COUNTING RATIONAL POINTS ON CUBIC HYPERSURFACES: CORRIGENDUM

T. D. BROWNING

There is an error in [1] which invalidates the proof of the main theorem from [1] and also the proof of Lemma 11 from [2]. In attempting to apply Proposition 3 in [1, §5], it is claimed that

$$\sum_{R_0 < b_1 \leq 2R_0} M_1 \ll R_0^{-1/2} \sum_{R_0 < b_1 \leq 2R_0} \max_{\substack{0 < N \ll (HP)^{\theta} \\ 0 < N \ll (HP)^{\theta}}} \max_{R_0 < b_1 \leq 2R_0} \gcd(b_1, N)^{1/2}} \\ \ll R_0^{-1/2} \max_{\substack{0 < N \ll (HP)^{\theta} \\ R_0 < b_1 \leq 2R_0}} \gcd(b_1, N)^{1/2} \\ \ll R_0^{1/2} (HP)^{\varepsilon}.$$

The second line is false and in fact one has $M_1 = 1$ in Proposition 3. The author is very grateful to Professor Hongze Li for drawing his attention to this flaw.

The error can be fixed by introducing an average over b_1 into the statement of Proposition 3. This allows us to recover the main theorem in [1], and also [2, Lemma 11], via the following modification.

PROPOSITION 3. Let $w \in W_n$, let $\varepsilon > 0$ and let $g \in \mathbb{Z}[x_1, \ldots, x_n]$ be a cubic polynomial such that g_0 is non-singular and $||g||_P \leq H$, for some $H \leq P$. Let $\tilde{q} = b_2^2 c^2 d$, where

$$b_2 := \prod_{p^2 \parallel \widetilde{q}} p, \qquad d := \prod_{\substack{p^e \parallel \widetilde{q} \\ e \geqslant 3, \ 2 \nmid e}} p,$$

and let $R_0 \ge 1/2$. Define

$$V := R_0 \tilde{q} P^{-1} \max\{1, \sqrt{|z|P^3}\}, \qquad (4.2)$$

and

$$W := V + (c^2 d)^{1/3}.$$
(4.3)

Then there exists a positive number θ such that

$$\sum_{\substack{R_0 < b_1 \leqslant 2R_0\\b_1 \text{ square-free}}} |\mathcal{S}_u(b_1\tilde{q}; z)| \ll H^{\theta}(R_0\tilde{q})^{-n/2+1}P^{n+\varepsilon} \times (W^n\tilde{M}_1 + R_0\min\{M_2, M_3\})$$

Received 13 December 2012, published online 6 September 2013. MSC (2010): 11D45 (primary).

where

$$\tilde{M}_1 := \min\left\{R_0, \frac{P^{3/4}}{\tilde{q}^{1/2}}\right\}$$

and

$$M_2 := c^n \left(1 + \frac{V}{c} \right)^{n-3/2}, \qquad M_3 := V^n \left(1 + \frac{c^2 d}{V^3} \right)^{n/2}.$$

In order to prove this result we will need a new technical lemma, which allows us to separate variables at a crucial point in our argument.

LEMMA A. Let $\mathbf{h} \in \mathbb{R}^n$, let M, N > 0 and let $f(m; \mathbf{n}) \ge 0$ for every $m \in \mathbb{N}$ and $\mathbf{n} \in \mathbb{Z}^n$. Then we have

$$\sum_{M < m \leq 2M} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^n \\ |\mathbf{n} - m\mathbf{h}| \leq N}} f(m; \mathbf{n}) \leq \sum_{1 \leq i \leq I} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^n \\ |\mathbf{n} - M_i\mathbf{h}| \leq 2N}} \sum_{M < m \leq 2M} f(m; \mathbf{n}),$$

for appropriate $M_i \in (M, 2M]$, where $I = M\min\{1, |\mathbf{h}|/N\} + 1$.

Proof. We break the outer sum into smaller intervals of length $U \ge 1$, writing

$$(M, 2M] = \bigcup_{1 \leq i \leq M/U+1} (M_i, M_{i+1}],$$

with $M_i = M + (i - 1)U$. We will take U to be maximal so that $U \ge 1$ and $|\mathbf{h}|U \le N$. Let $m \in (M_i, M_{i+1}]$ and note that

$$N \ge |\mathbf{n} - m\mathbf{h}| = |\mathbf{n} - M_i\mathbf{h} + M_i\mathbf{h} - m\mathbf{h}| \ge ||\mathbf{n} - M_i\mathbf{h}| - (m - M_i)|\mathbf{h}||.$$

Since $m - M_i \leq M_{i+1} - M_i = U$, we see that the overall contribution to the left-hand side from such *m* is at most

$$\sum_{M_i < m \leq M_{i+1}} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^n \\ |\mathbf{n} - M_i \mathbf{h}| \leq 2N}} f(m; \mathbf{n})$$

We conclude the proof on enlarging the outer sum to all $m \in (M, 2M]$ and interchanging it with the sum over **n**.

Proof of Proposition 3. We adopt the equation numbering from [1] and write \mathcal{B} for the set of square-free integers $b_1 \in (R_0, 2R_0]$. For given $b_1 \in \mathcal{B}$ we write $q = b_1 \tilde{q}$ and $b = b_1 b_2^2$. Our chief difficulty in introducing averaging over b_1 will be that we can no longer merely take a maximum over $\mathbf{v}_0 \ll HP$ in (4.5) in every case. We begin, using (4.5) and (4.11), by noting that

$$\mathcal{S}_u(q; z) \ll P^{-N} + q^{-n} \int_{\mathbf{x} \ll P} \sum_{|\mathbf{v} - qz \nabla g(\mathbf{x})| \leqslant P^{\varepsilon} V} |S_u(q; \mathbf{v})| d\mathbf{x},$$

where

$$S_u(q; \mathbf{v}) \ll H^{\theta} b^{(n+1)/2+\varepsilon} b_2 \operatorname{gcd}(b_1, u, g^*(\mathbf{v}))^{1/2} \\ \times \max_{\bar{b} \in (\mathbb{Z}/c^2 d\mathbb{Z})^*} |S_{u\bar{b}^2}(c^2 d; \bar{b}\mathbf{v})|.$$
(*)

102

Let $S_2(\mathbf{v}_0)$ be the overall contribution obtained by taking u = 0 and summing the right-hand side of (*) over $|\mathbf{v} - \mathbf{v}_0| \leq P^{\varepsilon} V$ for which $g^*(\mathbf{v}) = 0$. Then

$$\sum_{b_1 \in \mathcal{B}} q^{-n} \int_{\mathbf{x} \ll P} \mathcal{S}_2(qz \nabla g(\mathbf{x})) \, d\mathbf{x} \ll \sum_{b_1 \in \mathcal{B}} q^{-n} P^n \max_{\mathbf{v}_0 \ll HP} \mathcal{S}_2(\mathbf{v}_0)$$

But the treatment of $S_2(\mathbf{v}_0)$, which is uniform in \mathbf{v}_0 , is correct and leads via (4.15)–(4.16) to

$$\sum_{b_1\in\mathcal{B}}q^{-n}\int_{\mathbf{x}\ll P}\mathcal{S}_2(qz\nabla g(\mathbf{x}))\,d\mathbf{x}\ll H^{\theta}R_0(R_0\tilde{q})^{-n/2+1}P^{n+\varepsilon}\min\{M_2,\,M_3\},$$

the effect of the sum over b_1 being merely to multiply the bound by R_0 .

Interchanging the sum over b_1 and the integral over **x**, we are now led to examine

$$J = \sum_{b_1 \in \mathcal{B}} \mathcal{S}_1(b_1 \tilde{q} z \nabla g(\mathbf{x})),$$

for given $\mathbf{x} \ll P$, where for given $\mathbf{v}_0 \in \mathbb{R}^n$, we denote by $S_1(\mathbf{v}_0)$ the overall contribution from summing (*) over $|\mathbf{v} - \mathbf{v}_0| \leq P^{\varepsilon} V$ for which

$$(u, g^*(\mathbf{v})) \neq (0, 0).$$

We will produce two bounds for J. The first arises from taking

$$\operatorname{gcd}(b_1, u, g^*(\mathbf{v})) \leq b_1$$

in the existing argument and summing trivially over b_1 . This leads to the estimate

$$J \ll H^{\theta} R_0 (R_0 \tilde{q})^{n/2 + 1 + \varepsilon} W^n.$$
(**)

To deduce an alternative estimate we first analyze

$$J(\mathbf{v}_{0}) = \sum_{b_{1}\in\mathcal{B}} S_{1}(\mathbf{v}_{0})$$

$$\ll H^{\theta} R_{0}^{(n+1)/2+\varepsilon} b_{2}^{n+2+\varepsilon} \sum_{\substack{|\mathbf{v}-\mathbf{v}_{0}| \leq P^{\varepsilon}V\\(u,g^{*}(\mathbf{v}))\neq(0,0)}} \left\{ \max_{\bar{b}\in(\mathbb{Z}/c^{2}d\mathbb{Z})^{*}} |S_{u\bar{b}^{2}}(c^{2}d; \bar{b}\mathbf{v})| \right\}$$

$$\times \sum_{b_{1}\in\mathcal{B}} \gcd(b_{1}, u, g^{*}(\mathbf{v}))^{1/2},$$

for fixed $\mathbf{v}_0 \in \mathbb{R}^n$. The inner sum over b_1 is $O(R_0 P^{\varepsilon})$, by the third displayed equation on page 107 of [1], whence

$$J(\mathbf{v}_0) \ll H^{\theta} R_0^{(n+3)/2} b_2^{n+2} P^{\varepsilon} \sum_{|\mathbf{v}-\mathbf{v}_0| \leqslant P^{\varepsilon} V} \max_{\bar{b} \in (\mathbb{Z}/c^2 d\mathbb{Z})^*} \sum_{\substack{a \mod c^2 d \\ \gcd(a,c^2 d) = 1}} |T(a, c^2 d; \bar{b}\mathbf{v})|,$$

where $T(a, c^2d; \bar{b}\mathbf{v})$ is given by (4.6). The path is now clear for the final bound

$$J(\mathbf{v}_0) \ll H^{\theta} R_0^{1/2} (R_0 \tilde{q})^{n/2+1+\varepsilon} W^n,$$

which is obtained by combining [3, Lemmas 11, 15 and 16] in the manner indicated at the close of [3, §5]. In particular, this bound is uniform in v_0 . Returning to the estimation of *J* we apply Lemma A with

$$M = R_0, \qquad N = P^{\varepsilon} V, \qquad \mathbf{h} = \tilde{q} z \nabla g(\mathbf{x}),$$

which leads to the bound

$$J \ll \min\left\{R_0, \frac{R_0\tilde{q}|z|HP^2}{V}\right\} \max_{\mathbf{v}_0 \ll HP} J(\mathbf{v}_0)$$
$$\ll H \sqrt{\frac{P^{3/2}}{R_0\tilde{q}}} \max_{\mathbf{v}_0 \ll HP} J(\mathbf{v}_0),$$

since

$$\frac{R_0 \tilde{q} |z| P^2}{V} = \frac{|z| P^3}{\max\{1, \sqrt{|z| P^3}\}} \leqslant \sqrt{|z| P^3} \leqslant \sqrt{\frac{P^{3/2}}{R_0 \tilde{q}}}$$

by (3.2). Drawing our argument together with (**), this therefore shows that

$$(R_0\tilde{q})^{-n} \int_{\mathbf{x}\ll P} \sum_{b_1\in\mathcal{B}} \mathcal{S}_1(qz\nabla g(\mathbf{x})) \, d\mathbf{x} \ll H^{\theta}(R_0\tilde{q})^{-n/2+1} P^{n+\varepsilon} W^n \tilde{M}_1,$$

which concludes our proof of the proposition.

It remains to show that our modified Proposition 3 suffices to prove [1, Proposition 1] and [2, Lemma 11].

Proof of Proposition 1. Let us adopt the equation and page numbering from [1]. We begin as in §5, with the aim of showing (5.2) for i = 1, 2, under the assumption that $n \ge 5$ and $s(g_0) = -1$. We supplant Lemma 3 with the modified bound

$$\#\{\tilde{q} = b_2^2 c^2 d: (5.1) \text{ holds}\} \ll R_1 R_2^{1/2} R_3^{1/2}$$

The estimation of $\Sigma_2(R, \mathbf{R}; t) = \Sigma_2(R, \mathbf{R})$ in §5.1 begins with (5.5), the estimation of $\Sigma_{2,b}$ running through unchanged. On the other hand, we now have

$$\Sigma_{2,a} \ll H^{\theta} P^{n-3+\varepsilon} \mathcal{M} \sum_{\tilde{q}} R_0^{1/2} R^{1-n/2} \max_{|z| \asymp (RQ)^{-1}} W^n,$$

where

$$\mathcal{M} = \min\left\{R_0^{1/2}, \frac{P^{3/4}}{R^{1/2}}\right\}$$

and the summation over \tilde{q} is over all $\tilde{q} = b_2^2 c^2 d$ such that b_2 , c, d are constrained to lie in the dyadic ranges (5.1). Hence

$$\Sigma_{2,a} \ll H^{\theta} \frac{P^{n-3+\varepsilon}}{R^{n/2-3/2}} \mathcal{M}(R^{1/2}P^{-1/4} + (R_2^2R_3)^{1/3})^n.$$
 (***)

This is the same bound for $\Sigma_{2,a}$ that features in the middle of page 107, except that we have an additional factor \mathcal{M} . The term involving $R^{1/2}P^{-1/4}$ is now found to contribute

$$\ll H^{\theta}P^{3n/4-3+3/4+\varepsilon}R \ll H^{\theta}P^{3n/4-3/4+\varepsilon}.$$

since $R \leq P^{3/2}$, whereas the term involving $(R_2^2 R_3)^{1/3}$ contributes

$$\ll H^{\theta} \frac{P^{n-3+3/4+\varepsilon} (R_2^2 R_3)^{n/3}}{R^{n/2-1}} \ll H^{\theta} P^{n-3+3/4+\varepsilon} R^{1-n/6}$$

since $R_2^2 R_3 \ll R$. Both of these are satisfactory, concluding the proof of (5.7).

We now turn to the treatment of $\Sigma_1(R, \mathbf{R}; t)$ in §5.2, with the estimation of $\Sigma_{1,b}$ running through unchanged. On the other hand, we now have

$$\Sigma_{1,a} \ll H^{\theta} P^{n+\varepsilon} t \mathcal{M}\left(\frac{R^{3/2-n/2}(V+(R_2^2 R_3)^{1/3})^n}{R_2^{1/2}}\right),$$

where *V* has order (5.10) and the difference between this and the existing bound for $\Sigma_{1,a}$ is the additional factor \mathcal{M} . Following the argument in §5.2, we need to check that this does not alter the truth of (5.9). Thus, when $t \ge P^{-3}$, we take $\mathcal{M} \le R^{-1/2}P^{3/4}$ and find that the term involving *V* makes the contribution

$$\ll H^{\theta}P^{3n/2+3/4+\varepsilon}t^{1+n/2}R^{1+n/2} \ll H^{\theta}P^{3n/4-3/4+\varepsilon}$$

since $t \leq (RP^{3/2})^{-1}$. This is satisfactory for $n \geq 5$. Likewise, when $t < P^{-3}$, one obtains a satisfactory contribution. Turning to the contribution from the term involving $(R_2^2R_3)^{1/3}$, we suppose first that $t < P^{-3}$. Taking $R_2 \geq (R_2^2R_3)^{1/3}$, the contribution from this case is found to be

$$\ll H^{\theta} P^{n+\varepsilon} \mathcal{M} \frac{R^{3/2-n/2} t (R_2^2 R_3)^{n/3}}{R_2^{1/2}} \\ \ll H^{\theta} P^{n-3+\varepsilon} \mathcal{M} R^{3/2-n/2} (R_2^2 R_3)^{n/3-1/6}$$

Taking $\mathcal{M} \leq R^{-1/2} P^{3/4}$ gives $O(H^{\theta} P^{n-3+3/4+\varepsilon} R^{(5-n)/6})$, which is satisfactory since $n \geq 5$. Next, assuming that $t \geq P^{-3}$ and adjoining Proposition 2, it remains to analyze the contribution

$$\ll H^{\theta} P^{n+\varepsilon} \min \left\{ \mathcal{M} R^{3/2 - n/2} t (R_2^2 R_3)^{n/3 - 1/6}, \frac{R^{2 - n/8} t^{1 - n/8}}{(R_2^2 R_3)^{2/3} P^{3n/8}} \right\}. \quad (****)$$

For $n \ge 6$ we apply the inequality $\min\{A, B\} \le A^{1/3}B^{2/3}$, to get the overall contribution $O(H^{\theta}P^{n-2+\varepsilon}\mathcal{M}^{1/3}E_n)$, with E_n given at the bottom of page 109. When $n \ge 13$ we take $t \ge P^{-3}$, getting

$$\mathcal{M}^{1/3}E_n \ll P^{-3/4}R^{7/6-5n/36} \ll 1.$$

When $6 \le n \le 12$ we take $t \le (RP^{3/2})^{-1}$ to deduce that

$$\mathcal{M}^{1/3}E_n \ll P^{3/4-n/8}R^{1/6-n/18} \ll 1.$$

Finally we dispatch the case n = 5, for which we return to (****) and take $t \leq (RP^{3/2})^{-1}$. This leads to the contribution

$$\ll H^{\theta} P^{3+\varepsilon} \\ \times \min \left\{ P^{1/2} R^{-2} R_0^{1/2} (R_2^2 R_3)^{3/2}, P^{5/4} R^{-5/2} (R_2^2 R_3)^{3/2}, \frac{P^{-7/16} R}{(R_2^2 R_3)^{2/3}} \right\} \\ \ll H^{\theta} P^{3+\varepsilon} \min \left\{ P^{1/2} R^{-3/2} R_2^2 R_3, P^{5/4} R^{-5/2} (R_2^2 R_3)^{3/2}, \frac{P^{-7/16} R}{(R_2^2 R_3)^{2/3}} \right\}.$$

Taking $\min\{A, B, C\} \leq A^{17/75}B^{2/15}C^{16/25}$ leads to the contribution $O(H^{\theta}P^{3+\varepsilon}R^{-1/30})$. This is satisfactory and so concludes the proof of Proposition 1 in [1].

Proof of Lemma 11. We now adopt the equation and page numbering from [2]. The treatments of $\Sigma_{1,b}$ and $\Sigma_{2,b}$ go through unchanged, leaving us the task of showing that

$$\Sigma_{i,a} \ll H^{\theta} P^{n-5/2+\varepsilon},$$

for i = 1, 2 and $n \ge 8$. Beginning with i = 2, it follows from (***) that our estimate at the top of page 866 gets replaced by

$$\Sigma_{2,a} \ll H^{\theta} P^{3n/4 - 3/4 + \varepsilon} + H^{\theta} \frac{P^{n-3+\varepsilon} (R_2^2 R_3)^{n/3}}{R^{n/2 - 3/2}} \min \left\{ R_0^{1/2}, \frac{P^{3/4}}{R^{1/2}} \right\}.$$

The first term is satisfactory. We take min{ \cdot, \cdot } $\leq R_0^{1/2}$ in the second term and note that $R_0^{1/2} (R_2^2 R_3)^{n/3} \ll R^{n/3}$. Thus the second term is

$$\ll H^{\theta}P^{n-3+\varepsilon}R^{-n/6+3/2}$$

which is satisfactory for $n \ge 8$, since $R \le P^{3/2}$.

Turning to i = 1, our analogue of the third displayed equation on page 866 is

$$\Sigma_{1,a} \ll H^{\theta} P^{\varepsilon} (P^{3n/4-3/4} + P^{n-3} \mathcal{M} R^{3/2-n/2} (R_2^2 R_3)^{n/3-1/6} + \mathcal{E}),$$

where, in view of (****),

$$\mathcal{E} = P^n \min \left\{ \mathcal{M} R^{3/2 - n/2} t (R_2^2 R_3)^{n/3 - 1/6}, \frac{R^{2 - n/8} t^{1 - n/8}}{(R_2^2 R_3)^{2/3} P^{3n/8}} \right\}.$$

In our bound for $\Sigma_{1,a}$ the second and third terms correspond to the contribution from the term involving $(R_2^2 R_3)^{1/3}$, with the second dealing with the case $t < P^{-3}$ and the third dealing with the case $t \ge P^{-3}$. The first term

is satisfactory. Taking $\mathcal{M} \leq R_0^{1/2}$ shows that the second term makes the satisfactory contribution

$$\ll H^{\theta} P^{n-3+\varepsilon} R^{3/2-n/2} R_0^{1/2} (R_2^2 R_3)^{n/3-1/6} \ll H^{\theta} P^{n-3+\varepsilon} R^{4/3-n/6}.$$

We handle \mathcal{E} as in [1, §5.2] by applying the inequality min{A, B} $\leq A^{1/3}B^{2/3}$, to get the overall contribution $O(H^{\theta}P^{n-2+\varepsilon}\mathcal{M}^{1/3}E_n)$, with

$$E_n = P^{2-n/4} t^{1-n/12} R^{11/6-n/4} (R_2^2 R_3)^{n/9-1/2}$$

We need to check that $P^{1/2}\mathcal{M}^{1/3}E_n \ll 1$ for $n \ge 8$. When $n \ge 13$ we take $t \ge P^{-3}$, getting

$$P^{1/2}\mathcal{M}^{1/3}E_n \ll P^{-1/4}R^{7/6-5n/36} \ll 1.$$

When $8 \le n \le 12$ we take $t \le (RP^{3/2})^{-1}$ to deduce that

$$P^{1/2}\mathcal{M}^{1/3}E_n \ll R_0^{1/6}P^{1-n/8}R^{5/6-n/6}(R_2^2R_3)^{n/9-1/2} \ll P^{1-n/8}R^{1/3-n/18}$$
$$\ll 1.$$

This is satisfactory and so concludes the proof of Lemma 11 in [2].

References

- 1. T. D. Browning, Counting rational points on cubic hypersurfaces. *Mathematika* 54 (2007), 93–112.
- T. D. Browning, Rational points on cubic hypersurfaces that split off a form. *Compositio Math.* 146 (2010), 853–885.
- 3. T. D. Browning and D. R. Heath-Brown, Rational points on quartic hypersurfaces. J. Reine Angew. Math. 629 (2009), 37–88.

T. D. Browning, School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. E-mail: t.d.browning@bristol.ac.uk