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Estimation of the integral

of a stochastic process

Noel Cressie

Consider the class of stochastic processes with stationary

independent increments and finite variances; notable members are

brownian motion, and the Poisson process. Now for X, any

member of this class of processes, we wish to find the optimum

sampling points of X, , for predicting X.dt . This design
J e\

question is shown to be directly related to finding sampling

points of Y. for estimating 6 in the regression equation,

2
Y. = $t + X. . Since processes with stationary independent

increments have linear drift, the regression equation for Y. is

the first type of departure we might look for; namely quadratic

drift, and unchanged covariance structure.

1 . Introduction

Statistical inference on stochastic processes, in particular for

problems of design, is an area of research which has been neglected until

recently. In this paper we concentrate on processes X, , with stationary

independent increments, with finite variances, and with X . - 0 ; this

includes both the brownian motion, and the Poisson process as special

cases. Define I to be
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(A
(1) I = \ X.dt ,

which is well defined as the limit in quadratic mean of the approximating

Riemann sums. We are interested in the design problem of predicting this

integral, based on observing the process at n distinct time points,

Sacks andYlvisaker [ 7] studied this problem for a large class of random

processes; we show here that for processes with stationary independent

increments, and finite variance, the design points can be found explicitly.

\AThe motivation for considering the prediction of X.dt was given
J 0 t

by Sacks andYlvisaker. They showed that the problem arose naturally from

the following interesting question. Let Y. be a stochastic process with

Y. = 0 . Now suppose Y, can be regressed on a deterministic function

f(t) , with X. as error; that is
u

yt = 3/(t) + xt , o < t s A .

Let if (s , t) be the covariance function of X. , and suppose

(A
f(t) = I if ( s , t)$is)d8 ,

Jo

<j> continuous. Then finding the design that minimizes the variance of

£ I .Y, , the best l inear unbiased estimator of 3 based on

t = [t. , . • • , t ) , can be shown to be equivalent to finding the optimal

(minimum mean squared error) design to predict (fr{t)X,dt .
>0 t

For our case <t>(t) = 1 * and w e vill see "below that

» t) = 0 -min(s, t) . Hence the regression equation becomes

p
V — ft ' + + Y'
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where &' = -60 /2 , and X't = X^ + (/16a )t , which is still a process with

stationary independent increments. In general, X' has a drift

proportional to t (see below). Clearly then, adding the quadratic term

6't to the drift is the first type of departure (from brownian motion

for example) we might seek for the process 1. . Hence finding the right

design to estimate 8 is of primary importance. Subsequently, our

interest will be in the equivalent problem of finding the optimal design to

estimate I X.dt .

Define t = (i.. , . .., t ) . Using minimum mean squared error as the

optimality criterion, the optimal predictor becomes

(2) Jt = E[l I Xt , ..., Xt )

{xt | * v ...,xt)dt .

When X, has stationary independent increments, t[x \ X, , ..., X )
1 n

may be shown to be the polygon obtained by linearly connecting the points

(0, 0 ) , ft , X, ) , . .., ft , X ) ; and for t > t , we have a straight
1 *l " n n

line from [t , X 1 with slope m , where m = E[x.) .
n n

Also, the Levy representation of the characteristic function of X
v

tells us that

E[X.X ) = s[o2-m2t) , s < t ,

where

and m =

Therefore, covfAT., X ) = a .min(s, t) .

In what is to follow, Sections 2 and 3 completely solve the design

problem as posed above. Then Section 4 extends the problem to prediction
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of X dt , 0 < u < v 2 A ; again the optimal design can be found
>u *

explicitly.

2 . To c a l c u l a t e the mean squared error

Define

(3) MSEt E

where J and I. are given in ( l ) and (2) . Our task i s to find the t

which v i l l minimize MSE. . F i r s t ly , we wil l show that without loss of

general i ty, we may consider m = 0 .

Define Z,BX-mt ; then E(z ) = 0 , for a l l t > 0 , and

E { x t | * v . . . , X t ) = E { x t | Z ^ , . . . , Z t )

= E i Z t | Z ^ , . . . , Z t ) + m t .

Therefore,

X t ~ E { X t | X . . . , X t ) * Z t - E { Z t | Z . . . t Z t ) .

I n x n

Hence we can do a l l our calculations on MSÊ  as if m = 0 ; that is as

if

2 m ifJf ) = a2.min(s, t)
v 8

We will also show that MSE^ can be partitioned into a sum of squares of

orthogonal components. Consider, with a < b < a ,
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Xa> V

, Xb)]dt •

Xa, Xb)]dt]

This is because

rbif V

= 0 .

Therefore, using the identical argument jus t given, we may write

(5) MSEt = E t-E[xt | X )]dt\ + E
1 )

+ . . . + E

*2
[ j t -E(x t | l t , I t

t1 1

+ E

We wil l now calculate the contribution of each of these terms to MSE. .

Consider
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41 [VE(*t I V xbftdt)
a J

^b a= E r xtdt - (b-a)

f f X8Xdsdt) - 2E

which, by repeated usage of (k), is equal to

(6) o2(fc-q)3

+ E b a'
{b-a\

12

The end interval [t , A] is a special case. Using similar arguments to

the above, we may obtain

if4 r
(T) E [X

\2 02{A-T)3

Therefore, (5) , (6) , and (T) give us

1=0 12
(8) MSE. = a'

where tQ - 0 .

3. Minimizing the mean squared error

We w i l l now minimize expression ( 8 ) , by p u t t i n g

g f - M S E t = 0 , i = 1 , . . . , n .
i

This gives us the following n equations:

(9)

(10)

t. =

t = ^ -
n " 3 T 3 '

Solving (9) we get
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and putting this into (10) allows us to solve for £„ . Hence the solution
„ .

to (9) and (10) is

(U) t\ = i =1, ..., „ .

Substituting (ll) into (8), we get

n
t° 3(2«+l)2

which can be shown to be greater than or equal to MSE+ for all t

Therefore, choosing t = t gives us the optimal design.

f4. Optimal design for predicting

We now wish to find the optimal design for predicting xdt , where

0 < u < V £ A . Recall that our sampling points t,, £_, .... t are such
1 2 n

that 0 < t < to < ... < t £ / 4 . Since X has stationary independent

increments, common sense tells us that we are going to want to sample all

our points in [u, v] . To show that this is in fact true, suppose that we

have

t. , « [0, u] ,
3 —-L

and

where 2 £ j £ k £ n-1 . Define

[V-A] -
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= E

t .

+ e

+ . . . + Ef
The middle contributions to S. are, as before,

12 = 3 •

The end contributions can be found by a method almost identical to the

method used to obtain (6 ) . They are

' V-l

and

Obviously, over all choices of t. . and *£+1 »
 t h e one which makes

the smallest is

In other words, if we restrict t. , to belong to [0, u] , then the best

choice of t. is u , and similarly, if we restrict tv . to belong to
3~" K.*J-

[v, A] , then the best choice of t. is v .

Common sense also tells us that a design with j as small as

possible (allowing more points to be sampled in [u, v] ), that is, with
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j = 2 , k = n - 1 , will have smaller mean squared error. This can also

be verified, with a little algebra.

Let us now try to minimize S. for t satisfying

n

*2

... + E f \Xt-E[Xt I I )\di

As before, the middle contributions are

^^2—~— > £ = 1, 2, . . . , M-1 ,(12)

and from (7) the last term is

(13.)

The first term is derived using the method identical to the one used

to get (6) and is equal to

Add together (12), (13), (l1*) to give 5. , and then set

This results in the following set of n equations:

(15)
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Solving (15) recursively gives

(16)

and

• 2 - 2n+l

(17) , j = 1, . . . , n

From equation (16),

2
u =

and putt ing th i s into (17) gives

(18)
2n-l

gw-2,7+1
2n-l

» j = 1 , . . • , w ,

resulting in mean squared error

2,0

i
121 2 3(2«-l) 2 -

Therefore

5 0 = min{5. : M < t , t < v)

< min{St : ^ = u, *„ = "}

: t± € [0, « ] . * „ € [v, A]}

: t ._x € [0, « ] , * f c + 1 € [tf, 4]} , 2 £ j £ fe £ n-1

that is S ft < Sf , for a l l t € [0, / l]n . Hence the optimal design for
t ° Z

fy
predicting ^ + ^ > w n e r e ^ i s ony process with stationary independent

increments, i s given by (16) and (18).
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