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COUNTING RATIONAL POINTS ON CUBIC
HYPERSURFACES: CORRIGENDUM

T. D. BROWNING

There is an error in [1] which invalidates the proof of the main theorem
from [1] and also the proof of Lemma 11 from [2]. In attempting to apply
Proposition 3 in [1, §5], it is claimed that∑

R0<b162R0

M1 � R−1/2
0

∑
R0<b162R0

max
0<N�(HP)θ

gcd(b1, N )1/2

� R−1/2
0 max

0<N�(HP)θ

∑
R0<b162R0

gcd(b1, N )1/2

� R1/2
0 (HP)ε.

The second line is false and in fact one has M1 = 1 in Proposition 3. The author
is very grateful to Professor Hongze Li for drawing his attention to this flaw.

The error can be fixed by introducing an average over b1 into the statement
of Proposition 3. This allows us to recover the main theorem in [1], and also
[2, Lemma 11], via the following modification.

PROPOSITION 3. Let w ∈Wn , let ε > 0 and let g ∈ Z[x1, . . . , xn] be a
cubic polynomial such that g0 is non-singular and ‖g‖P 6 H, for some H 6 P.
Let q̃ = b2

2c2d, where

b2 :=
∏
p2‖q̃

p, d :=
∏
pe
‖q̃

e>3, 2-e

p,

and let R0 > 1/2. Define

V := R0q̃ P−1 max
{
1,
√
|z|P3}, (4.2)

and
W := V + (c2d)1/3. (4.3)

Then there exists a positive number θ such that∑
R0<b162R0

b1 square-free

|Su(b1q̃; z)| � H θ (R0q̃)−n/2+1 Pn+ε

× (W n M̃1 + R0 min{M2, M3}),
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102 T. D. BROWNING

where

M̃1 :=min
{

R0,
P3/4

q̃1/2

}
and

M2 := cn
(

1+
V

c

)n−3/2

, M3 := V n
(

1+
c2d

V 3

)n/2

.

In order to prove this result we will need a new technical lemma, which allows
us to separate variables at a crucial point in our argument.

LEMMA A. Let h ∈ Rn , let M, N > 0 and let f (m; n)> 0 for every m ∈ N
and n ∈ Zn . Then we have∑

M<m62M

∑
n∈Zn

|n−mh|6N

f (m; n)6
∑

16i6I

∑
n∈Zn

|n−Mi h|62N

∑
M<m62M

f (m; n),

for appropriate Mi ∈ (M, 2M], where I = Mmin{1, |h|/N } + 1.

Proof. We break the outer sum into smaller intervals of length U > 1, writing

(M, 2M] =
⋃

16i6M/U+1

(Mi , Mi+1],

with Mi = M + (i − 1)U . We will take U to be maximal so that U > 1 and
|h|U 6 N . Let m ∈ (Mi , Mi+1] and note that

N > |n− mh| = |n− Mi h+ Mi h− mh|> ||n− Mi h| − (m − Mi )|h||.

Since m − Mi 6 Mi+1 − Mi =U , we see that the overall contribution to the
left-hand side from such m is at most∑

Mi<m6Mi+1

∑
n∈Zn

|n−Mi h|62N

f (m; n).

We conclude the proof on enlarging the outer sum to all m ∈ (M, 2M] and
interchanging it with the sum over n. 2

Proof of Proposition 3. We adopt the equation numbering from [1] and write
B for the set of square-free integers b1 ∈ (R0, 2R0]. For given b1 ∈ B we write
q = b1q̃ and b = b1b2

2. Our chief difficulty in introducing averaging over b1 will
be that we can no longer merely take a maximum over v0� HP in (4.5) in every
case. We begin, using (4.5) and (4.11), by noting that

Su(q; z)� P−N
+ q−n

∫
x�P

∑
|v−qz∇g(x)|6PεV

|Su(q; v)| dx,

where

Su(q; v)� H θb(n+1)/2+εb2gcd(b1, u, g∗(v))1/2

× max
b̄∈(Z/c2dZ)∗

|Sub̄2(c2d; b̄v)|. (∗)
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CORRIGENDUM 103

Let S2(v0) be the overall contribution obtained by taking u = 0 and summing
the right-hand side of (∗) over |v− v0|6 PεV for which g∗(v)= 0. Then∑

b1∈B
q−n

∫
x�P

S2(qz∇g(x)) dx�
∑
b1∈B

q−n Pn max
v0�HP

S2(v0).

But the treatment of S2(v0), which is uniform in v0, is correct and leads via
(4.15)–(4.16) to∑

b1∈B
q−n

∫
x�P

S2(qz∇g(x)) dx� H θ R0(R0q̃)−n/2+1 Pn+ε min{M2, M3},

the effect of the sum over b1 being merely to multiply the bound by R0.

Interchanging the sum over b1 and the integral over x, we are now led to
examine

J =
∑
b1∈B

S1(b1q̃z∇g(x)),

for given x� P , where for given v0 ∈ Rn , we denote by S1(v0) the overall
contribution from summing (∗) over |v− v0|6 PεV for which

(u, g∗(v)) 6= (0, 0).

We will produce two bounds for J . The first arises from taking

gcd(b1, u, g∗(v))6 b1

in the existing argument and summing trivially over b1. This leads to the
estimate

J � H θ R0(R0q̃)n/2+1+εW n. (∗∗)

To deduce an alternative estimate we first analyze

J (v0) =
∑
b1∈B

S1(v0)

� H θ R(n+1)/2+ε
0 bn+2+ε

2

∑
|v−v0|6PεV
(u,g∗(v))6=(0,0)

{
max

b̄∈(Z/c2dZ)∗
|Sub̄2(c2d; b̄v)|

}

×

∑
b1∈B

gcd(b1, u, g∗(v))1/2,

for fixed v0 ∈ Rn . The inner sum over b1 is O(R0 Pε), by the third displayed
equation on page 107 of [1], whence

J (v0)� H θ R(n+3)/2
0 bn+2

2 Pε
∑

|v−v0|6PεV

max
b̄∈(Z/c2dZ)∗

∑
a mod c2d

gcd(a,c2d)=1

|T (a, c2d; b̄v)|,

where T (a, c2d; b̄v) is given by (4.6). The path is now clear for the final bound

J (v0)� H θ R1/2
0 (R0q̃)n/2+1+εW n,
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104 T. D. BROWNING

which is obtained by combining [3, Lemmas 11, 15 and 16] in the manner
indicated at the close of [3, §5]. In particular, this bound is uniform in v0.
Returning to the estimation of J we apply Lemma A with

M = R0, N = PεV, h= q̃z∇g(x),

which leads to the bound

J � min
{

R0,
R0q̃|z|HP2

V

}
max

v0�HP
J (v0)

� H

√
P3/2

R0q̃
max

v0�HP
J (v0),

since

R0q̃|z|P2

V
=

|z|P3

max{1,
√
|z|P3}

6
√
|z|P3 6

√
P3/2

R0q̃
,

by (3.2). Drawing our argument together with (∗∗), this therefore shows that

(R0q̃)−n
∫

x�P

∑
b1∈B

S1(qz∇g(x)) dx� H θ (R0q̃)−n/2+1 Pn+εW n M̃1,

which concludes our proof of the proposition. 2

It remains to show that our modified Proposition 3 suffices to prove
[1, Proposition 1] and [2, Lemma 11].

Proof of Proposition 1. Let us adopt the equation and page numbering from
[1]. We begin as in §5, with the aim of showing (5.2) for i = 1, 2, under the
assumption that n > 5 and s(g0)=−1. We supplant Lemma 3 with the modified
bound

#{q̃ = b2
2c2d : (5.1) holds} � R1 R1/2

2 R1/2
3 .

The estimation of 62(R, R; t)=62(R, R) in §5.1 begins with (5.5), the
estimation of62,b running through unchanged. On the other hand, we now have

62,a � H θPn−3+εM
∑

q̃

R1/2
0 R1−n/2 max

|z|�(RQ)−1
W n,

where

M=min
{

R1/2
0 ,

P3/4

R1/2

}
and the summation over q̃ is over all q̃ = b2

2c2d such that b2, c, d are constrained
to lie in the dyadic ranges (5.1). Hence

62,a � H θ Pn−3+ε

Rn/2−3/2 M(R1/2 P−1/4
+ (R2

2 R3)
1/3)n. (∗∗∗)
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This is the same bound for 62,a that features in the middle of page 107, except
that we have an additional factor M. The term involving R1/2 P−1/4 is now
found to contribute

� H θP3n/4−3+3/4+εR� H θP3n/4−3/4+ε,

since R 6 P3/2, whereas the term involving (R2
2 R3)

1/3 contributes

� H θ Pn−3+3/4+ε(R2
2 R3)

n/3

Rn/2−1 � H θPn−3+3/4+εR1−n/6.

since R2
2 R3� R. Both of these are satisfactory, concluding the proof of (5.7).

We now turn to the treatment of 61(R, R; t) in §5.2, with the estimation of
61,b running through unchanged. On the other hand, we now have

61,a � H θPn+εt M
(

R3/2−n/2(V + (R2
2 R3)

1/3)n

R1/2
2

)
,

where V has order (5.10) and the difference between this and the existing bound
for 61,a is the additional factor M. Following the argument in §5.2, we need
to check that this does not alter the truth of (5.9). Thus, when t > P−3, we take
M 6 R−1/2 P3/4 and find that the term involving V makes the contribution

� H θP3n/2+3/4+εt1+n/2 R1+n/2
� H θP3n/4−3/4+ε,

since t 6 (RP3/2)−1. This is satisfactory for n > 5. Likewise, when t < P−3,
one obtains a satisfactory contribution. Turning to the contribution from the term
involving (R2

2 R3)
1/3, we suppose first that t < P−3. Taking R2 > (R2

2 R3)
1/3, the

contribution from this case is found to be

� H θPn+εM
R3/2−n/2t (R2

2 R3)
n/3

R1/2
2

� H θPn−3+εM R3/2−n/2(R2
2 R3)

n/3−1/6.

Taking M 6 R−1/2 P3/4 gives O(H θPn−3+3/4+εR(5−n)/6), which is satisfactory
since n > 5. Next, assuming that t > P−3 and adjoining Proposition 2, it remains
to analyze the contribution

� H θPn+ε min
{

M R3/2−n/2t (R2
2 R3)

n/3−1/6,
R2−n/8t1−n/8

(R2
2 R3)2/3 P3n/8

}
. (∗∗∗∗)

For n > 6 we apply the inequality min{A, B}6 A1/3 B2/3, to get the overall
contribution O(H θPn−2+εM1/3 En), with En given at the bottom of page 109.
When n > 13 we take t > P−3, getting

M1/3 En � P−3/4 R7/6−5n/36
� 1.
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When 6 6 n 6 12 we take t 6 (RP3/2)−1 to deduce that

M1/3 En � P3/4−n/8 R1/6−n/18
� 1.

Finally we dispatch the case n = 5, for which we return to (∗∗∗∗) and take
t 6 (RP3/2)−1. This leads to the contribution

�H θP3+ε

×min
{

P1/2 R−2 R1/2
0 (R2

2 R3)
3/2, P5/4 R−5/2(R2

2 R3)
3/2,

P−7/16 R

(R2
2 R3)2/3

}
�H θP3+ε min

{
P1/2 R−3/2 R2

2 R3, P5/4 R−5/2(R2
2 R3)

3/2,
P−7/16 R

(R2
2 R3)2/3

}
.

Taking min{A, B, C}6 A17/75 B2/15C16/25 leads to the contribution
O(H θP3+εR−1/30). This is satisfactory and so concludes the proof of Propo-
sition 1 in [1]. 2

Proof of Lemma 11. We now adopt the equation and page numbering from
[2]. The treatments of 61,b and 62,b go through unchanged, leaving us the task
of showing that

6i,a � H θPn−5/2+ε,

for i = 1, 2 and n > 8. Beginning with i = 2, it follows from (∗∗∗) that our
estimate at the top of page 866 gets replaced by

62,a � H θP3n/4−3/4+ε
+ H θ Pn−3+ε(R2

2 R3)
n/3

Rn/2−3/2 min
{

R1/2
0 ,

P3/4

R1/2

}
.

The first term is satisfactory. We take min{·, ·}6 R1/2
0 in the second term and

note that R1/2
0 (R2

2 R3)
n/3
� Rn/3. Thus the second term is

� H θPn−3+εR−n/6+3/2,

which is satisfactory for n > 8, since R 6 P3/2.
Turning to i = 1, our analogue of the third displayed equation on page 866 is

61,a � H θPε(P3n/4−3/4
+ Pn−3M R3/2−n/2(R2

2 R3)
n/3−1/6

+ E),

where, in view of (∗∗∗∗),

E = Pn min
{

M R3/2−n/2t (R2
2 R3)

n/3−1/6,
R2−n/8t1−n/8

(R2
2 R3)2/3 P3n/8

}
.

In our bound for 61,a the second and third terms correspond to the contribution
from the term involving (R2

2 R3)
1/3, with the second dealing with the case

t < P−3 and the third dealing with the case t > P−3. The first term
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CORRIGENDUM 107

is satisfactory. Taking M 6 R1/2
0 shows that the second term makes the

satisfactory contribution

� H θPn−3+εR3/2−n/2 R1/2
0 (R2

2 R3)
n/3−1/6

� H θ Pn−3+εR4/3−n/6.

We handle E as in [1, §5.2] by applying the inequality min{A, B}6 A1/3 B2/3,
to get the overall contribution O(H θPn−2+εM1/3 En), with

En = P2−n/4t1−n/12 R11/6−n/4(R2
2 R3)

n/9−1/2.

We need to check that P1/2M1/3 En � 1 for n > 8. When n > 13 we take
t > P−3, getting

P1/2M1/3 En � P−1/4 R7/6−5n/36
� 1.

When 8 6 n 6 12 we take t 6 (RP3/2)−1 to deduce that

P1/2M1/3 En � R1/6
0 P1−n/8 R5/6−n/6(R2

2 R3)
n/9−1/2

� P1−n/8 R1/3−n/18

� 1.

This is satisfactory and so concludes the proof of Lemma 11 in [2]. 2
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