system evolution. 

RESULTS 
We have performed several runs in boxes as large in size as 28ξο, where 

£o is the mesh size of the lattice used to generate the initial configuration (£o is thus 
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the correlation length of the initial brown-
ian walks). Typically, such runs will have 
~ 160,000 particles, ~ 500 strings initially, 
and occupy ~ 56Mbytes of memory. After 
500 steps (which takes 7-8 hours of Cray-
2 cpu), a very large number of small loops 
have been created (there are then ~ 5500 
strings, see Fig. 1), and the expansion fac-
tor a has been multiplied by 2.25 (a factor 
~ 5 in physical time). We also performed an 
extremely large simulation in a box measur-
ing 36£o on a side. In an effort to "bracket" 
the scaling solution, we evolved some con-
figurations with different initial horizon size 
ho = 2c£o, and thus different initial energy 
densities in long strings pl(^o)? to see if PL 
behaves like radiation, i.e. if the evolved 
PL-t11 μ converge toward similar (constant) 
values. This does seem to happen after a 
fairly short time, as is illustrated in Fig. 
2 (long strings are defined to be of length 
> ci). Runs with different numerical pa-
rameters (e.g. the numerical lower cutoff on 
the size of chopped loops) do exhibit similar 
behaviors, though the precise numerical val-
ues might be somewhat different. Other di-
agnostics, like the density of loops of a given 
size, also bring support to the hypothesis of 
existence of a scaling solution. Nevertheless, 
there still remains to feed back our results in 
the analytical formalism to check their con-
sistency, and make absolutely sure that the 
apparent scaling behaviour is not the result 
of some funny numerical artefact. 

C O N C L U S I O N 
Our first results, though not defini-

tive, lend support to the hypothesis of ex-
istence of a scaling solution. Nevertheless 
more work is necessary in order to be able 
to make reliable quantitative predictions on 
the accurate characteristics of the scaling 
regime, such as the number of strings of a 
given size per horizon volume, or their 2-
point correlation function. 
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Figure 1 
A final string configuration in a sub-
volume of side equals ct/2. 
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Figure 2 
PL-t21'μ=/(Ί/£ο)· The solid curve is 
for the run in a box of side L=36£o, 
the others correspond to L=28£o-
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