A NOTE ON THE RATE OF CONVERGENCE OF HERMITE-FEJÉR INTERPOLATION POLYNOMIALS*

BY R. B. SAXENA

The Hermite-Fejér interpolation polynomial $H_n[f]$ of degree $\leq 2n-1$ is defined by

(1)
$$H_n[f;x] = \sum_{k=1}^n f(x_{kn})(1 - xx_{kn}) \left[\frac{T_n(x)}{n(x - x_{kn})} \right]^2$$

where

(2)
$$x_{kn} = \cos(k - \frac{1}{2}) \frac{\pi}{n}, \quad k = 1, 2, \dots, n$$

are the zeroes of Chebyshev polynomial of first kind $T_n(x) = \cos n(\arccos x)$. According to L. Fejér [2] the polynomials $H_n[f]$, $n=1, 2, \ldots$ converge uniformly to a continuous function f(x) defined on [-1, 1]. As to the rapidity of convergence E. Moldvan [4] (also O. Shisha and B. Mond [5]) has given the estimate

(3)
$$||H_n[f] - f|| \le C\omega_f \left(\frac{\log n}{n}\right), \quad (n \ge 4).$$

Here $||f|| = \sup_{1 < x < 1} |f(x)|$ and ω_f is the modulus of continuity of f(x).

Recently R. Bojanic [1] has given the estimate of the rate of convergence of the sequence $H_n[f]$, $n=1,2,\ldots$ in terms of the arithmetic means of the sequence $\{\omega_f(1/n)\}$. Let Ω be an increasing subadditive and continuous function on $x(x \ge 0)$ with $\Omega(0)=0$ and let $C_M(\Omega)$ be the class of continuous functions on [-1,1] defined by

$$f \in C_M(\Omega) \Leftrightarrow \omega_t(h) \leq M\Omega(h)$$
.

THEOREM. (R. Bojanic). There exist constants c and C $(0 < c < C < \infty)$ such that for $n \ge 2$ we have

(4)
$$\frac{cM}{n} \sum_{k=2}^{n} \Omega\left(\frac{1}{k}\right) \leq \sup_{f \in C_M(\Omega)} \|H_n[f] - f\| \leq \frac{CM}{n} \sum_{k=1}^{n} \Omega\left(\frac{1}{k}\right).$$

In this note we show that a better local approximation can be obtained at the end points of the interval, namely we prove the following:

^{*} This research has been supported by the National Research Council Grant NRC-A-3094.

THEOREM. There exists a constant C^* such that for $n \ge 2$ and for $-1 \le x \le 1$ we have

(5)
$$|H_n[f;x] - f(x)| \le \frac{C^* M}{n} \sum_{k=1}^n \Omega\left(\frac{(1-x^2)^{1/2}}{k} + \frac{1}{k^2}\right).$$

2. For the proof of this result we shall need the following Lemma which is a modified form of a Lemma of R. Bojanic [1]:

LEMMA. For $m \ge 2$ we have

$$(6) \qquad \frac{\pi}{m} \int_{\pi/m}^{\pi} \frac{\Omega(t \sin \theta)}{t^2} dt \leq \sum_{\gamma=1}^{m-1} \frac{1}{\gamma^2} \Omega\left(\frac{\gamma+1}{m} \pi \sin \theta\right) \leq \frac{8\pi}{m} \int_{\pi/m}^{\pi} \frac{\Omega(t \sin \theta)}{t^2} dt,$$

and

(7)
$$\frac{\pi}{m} \int_{\pi/m}^{\pi} \frac{\Omega(t^2)}{t^2} dt \leq \sum_{\gamma=1}^{m-1} \frac{1}{\gamma^2} \Omega\left(\frac{(\gamma+1)\pi^2}{m^2}\right) \leq \frac{8\pi}{m} \int_{\pi/m}^{\pi} \frac{\Omega(t^2)}{t^2} dt.$$

The proof depends on the inequalities

$$(8) \quad \frac{\pi}{m} \int_{\gamma\pi/m}^{(\gamma+1)\pi/m} \frac{\Omega(t\sin\theta)}{t^2} dt \le \frac{1}{\gamma^2} \Omega\left(\frac{\gamma+1}{m} \pi \sin\theta\right) \le \frac{8\pi}{m} \int_{\gamma\pi/m}^{(\gamma+1)/m} \frac{\Omega(t\sin\theta)}{t^2} dt$$

on following the same pattern as in [1].

3. Proof of the theorem.

We shall require the following estimate due to Vértesi [6]:

$$(9) |f(x) - H_n[f; x]| \le C_1 \sum_{\gamma=1}^n \frac{1}{\gamma^2} \left[\Omega\left(\frac{\gamma+1}{n+1} \pi \sin \theta\right) + \Omega\left(\left(\frac{\gamma+1}{n+1} \pi\right)^2\right) \right]$$

where $x = \cos \theta$.

On using the Lemma for m=n+1, we get from (9)

$$(10) |f(x) - H_n[f; x]| \le \frac{8\pi C_1}{n+1} \left[\int_{\pi/(n+1)}^{\pi} \frac{\Omega(t\sin\theta)}{t^2} dt + \int_{\pi/(n+1)}^{\pi} \frac{\Omega(t^2)}{t^2} dt \right].$$

Now

(11)
$$\int_{\pi/(n+1)}^{\pi} \frac{\Omega(t \sin \theta)}{t^2} dt = \int_{1}^{n+1} \Omega\left(\frac{\pi \sin \theta}{t}\right) dt$$
$$\leq C_2 \int_{1}^{n} \Omega\left(\frac{\sin \theta}{t}\right) dt$$
$$\leq C_3 \sum_{k=1}^{n} \Omega\left(\frac{\sin \theta}{k}\right).$$

Similarly we can show that

(12)
$$\int_{\pi/(n+1)}^{\pi} \frac{\Omega(t^2)}{t^2} dt \le C_4 \sum_{k=1}^{n} \Omega\left(\frac{1}{k^2}\right).$$

Thus (10), (11) and (12) complete the proof of our theorem.

Since the modulus of continuity ω_f of any continuous function f on [-1, 1] has the same properties as Ω , it follows from the theorem that for any continuous function f on [-1, 1] we have for $-1 \le x \le 1$

(13)
$$|f(x) - H_n[f; x]| \le \frac{C}{n} \sum_{k=1}^n \omega_f \left[\frac{(1 - x^2)^{1/2}}{k} + \frac{1}{k^2} \right].$$

REFERENCES

- 1. Bojanic, R., A note on the precision of interpolation by Hermite-Fejér polynomials, Proceedings of the Conference on constructive theory of functions. Akadémiai Kiadó, Budapest (1972), pp. 69-76.
 - 2. Fejér, L., Über Interpolation, Göttinger Nachrichten (1916), pp. 66-91.
- 3. Kis, O., Remark on the order of convergence of Lagrange interpolation, Annales Univ. Sci., Budapest, 11 (1968), pp. 27-40.
- 4. Moldvan, E., Observatii aspura unor procedee de interpolare generalizate, Acad. Rep. Pop. Romine, Bul. Stil, Sect. Mat. Fiz. 6 (1954), pp. 472-482 (Romanian, French and Russian summaries).
- 5. Shisha, O. and Mond, B., The rapidity of convergence of the Hermite-Fejér approximation to functions of one or several variables, Proc. Amer. Math. Soc. (1966), pp. 1269-1276.
- 6. Vértesi, P. O. H., On the convergence of Hermite-Fejér interpolation, Acta. Math. Acad. Sci. Hungar. 22 (1-2), (1971), pp. 151-158.

University of Alberta,

EDMONTON, CANADA