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SEPARATING FUNCTION ALGEBRAS

G. L. CSORDAS AND H. B. REITER

1. Introduction. Recent results of Hoffman and Singer [7], Weiss [10]
and Wilken [11] indicate that the study of separation properties play a
central role in the theory of function algebras. Our purpose in this
paper is to investigate a natural separation property of function algebras.

Let A be a sup-norm algebra of complex-valued continuous functions
on a compact Hausdorff space X. In the sequel we will call a closed
subset S of X an LA-set or briefly an L-set, if L(S) = S9 where

US) = Π /-7GS) .
fβΛ

We will say that an algebra A on I is a separating algebra if every
closed subset of X is an L-set. Clearly, regular, approximately normal and
approximately regular algebras are all examples of separating algebras.
(For the terminology used here we refer the reader to Wilken [11].) In
fact, any algebra that contains a one-one function is a separating algebra.
As we will see in section 4, pervasive, Dirichlet and maximal algebras
are also examples of separating algebras. The concept of a separating
algebra is quite broad as the example of the disk algebra—the algebra
of all continuous functions on the closed disk which are analytic on the
open disk D—shows. For although, the disk algebra is a separating
algebra it is neither maximal nor approximately regular.

On the other hand, in general, it is difficult to determine whether
an algebra is a separating algebra. By way of illustration consider the
algebra H°° of all bounded analytic functions on the open disk D. Is H™
considered as an algebra of functions on its maximal ideal space a
separating algebra? An affirmative answer to this question together
with an elementary argument from the theory of cluster sets would imply
the Corona Theorem (see [3]).

2. Definitions. In the sequel we will use the following terminology
and notation. X will denote a compact Hausdorff space and C(X) the
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Banach algebra of all continuous complex-valued functions on X with the
usual supremum norm. We will say that A is an algebra on X if A is
a closed subalgebra of C(X), contains the constant functions and separates
points of X. We will say that A is a maximal algebra on X if A is an
algebra on X and A is contained in no other proper closed subalgebra
of C(X).

We will denote by MA the maximal ideal space of A endowed with
the Gelfand topology. As is customary, we will identify each maximal
ideal in MA with the complex-valued algebra homomorphism that it
determines. If A is an algebra on X, then MA is a compact Hausdorff
space, and X is homeomorphic to a subset of MΛ. We will denote by
ΓA the Silov boundary of A.

If S is a closed subset of X we will denote by / | S the restriction
of the function f to S and by A\S the algebra of restrictions of func-
tions in A. As will denote the completion of A \S in the sense of uniform
convergence on S.

The essential set of A in I is that unique minimal closed subset E
of X such that if / is any continuous function of X and f\EeA\E,
then / e A . Finally, we will say that A is an essential algebra on X,
if the essential set for A is all of X. This terminology is due to Bear [1].

3. Properties of L-sets. Let A be an algebra on X. Evidently, the
whole space X, each singleton, {x}, and any finite set, T = {x19 , xn},
are L-sets. Next we show that the closed set obtained by adding a finite
set of points to an L-set is also an L-set.

THEOREM 3.1. Let S be an L-set, then

L(S U T) = S U T

for any finite subset T of X.

Let xx be an arbitrary point in X\S. To prove the theorem it is

enough to show that

L(S U {x,}) c S U {x,} .

Suppose there is a point xQ in L(S U {^J)\(S U {xλ}). Then there is a
function gxeA satisfying the following properties: gx{x^ = 0, 0 k g^S)

and HΛH < - 1 . Let
Li
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xes

Clearly 0 < δ < 1. Now there is a function g2 in A such that g2(x0) = 0,

g2{X\) Φ 0 and | |# 2 | | < —. Let λ be any number in the closed bounded

interval —, δ\ and let

, x) =

If for some as in S f(λ9 x) — 0, then

λ = \λ\ = \g2(χ)\-1\gι(χ)\\l - gί(χ)\-1 > \\g2\\-^ > l a - 2 .

This contradicts the assumption t h a t Λe — 9 δ \ , where 0 < δ < 1. Hence

for any λ in — ,3 and any x in S f(λ,x) Φ 0. Furthermore, it is not

difficult to show that for all λ in — ,δ\ with one possible exception λQy

f(λ,xx) φ 0. Hence, for any x in S U {x^ and any λ in —-,3 , where

^ •:£ ^0, f(λ,x) Φ 0. Since / ϋ , a?0) = >̂ ô does not belong to L(S U {Xi})\

(S U {a?!}). This contradiction completes the proof of the theorem.

Direct verification yields the following

LEMMA 3.2. Let S and T be any two closed subsets of X, then

(i) L(S) c LCD, whenever S c: Γ,

(ii) L(S) - L(L(S)).

We remark that in general L is not a closure operator. This is

demonstrated in the following examples.

EXAMPLE 3.3. Let A be the algebra of all functions continuous on

the closed unit bidisk,

P = {(z,w)\\z\<l,\w\£l}9

in complex two-space which are analytic on the interior of the bidisk.

It is known [8; p. 30] that if / is in A and / vanishes at the origin,

then / is zero somewhere on the topological boundary of the bidisk.

Now, if
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S = {(z,w)\\z\<l,\w\ = l}

and

T = {(z,w)\\z\ = l,\w\£l},

then L(S U T) ψ L(S) U L(T).

EXAMPLE 3.4. Let E be a totally disconnected perfect bounded set
on the Riemann sphere X, such that the intersection of E with any open
set is either empty or has positive two dimensional Lebesgue measure.
Let A be the subalgebra of C(X) consisting of all those / in C(X) which
are analytic in X\E. In [9; Theorem 1] Rudin showed that for all /
in A, f(E) = f(X). Thus, E is not an L-set.

It is easy to verify that an arbitrary intersection of L-sets is an L-
set. Also, if S is a hull-kernel closed set (for the terminology see Gamelin
[4; p. 13]), then L(S) = S. Note that an L-set need not be a hull-kernel
closed set.

We recall that a subset S of X is a set of antisymmetry (for A) if
feA and / | S is real implies that / | S is constant. As is well-known
(Browder, [2 p. 137]) every set of antisymmetry is contained in a maximal
set of antisymmetry. It is clear that a maximal set of antisymmetry is
an L-set.

Finally, we remark that if E is the essential set of A in X, then
E is an L-set.

As noted above in general it is difficult to determine whether or not
a closed subset S of X is an L-set. The following elementary result
provides a simplification in the work involved.

LEMMA 3.5. Let S be a closed subset of X.

( i ) For any maximal ideal M

LAS) = LM(S) ,

where

LAS) = n rιf(s).

(ii) Suppose X\S contains at least two points and that for any pair
of maximal ideals M and N in X\S
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LA(S) = LMC]N(S) .

Then either S is an L-set or LA(S) = X.

(iii) // S is an L-set and X\S contains n points, then there exist n

maximal ideals M19 , Mn such that

Lj(S) = S ,

where

I=ΠMί.
ί = l

In connection with part (ii) of Lemma 3.5 we remark that if the

difference X\S is a singleton {xQ}, then L(S) = X provided x0 is not a peak

point. For the definition of a peak point see Browder [2; p. 96].

We conclude this section with the following theorem.

THEOREM 3.6. Let S be a closed subset of X and let xQeL(S)\S.

Then X contains a minimal closed subset T such that xQeL(T)\T.

We use Zorn's lemma in the proof. Let Ta be a chain of subsets

of X satisfying xoeL(TJ\Ta. Let T = Π Ta. We claim that for each

f in A there is a point xf in T such that f(xf) = f(x0). To see this,

fix an / in A and choose xa from Ta so that f(xa) = f(x0). Now let xβ

be a convergent subnet of xa and let xf be its limit. Then f(xf) =

since / is continuous. Thus f(xo)e f(Γ\Ta) for each / .

4. Separating Algebras. We will say that an algebra A on X is a

separating algebra if every closed set in X is an L-set. Clearly, if A

is a separating algebra on X and B is an algebra on X containing A,

then B is also a separating algebra. In view of the results of section

3 we note that if A is a separating algebra then L is a closure operator

and L defines a topology on X which is equivalent to the given topology.

This is the content of the following characterization of separating algebras.

THEOREM 4.1. // A is an algebra on X, then the following assertions

are equivalent.

(1) A is a separating algebra.

(2) For each pair of closed sets St and S2 in X such that L(Si) = Sif

X U S2) - L(Sι) U L(S2) .
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(3) For each closed set S and a point x e S there is a function f
in Ker#,

Ker x = {feA\f(x) = 0} ,

such that

Z(f) n S = φ ,

where

We will only show that (2) implies (1). If statement (2) is satisfied
then the L-sets are the closed sets of a topology τ. Now the relations

geA

show that f~KC) is a τ-closed set for each closed set C and each / in A.
Thus each / in A is τ continuous. Since A separates points of X, τ is
a Hausdorff topology. But since τ is contained in the original (compact)
topology it is equivalent to it.

We recall that A is a Dirίchlet algebra on X if the real parts of the
functions in A are uniformly dense in the real continuous functions on
Z. The prototype of a Dirichlet algebra is the algebra of continuous
functions on the unit circle whose Fourier coefficients vanish on the
negative integers.

THEOREM 4.2. Every Dirichlet algebra is a separating algebra.

Let S be a closed subset of X and x0 not in S. Choose a real-valued
continuous function / satisfying f(xQ) — 0 and

inf f(x) = 1 .
xes

Now let g = u + iv be a function in A satisfying | |/ — u\\ < 1/2. Then

the inequalities

u(x0) < — < inf u(x)
2 xes

show that g(x0) is not in g(S). This completes the proof of the theorem.

We remark that the example of the disk algebra shows that a separat-
ing algebra need not be a Dirichlet algebra.
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Before proving our next result we recall some well-known facts
(Hoffman and Singer [7; p. 218]) about maximal algebras. Suppose A
is a maximal subalgebra of C(X) and suppose S is a closed subset of X.
Let Ao = {/ e C(X) \ f \ S e As}, then Ao is closed and A^A0^ C(X). Thus
either As = C(S) or every function / in C(X) such that f(S) = 0 is in A.

THEOREM 4.3. If A is a maximal essential subalgebra of C(X), then
A is a separating algebra.

Let S be a closed set and let x0 be a point not in S. If x0 is in
L(S), then S U {x0} = X. To see this let / be a function in C{X) whose
restriction to S U {x0} is zero. If / is not in A, then the algebra (A,/)
generated by A and / is dense in C(X). Thus each g in C(X) satisfying
g(xQ) = 0 and g(x) = 1 for each a; in S can be approximated by poly-
nomials in /. That is

Σ <>>ι f* - 9 < _ for some ateA
4

Since f(S U {x0}) = {0} we have

KG*0 — ̂ (^)l < — for all x in S U {̂ 0} .
4

This shows that α0O0) β ̂ oCS) whence ^0^ £(£)• This contradiction shows
that every continuous function vanishing on S U {xQ} belongs to A. Since
A is essential, X has no proper closed subset T such that each continuous
function vanishing on T belongs to A. Now it is well-known [6; p. 304]
that the Silov boundary of an algebra A maximal in C(X) is X itself.
This means that xQ is an isolated point of the Silov boundary X. Thus
x0 is a peak point for A and xogL(S).

The results of Bear [1] show that the study of function algebras can
effectively be reduced to the study of essential algebras. Thus it is not
surprising that we can weaken the hypothesis of Theorem 4.3 to obtain

THEOREM 4.4. If A is a maximal subalgebra of C(X), then A is a

separating algebra.

We have seen that if S is a closed set and x0 is in L(S)\S, then

S U {x0} contains the essential set E of the algebra A. Thus E c S U {#0}
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By Theorem 4.3 we may assume that A is not essential. Thus E is a
proper subset of X and

A = {feC(X)\f\EeAE}.

Suppose x0 is not in E. Let g be any function in C(X) such that g(x0)
<£ g(S) and g\E = f\E for some / in A. Then geA and we conclude

that xo£L(S). On the other hand, if x0 is in E then x0 is an isolated
point in E since E\{x0} is contained in S. Since A is maximal, there is
a function / in A such that f(xQ) = \\f\\ = 1 and \f(x)\ < c < 1 on E\{x0}.
Extend f\E\{xQ} to a continuous function F defined on S without increas-
ing the range. Now extend F continuously to all of X. This extension
of F belongs to A because its restriction to E belongs to AE. Also the
extended function separates x0 from S.

In [7; p. 221] Hoffman and Singer give an example of a function
algebra which is pervasive but not maximal. The proof of the next
theorem is similar to the one given above.

THEOREM 4.5 If A is a pervasive subalgebm of C(X), then A is a
separating algebra.

We pause for a moment to discuss the scope of the foreign result.
In the above proofs we used the fact that for function algebras which
are maximal or pervasive the Silov boundary, Γ, is the whole space X.
Thus it is natural to inquire whether the condition Γ = X is sufficient
to guarantee that all closed sets are L-sets. The following example shows
that in general the condition X = Γ is not sufficient.

EXAMPLE 4.6. As before let P = {(z-w)\ \z\ < l,\w\ < 1}. Let T =
{(z,w)\ \z\ = 1 or \w\ = 1} denote the topological boundary and let A be
the bidisk algebra on P. Let θ = (0,0) and define Ao by

Ao = {/e C(P)I/| ΓU {θ}eAτw}}

Then Ao is not a separating algebra on the connected space P and the
Silov boundary Ao is all of P since each point in the interior of P\{θ)
is a peak point of Ao.

We conclude this paper with the following important unanswered

questions.
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(1) Is there a non-separating essential algebra A on a (connected)
space X for which MA = ΓA = X?

(2). Let ίί~ denote the function algebra obtained by restricting H°°
to the fiber Ma. (For the terminology used here we refer the reader to
Hoffman [5; p. 187]). Is every closed subset of the maximal ideal space,
Ma9 of JEΓ~ an L-set? It would be interesting to see a proof of this using
Carleson's Corona Theorem.
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