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Abstract

Modeling dependencies between climate extremes is important for climate risk assessment, for instance when
allocating emergency management funds. In statistics, multivariate extreme value theory is often used to model
spatial extremes. However, most commonly used approaches require strong assumptions and are either too simplistic
or over-parameterized. From amachine learning perspective, generative adversarial networks (GANs) are a powerful
tool to model dependencies in high-dimensional spaces. Yet in the standard setting, GANs do not well represent
dependencies in the extremes. Here we combine GANs with extreme value theory (evtGAN) to model spatial
dependencies in summer maxima of temperature and winter maxima in precipitation over a large part of western
Europe. We use data from a stationary 2000-year climate model simulation to validate the approach and explore its
sensitivity to small sample sizes. Our results show that evtGAN outperforms classical GANs and standard statistical
approaches tomodel spatial extremes. Alreadywith about 50 years of data, which corresponds to commonly available
climate records, we obtain reasonably good performance. In general, dependencies between temperature extremes are
better captured than dependencies between precipitation extremes due to the high spatial coherence in temperature
fields. Our approach can be applied to other climate variables and can be used to emulate climate models when
running very long simulations to determine dependencies in the extremes is deemed infeasible.

Impact Statement

Spatially co-occurring climate extremes such as heavy precipitation events or temperature extremes can have
devastating impacts on human and natural systems. Modeling complex spatial dependencies between climate
extremes in different locations are notoriously difficult and traditional approaches from the field of extreme value
theory are relatively inflexible. We show that combining extreme value theory with a deep learning model
(generative adversarial networks) can well represent complex spatial dependencies between extremes. Hence,
instead of running expensive climate models, the approach can be used to sample many instances of spatially
cooccurring extremeswith realistic dependence structure, whichmay be used for climate riskmodeling and stress
testing of climate-sensitive systems.
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1. Introduction

Understanding and modeling climate extremes such as floods, heatwaves, and heavy precipitation, are
of paramount importance because they often lead to severe impacts on socioeconomic systems (Field
et al., 2012). Many impacts are associated with compounding drivers, for instance, multiple hazards
occurring at the same time at the same or different locations affecting the same system (Leonard et al.,
2014; Zscheischler et al., 2018). Ignoring potential dependencies between multiple hazards can lead to
severe misspecification of the associated risk (Zscheischler and Seneviratne, 2017; Hillier and Dixon,
2020). However, estimating dependencies between extremes is a challenging task, requiring large
amounts of data and/or suitable approaches to model the phenomena of interest in a computationally
feasible time.

A particularly challenging class of events is spatially compounding events (Zscheischler et al., 2020).
Spatially compounding events occurwhenmultiple connected locations are affected by the same or different
hazards within a limited time window, thereby causing an impact. The compounding is established via a
system capable of spatial integration, which accumulates hazard impacts in spatially distant locations. For
instance, the global food systems are vulnerable to multiple co-occurring droughts and heatwaves in key
crop-producing regions of the world (Anderson et al., 2019; Mehrabi and Ramankutty, 2019). Similarly,
spatially extensive floods (Jongman et al., 2014) or sequences of cyclones (Raymond et al., 2020) can
deplete emergency response funds. Climate extremes can be correlated over very large distances due to
teleconnections (Boers et al., 2019) but modeling such dependencies is challenging.

One approach to tackle the challenge of spatially correlated extremes is to create a large amount of data
by running very long simulations with state-of-the-art climate models, which have the physical spatial
dependencies built into them. For instance, over the recent years for a number of climate models, large
ensembles have been created (Deser et al., 2020). However, these simulations typically have rather coarse
resolution, are usually not stationary in time and are very expensive to run.

Extreme value theory provides mathematically justified models for the tail region of a multivariate
distribution X1,…,Xdð Þ, d≥2. This enables the extrapolation beyond the range of the data and the accurate
estimation of the small probabilities of rare (multivariate) events. Statistical methods building on this
theory are popular in a broad range of domains such as meteorology (Le et al., 2018), climate science
(Naveau et al., 2020), and finance (Poon et al., 2004). Applications have so far been limited to low-
dimensional settings for several reasons. On the one hand, even for moderately large dimensions d, the
fitting and simulation of parametric models are computationally intensive because it requires computing
complex likelihoods (Dombry et al., 2017). On the other hand, the extremal dependence structures in
applications are difficult to model and the existing approaches are either simplistic or over-parameterized.
In spatial applications, for instance, Euclidean distance is used to parametrize the isotropic dependence of
stationary max-stable random fields (Blanchet and Davison, 2011). Most real-world datasets that cover
larger spatial domains do, however, feature nonstationarities in space that cannot be captured by the
stationarity assumed in current geostatistical models; see Engelke and Ivanovs (2021) for a review on
recent extreme value methods in higher dimensions.

Methods from machine learning are well-suited for complex and nonstationary data sets. Their loss
functions are, however, typically designed with the purpose to predict well in the bulk of the distribution.
It is therefore a difficult problem to construct approaches with an accurate performance outside the range
of the training data. In prediction problems, one possibility is to adapt the loss function to make the
algorithm more sensitive to extreme values, as for instance done in quantile regression forests
(Meinshausen, 2006) or extreme gradient boosting (Velthoen et al., 2021) for the prediction of high
conditional quantiles. Jalalzai et al. (2018) discuss this problem for classification in extreme regions and
propose a new notion of asymptotic risk that helps to define classifiers with good generalization capacity
beyond the observations’ range in the predictor space.

Rather than predicting an unknown response, in this work, we are interested in a generative model that
is able to learn a high-dimensional distribution X1,…,Xdð Þ both in the bulk and in the extremes. We
concentrate on generative adversarial networks (GANs), which are known to be competitive models for
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multivariate density estimation. While classical applications of GANs are often in the field of image
analysis (Zhang et al., 2017; Choi et al., 2018; Karras et al., 2018), they have been used much more
broadly in domains such as finance (Efimov et al., 2020), fraud detection (Zheng et al., 2019), speech
recognition (Sahu et al., 2020), and medicine (Schlegl et al., 2017).

There are two different aspects that characterize the extremal properties of multivariate data: the
univariate tail behavior of eachmargin and the extremal dependence between the largest observations. For
GANs, it has recently been shown (Wiese et al., 2019; Huster et al., 2021) that the marginal distributions
of the generated samples are either bounded or light-tailed if the input noise is uniform or Gaussian,
respectively. Huster et al. (2021) propose to use heavy-tailed input to overcome this issue. Bhatia et al.
(2021) propose the ExGAN algorithm that uses conditional GANs to perform importance sampling of
extreme scenarios. The main difference to our approach is that ExGAN simulates single extreme events,
while our model will rely on block maxima and therefore does not suffer from serial correlation and
seasonality issues. Moreover, ExGAN does not model the marginal distributions with extreme value
theory and, since the input noise of ExGAN is Gaussian, this may be problematic especially for heavy-
tailed data sets in view of the results of Wiese et al. (2019) and Huster et al. (2021) mentioned above.

In this article, we concentrate on modeling the extremal properties of both the marginal distributions
and the dependence structure in a realistic way even for high-dimensional and spatially nonstationary
data. Our model, called evtGAN, combines the asymptotic theory of extremes with the flexibility of
GANs to overcome the limitations of classical statistical approaches to low dimensional and stationary
data. By using extrapolation for the marginals from extreme value theory, our method can be applied to
datasets with arbitrary combinations of light-tailed and heavy-tailed distributions. We use a stationary
2000-year climate simulation to test and validate our approach.

In sum, in this article, we demonstrate how our method combines the best of extreme value theory and
GANs in order to efficiently and accurately learn complex multidimensional distributions with nontrivial
extremal dependence structures. Furthermore, one can easily sample from these learned distributions,
which facilitates the study of complex data such as spatially distributed climate extremes with spatially
highly heterogeneous dependence structures. The remainder of the article is structured as follows: in
Section 2, we briefly lay out the theoretical background of extreme value theory and GANs, and present
the main algorithm of our methodology. Section 3 contains a description of the data and the model’s
architecture and hyperparameters used for its training, and a presentation of the obtained results, whichwe
then discuss in Section 4. Finally, concluding remarks are laid out in Section 5.

2. Methodology

In the climate community, there is a great need for methods able to efficiently provide an empirical
description of the climate system, including extreme events, starting from as few ensembles runs as
possible (Castruccio et al., 2019; Deser et al., 2020). Emulation techniques that tackle this challenge have
been proposed in the last few years, usually focusing on the spatial correlation properties of the
phenomena of interest (McKinnon et al., 2017; McKinnon and Deser, 2018; Link et al., 2019; Brunner
et al., 2021). In this work, our aim is to build an emulator specifically designed for extreme events that is
able to reproduce the spatial tail dependencies of the data and extrapolate outside the range of the training
samples. Our method does not require to discard any simulations and is therefore highly efficient. In this
section, we first recall some background on extreme value theory and GANs, and then describe our
algorithm called evtGAN. Similar to a copula approach (e.g., Brunner et al., 2021), it relies on the idea to
disentangle the modeling of the marginal distributions and the extremal dependence structure in order to
use extreme value theory for the former and GANs for the latter.

2.1. Extreme value theory

Extreme value theory provides mathematically justified methods to analyze the tail of a d-dimensional
random vector X= X1,…,Xdð Þ. This branch of statistical theory has been widely applied in climate
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science, for example, to study droughts (Burke et al., 2010), floods (Asadi et al., 2018), heatwaves
(Tanarhte et al., 2015), and extreme rainfalls (Le et al., 2018).

For multivariate data, there are two different aspects that determine the quality of an extrapolation
method: the univariate tail behavior of each margin and the extremal dependence between the largest
observations. We explain how to measure and model those based on componentwise maxima. Let
Xi = Xi1,…,Xidð Þ, i= 1,…,k, be a sample of X and let Mk = Mk1,…,Mkdð Þ, where
Mkj = max X1j,…,Xkj

� �
is the maximum over the jth margin.

2.1.1. Univariate theory
The Fisher–Tippett–Gnedenko theorem (e.g., Coles et al., 2001) describes the limit behavior of the
univariate maximum Mkj. It states that if there exist sequences akj∈R, bkj > 0 such that

lim
k!∞

P Mkj�akj
bkj

≤ z

� �
=G j zð Þ, n!∞, (1)

then if G j is the distribution function of a nondegenerate random variable Z j, it is in the class of
generalized extreme value (GEV) distributions with

G j zð Þ= exp � 1þ ξ j
z�μ j

σ j

� �� ��1=ξ j

þ

" #
, z∈R,

where xþ denotes the positive part of a real number x, and ξ j∈R, μ j∈R, and σ j > 0 are the shape,
location, and scale parameters, respectively. The shape parameter is the most important parameter since it
indicates whether the jthmargin is heavy-tailed (ξ j > 0), light-tailed (ξ = 0) or whether it has a finite upper
end-point (ξ < 0).

It can be shown that under mild conditions on the distribution of margin X j, appropriate sequences
exist for (1) to hold. The above theorem, therefore, suggests to fit a generalized extreme value distributionbG j to maxima taken over blocks of the same length, which is common practice when modeling yearly
maxima. The shape, location, and scale parameters can then be estimated in different ways, including
moment-based estimators Hosking (1985), Bayesian methods (Yoon et al., 2010), and maximum
likelihood estimation (Hosking et al., 1985). We use the latter in this work. This allows extrapolation
in the direction of the jth marginal since the size of a T-year event can be approximated by the 1�1=Tð Þ-
quantile of the distribution bG j, even if T is larger than the length of the data record.

2.1.2. Multivariate theory
For multivariate data, the correct extrapolation of the tail not only depends on correct models for the
marginal extremes, but also on whether the dependence between marginally large values is well captured.
For two components Xi and X j with limits Zi and Z j of the corresponding maxima in (1), this dependence
is summarized by the extremal correlation χij∈ 0,1½ � (Schlather and Tawn, 2003)

χij = lim
q!1

P Fi Xið Þ> qjF j X j
� �

> q
� �

∈ 0,1½ �:

The larger χij, the stronger the dependence in the extremes between the two components, that is, between
Zi and Z j. If χij > 0 we speak of asymptotic dependence, and otherwise of asymptotic independence.
While the extremal correlation is a useful summary statistic, it does not reflect the complete extremal
dependence structure betweenXi andX j. Under asymptotic dependence, the latter can be characterized by
the so-called spectral distribution (de Haan and Resnick, 1977). Let eX j = �1= logF j X j

� �
, j= 1,…,d, be

the data normalized to standard Fréchet margins. The spectral distribution describes the extremal angle of
Xi,X j
� �

, given that the radius exceeds a high threshold, that is,

H xð Þ= lim
u!∞

P
eXieXiþ eX j

≤ x j eXiþ eX j > u

 !
, x∈ 0,1½ �:
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Under strong extremal dependence, the spectral distribution centers around 1/2; under weak extremal
independence, it has mass close to the boundary points 0 and 1.

Inmultivariate extreme value theory, a popular way to ensure a correct extrapolation of tail dependence
under asymptotic dependence is by modeling the joint distributionZ= Z1,…,Zdð Þ of the limits in (1) as a
max-stable distribution with multivariate distribution function:

P G1 Z1ð Þ≤ z1,…,Gd Zdð Þ≤ zdð Þ= exp �ℓ z1,…,zdð Þf g, z1,…,zd∈ 0,1½ �, (2)

where ℓ is the so-called stable tail dependence function (e.g., de Haan and Ferreira, 2007). This is a copula
approach in the sense that the right-hand side is independent of the original marginal distributionsG j and
only describes the dependence structure. In practice, theG j are replaced by estimates bG j that are fitted to
the data first. The right-hand side of (2) is also called an extreme value copula (e.g., Gudendorf and Segers,
2010).

A natural extension of max-stable distributions to the spatial setting is given by max-stable processes
Z tð Þ : t∈Rd
� 	

(e.g., Davison et al., 2012), where the maxima Zi =Z tið Þ are observed at spatial locations
ti, i= 1,…,d. These types of models have been widely applied in many different areas such as flood risk
(Asadi et al., 2015), heat waves (Engelke et al., 2019), and extreme precipitation events (Buishand et al.,
2008). A popular parametric model for a max-stable process Z is the Brown–Resnick process (Kabluchko
et al., 2009; Engelke et al., 2015). This model class is parameterized by a variogram function γ on Rd. In
this case, each bivariate distribution is in the so-called Hüsler–Reiss family (Hüsler and Reiss, 1989), and
the corresponding dependence parameter is the variogram function evaluated at the distance between the
two locations,

λij = γ ∥ti� t j∥
� �

, i, j= 1,…,d:

One can show that the extremal correlation coefficient for this model is given by χij = 2�2Φ
ffiffiffiffiffi
λij

p
=2

� �
,

where Φ is the standard normal distribution function. A popular parametric family is the class of fractal
variograms that can be written as γα,s hð Þ= hα=s, α∈ 0,2ð �, s> 0. While these methods enjoy many
interesting properties, they are often quite complex to fit (Dombry et al., 2017) and impose strong
assumptions on the spatial phenomena of interest, such as spatial stationarity, isotropic behavior, and
asymptotic dependence between all pairs of locations.

A simple way of fitting a Brown–Resnick process to data is to compute the empirical versionsbχij of the
extremal correlation coefficients and then numerically find the parameter values (e.g., α and s for the
fractal variogram family) whose implied model extremal coefficients minimize the squared error
compared to the empirical ones.

2.2. Generative adversarial network

GANs (Goodfellow et al., 2014) are attracting great interest thanks to their ability of learning complex
multivariate distributions that are possibly supported on lower-dimensional manifolds. Thesemethods are
generative since they allow the generation of new realistic samples from the learned distribution that can
be very different from the training samples.

Given observations U1,…,Un from some d-dimensional unknown target distribution pdata, GANs can
be seen as a game opposing two agents, a discriminator D and a generator G. The generator G takes as
input a random vector Y= Y1,…,Yp

� �
from a p-dimensional latent space and transforms it to a new

sample U∗ =G Yð Þ. The components Y j, j= 1,…,p, are independent and typically have a standard
uniform or Gaussian distribution.

The discriminator D has to decide whether a new sample U∗ generated by G is fake and following the
distribution pG, or coming from the real observations with distribution pdata. The discriminator expresses
its guesses with a value between 0 and 1 corresponding to its predicted probability of the sample coming
from the real data distribution pdata. Both the generator and the discriminator become better during the
game, in whichD is trained to maximize the probability of correctly labeling samples from both sources,
and G is trained to minimize D’s performance and thus learns to generate more realistic samples.
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Mathematically, the optimization problem is a two-player minimax game with cross-entropy objective
function:

min
G

max
D

EU�pdata log D Uð Þð Þ½ �þEY�pY log 1�D G Yð Þð Þð �:½ (3)

In equilibrium, the optimal generator satisfies pG = pdata (Goodfellow et al., 2014).
In practice, the discriminator and the generator are modeled through feed-forward neural networks.

While the equilibrium with pG = pdata is only guaranteed thanks to the convex–concave property in the
nonparametric formulation (3), the results remain very good as long as suitable adjustments to the losses,
training algorithm, and overall architecture are made to improve on the stability and convergence of
training. For instance, a standard adjustment to the generator’s loss function was already proposed in the
GANs original paper (Goodfellow et al., 2014), and consists of training the generator to minimize
� log D G Yð Þð Þð Þ rather than log 1�D G Yð Þð Þð Þ. This new loss function is called the nonsaturating
heuristic loss, and was suggested to mitigate close to null gradients that occur in early training. Indeed,
as the generator is still poorly trained, the discriminator can easily detect its samples and therefore
associates values close to zero to them. This results in a very slow improvement of the generator during
backpropagation as the gradients associated with values around D G Yð Þð Þ= 0 are too small, and thus its
loss L Gð Þ= log 1�D G Yð Þð Þð Þ saturates. Training the generator tominimize� log D G Yð Þð Þð Þ rather than
log 1�D G Yð Þð Þð Þ provides stronger gradients in early training without compromising on the dynamics
of the two agents.

The architecture of the generator G and the discriminator D can be specifically designed for the
structure of the data under consideration. In this direction, Radford et al. (2016) introduce the use of
the convolutional neural network as an add-on feature to the GAN yielding a deep convolutional
generative adversarial network model (DCGAN). It is considered the preferred standard for dealing
with image data and more generally any high dimensional vector of observations describing a complex
underlying dependence structure, showing superior performance in the representation and recognition
fields.

2.3. evtGAN

Here we give an overview of evtGAN. Let X1,…,Xm be independent observations of dimensionality d,
where Xi = Xi1,…,Xidð Þ and m= k �n. Now let Z1,…,Zn be independent observations obtained as block
maxima taken sequentially over the span of k observations, that is, Z1 = max X1,…,Xkð Þ,
Z2 = max Xkþ1,…,X2kð Þ and so on (see also Section 2.1), where the maxima are taken in each compo-
nent. The evtGAN algorithm (Algorithm 1) below takes these empirical block maxima as input and
follows a copula approach where marginal distributions and the dependence structure are treated
separately. In particular, this allows us to impose different amounts of parametric assumptions on the
margins and the dependence.

It is known that classical GANs that are trained with bounded or light-tailed noise input distributions in
the latent space will also generate bounded or light-tailed samples, respectively (see Wiese et al., 2019;
Huster et al., 2021). That means that they are not well-suited for extrapolating in a realistic way outside the
range of the data. For this reason, we suppose that the approximation of the margins by generalized
extreme value distributions G j as in (1) holds, which allows for extrapolation beyond the data range. On
the other hand, we do not make explicit use of the assumption of a multivariate max-stable distribution as
in (2). This has two reasons. First, while the univariate limit (1) holds under very weak assumptions, the
multivariate max-stability as in (2) requires much stronger assumptions (see Resnick, 2008) and may be
too restrictive for cases with asymptotic independence (e.g.,Wadsworth and Tawn, 2012). Second, even if
the data follow a multivariate max-stable distribution (2), the probabilistic structure is difficult to impose
on a flexible machine learning model such as a GAN.
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Algorithm 1: evtGAN

Input: Observations Zi = Zi1,…,Z idð Þ, i= 1,…,n.

1. For j= 1,…,d, fit a GEV distribution bG j to the data Z1j,…,Znj with estimated parametersbμ j,bσ j,bξ j

� �
.

2. Normalize all margins empirically to a standard uniform distribution to obtain pseudo-observa-
tions:

Ui = bF1 Zi1ð Þ,…,bFd Z idð Þ
� �

, i= 1,…,n,

where bF j is the empirical distribution function of the Z1j,…,Znj.

3. Train a DCGAN G on the normalized data U1,…,Un based on the loss in Equation (3).
4. Generate n∗ new data points U∗

1,…,U∗
n from G with uniform margins, i= 1,…,n∗.

5. Normalize back to the scale of the original observations:

Z∗
i = bG�1

1 U∗
i1

� �
,…, bG�1

d U∗
id

� �� �
, i= 1,…,n∗:

Output: Set of new generated observations Z∗
i = Zi1,…,Z∗

id

� �
, i= 1,…,n∗.

The margins are first fitted by a parametric GEV distribution (line 1 in Algorithm 1). They are then
normalized to (approximate) pseudo-observations by applying the empirical distribution functions to each
margin (line 2). This standardization to uniform margins stabilizes the fitting of the GAN. Alternatively,
we could use the fitted GEV distributions for normalization but this seems to give slightly worse results in
practice. The pseudo-observations contain the extremal dependence structure of the original observations.
Since this dependence structure is very complex in general and our focus is to reproduce gridded spatial
fields, we do not rely on restrictive parametric assumptions but rather learn it by a highly flexible DCGAN
(line 3). From the fitted model we can efficiently simulate any number of new pseudo-observations that
have the correct extremal dependence (line 4). Finally, we transform the generated pseudo-observations
back to the original scale to have realistic properties of the new samples also in terms of the margins (line
5).

3. Application

We assess the ability of the proposed method to correctly model the spatial tail dependence structure
between climate extremes. Because observational records are relatively short and contain temporal trends,
here we rely on 2000 years of climate model output that is representative of present-day weather over
western Europe. In particular, we apply our approach to summer temperature and winter precipitation
maxima, yielding 2000 and 1999 maxima for temperature and precipitations, respectively. We then
compare the performance of our algorithm to the Brown–Resnick model, a state-of-the-art statistical
model for spatial extremes. We use the fractal variogram family and the fitting described in Section 2.1.2.
To retrieve an unbiased estimate of the error that each of the methods makes, we divide the data into a
training set of 50 observations, and the rest is taken as a test set. A sensitivity analysis with other sample
sizes is also carried out. Both methods are fitted using only the training data set and the evaluation is made
considering the information contained in the test set as ground truth.When not stated otherwise, the results
from the Brown–Resnick model are analytical, while the results from evtGAN are obtained simulating
100000 data points.

3.1. Data

The model experiment, which uses large ensemble simulations with the EC-Earth global climate model
(v2.3, Hazeleger et al., 2012) has been widely used in climate impact studies (Van der Wiel et al., 2019a,
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2021; Tschumi et al., 2021; Van Kempen et al., 2021; Vogel et al., 2021) and was originally designed to
investigate the influence of natural variability on climate extremes. A detailed description of these climate
simulations is provided in Van der Wiel et al. (2019b), here we only provide a short overview. The large
ensemble contains 2000 years of daily weather data, representative of the present-day climate. Present-
daywas defined by the observed value of globalmean surface temperature (GMST) over the period 2011–
2015 (HadCRUT4 data, Morice et al., 2012); the 5-year time slice in long transient model simulations
(forced by historical and Representative Concentration Pathway (RCP) 8.5 scenarios) with the same
GMSTwas simulated repeatedly. To create the large ensemble, at the start of the time slice, 25 ensemble
members were branched off from the 16 transient runs. Each ensemble member was integrated for the
5-year time slice period. Differences between ensemble members were forced by choosing different seeds
in the atmospheric stochastic perturbations (Buizza et al., 1999). This resulted in a total of 16�25�
5= 2000 years ofmeteorological data, at T159 horizontal resolution (approximately 1°), amongwhichwe
selected temperature (Kelvin) and precipitations (meter/day) for this article.

We choose an area such that it is big enough to be relevant for climate application while being small
enough to ensure a fair comparison of our approach and the classical approach in statistics tomodel spatial
tail dependence, the Brown–Resnick process. Our analysis thus focuses on a total of 18�22 grid points
covering most of western Europe. For that area, we compute for each grid point the summer temperature
maxima and winter precipitation maxima.

3.2. Architecture and hyper-parameters

In our application, we consider the nonsaturating heuristic loss (Goodfellow et al., 2014) for the generator,
and the standard empirical cross-entropy loss for the discriminator. Training is done iteratively, where the
discriminator is allowed to train two times longer than the generator. A bigger number of discriminator
training iterations per generator training iteration was initially considered but it did not achieve better
results for the considered sample sizes and input dimensions but only resulted in longer training. We
incorporate an exponential moving average scheme (Gidel et al., 2019) to the training algorithm as it has
demonstrated more stability, a far better convergence, and improved results.

Since we focus on reproducing gridded spatial fields, we make use of the DCGAN model (Radford
et al., 2016) as an architectural design to take advantage of convolution (Fukushima, 1980), and for amore
accurate analysis of the input data, we apply zero-padding of a single layer to the train set observations
before they are fed to the discriminator (Albawi et al., 2017), increasing the dimension of its input to
20�24. We use classical regularization tools such as drop-out (Srivastava et al., 2014), batch-normal-
ization (Ioffe and Szegedy, 2015), and the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
2�10�4 and batch size of 50 to train the neural network, and a total of 30,000 training epochs. The value
of the exponential moving average parameter in the training algorithm is set to α= 0:9. The values of the
hyperparameters are the result of an extensive heuristic tuning, and are only valid for the dimension of the
input and the considered sample sizes involved in training the network. That being said, we are fairly
confident that a minimal intervention in tuning the hyperparameters/architecture would be required if for
instance higher resolution inputs were to be used, as these models are fairly robust to such changes.
Indeed, models based on the general GANs paradigm are traditionally trained on much higher dimen-
sional objects such as images, and they learn well using an architecture that is very close to the one we
have adopted. One may argue that the underlying distributions defining real-world images are “simpler,”
and therefore easier to learn, which is why we propose the evtGAN model to address the increased
complexity of the underlying distribution of the data at hand: initially, we startedwith a coarser grid (lower
resolution input), as we considered France only, then decided to cover a larger part of Europe as the results
were very good. In this change, themodel’s architecture needed to be adjusted only by adding a few layers
to the generator. For a given input resolution, increasing the complexity of the model (using a deeper one)
just increased training time and pushed convergence further down the line. Figures 1 and 2 illustrate the
final architectures of the discriminator and the generator, as well as the values of some of the hyperpara-
meters used for training.
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3.3. Results

A particularity of evtGAN is that it decomposes the full high-dimensional distribution of the data into its
marginal distributions and its dependence structure and processes them separately. We thus first report
estimated key parameters of the marginal distributions. For temperature, the location parameter μ is
typically higher over land than over oceans (Figure 3a). Furthermore, there is a trend toward lower values
of μ for more northern regions, illustrating the well-known latitudinal temperature gradient from south to
north. The scale parameter σ, representing the width of the distribution, is also higher over land than over
the ocean, with a fairly homogeneous distribution over land (Figure 3b). The shape parameter ξ is well
below 0 for most regions except some areas in the Atlantic north of Spain and in the Mediterranean at the
North African coast, indicating a bounded tail (Figure 3c).

For precipitation, the location parameter μ is more similar between land and ocean compared to
temperature but spatially more heterogeneous (Figure 3d), illustrating orographic effects on precipitation
extremes. For the scale parameter σ, there is also no clear land-sea contrast but areas with relatively much
higher values (corresponding to higher interannual variability in extremes) occur over theWestern part of
the Iberian peninsula and along a coastal band at the northern Mediterranean coast (Figure 3e). The shape
parameter ξ is spatially quite heterogeneous, with values ranging from�0.15 to 0.25 (Figure 3f). Overall,
the parameters of the extreme value distributions of precipitation extremes shows much higher spatial

Figure 1. Discriminator’s architecture and values of hyperparameters used for training. lrelu stands for
the leaky relu function and its argument corresponds to the value of the slope when x< 0; drop stands for
drop-out (see Section 3.2) and its argument corresponds to the drop-out probability; F stands for the
kernel’s dimension, and S for the value of the stride; FC stands for fully connected, and sigmoid for the
sigmoid activation function.

Figure 2.Generator’s architecture and values of hyper-parameters used for training. lrelu stands for the
leaky relu function and its argument corresponds to the value of the slope when x< 0; drop stands for
drop-out (see Section 3.2) and its argument corresponds to the drop-out probability; F stands for the
kernel’s dimension, and S for the value of the stride; BN stands for batch-normalization (see Section 3.2);
FC stands for fully connected.
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heterogeneity than the ones for temperature extremes, suggesting that it might be more difficult to learn a
model that represents well all tail dependencies for the entire region.

Next, we look at examples of bivariate scatterplots of simulated temperature extremes from the
different approaches for three cases with varying tail dependence (Figure 4). The three rows correspond
to three pairs of grid points with weak, mild, and strong tail dependence, respectively. The train sets
(Figure 4a,f,k) illustrate the distributions from which the models are tasked to learn while the test sets
(Figure 4b,g,l) are used as ground truth. As can be clearly seen, extremes are much less likely to co-occur
between locations that are characterized by weak tail dependence (Figure 4b) compared to locations that
are characterized by strong tail dependence (Figure 4l). Purely based on visual judgment, it seems that
evtGAN is able to characterize the different tail dependencies relatively well and can simulate samples
outside of the range of the train set (Figure 4c,h,m) whereas DCGAN only simulates distributions
bounded to the range of the train set (Figure 4d,i,n) and Brown–Resnick tends to overestimate tail
dependence in cases where tail dependence is weak (Figure 4e,j).

The corresponding figure for precipitation extremes is shown in Figure 5. Conclusions are similar to
the ones derived based on temperature extremes. The evtGAN simulates distributions with different tail
dependencies and samples that are far outside the range of the train set (Figure 5c,h,m). DCGAN simulates
distributions that are bounded to the train set range (Figure 5d,i,n). On the other hand, Brown–Resnick
overestimates tail dependence in the case of mild tail dependence (Figure 5j), and underestimates tail
dependence when tail dependence is strong (Figure 5o).

A scatterplot of bivariate extremal correlations between 100 randomly selected locations estimated
from the train set, evtGAN, and Brown–Resnick, respectively, against estimates based on the test set
(1950 samples) is shown in Figure 6. The estimates derived directly from the train sets (Figure 6a,d) are
the benchmark, and by design better performance is not possible. Clearly, pairs of locations with stronger
tail dependence are much more likely for temperature (Figure 6a) than for precipitation (Figure 6d),

20 25 30 35 40 0.6 1.0 1.4 1.8 2.2 -0.35 -0.25 -0.15 -0.05 0.05

10 15 20 25 30 3 4 5 6 7 8 9 10 -0.15 -0.05 0.05 0.15

a) b) c)

d) e) f)

Figure 3. The generalized extreme value distribution parameters estimated for each grid point for
temperature (a–c) and precipitation (d–f) extremes. On the left (a,d) the mean parameter μ, in the middle
(b,e) the scale parameter σ, and on the right (c,f) the shape parameter ξ.
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Figure 4. Bivariate plots of temperature extremes based on train and test sets and simulated through the
different presentedmethods. Shown are selected pairs of locations with varying tail dependence. Columns
from left to right: train, test, evtGAN, DCGAN and Brown–Resnick. From top to bottom: weak tail
dependence (a–e), mild tail dependence (f–j), and strong tail dependence (k–o). The colors represent the
empirically estimated density: the spectrum goes from yellow to gray, reflecting a decrease in density.
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Figure 5. Bivariate plots of precipitation extremes based on train and test sets and simulated through the
different presentedmethods. Shown are selected pairs of locations with varying tail dependence. Columns
from left to right: train, test, evtGAN, DCGAN, and Brown–Resnick. From top to bottom: weak tail
dependence (a–e), mild tail dependence (f–j), and strong tail dependence (k–o). The colors represent the
empirically estimated density: the spectrum goes from yellow to gray, reflecting a decrease in density.
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confirming the impression obtained from the spatial homogeneity of the parameters in the extreme value
distributions (Figure 3). Furthermore, evtGAN seems to better capture the observed relationship. Brown–
Resnick has difficulties in particular with pairs that have weak or no tail dependence (extremal correlation
equals 0, lower left in the figures), which is consistent with Figures 4 and 5.

To further explore the behavior of evtGAN and Brown–Resnick in dealing with different levels of
dependence, Figure 7 shows a comparison of the estimated spectral distribution for the same pairs of
chosen grid points shown in Figures 4 and 5, characterized by weak (a,d), mild (b,e) and strong tail
dependence (c,f), respectively. Themagenta bars show the estimates based on the 1950 samples in the test
set. The estimates of evtGAN are very close to the ground truth for all cases, that is, weak,mild, and strong
dependence (red lines in Figure 7), except for some bias in the case of mild dependence in precipitation
extremes (Figure 7e). In contrast, the performance of the Brown–Resnick model (black lines in Figure 7)
is much more variable. It captures relatively well the two pairs with weak tail dependence (Figure 7d) and
does a decent job for strong dependence in temperature extremes (Figure 7c) but fails completely for the
remaining three cases (Figure 7b,e,f). Furthermore, in contrast to Brown–Resnick, evtGAN is able to
represent asymmetric dependence structures, as is evident from Figure 7.

We finally present a sensitivity analysis of the performance of evtGAN for different realistic sample
sizes, namely 30, 50, and 100, while learning for 30,000 epochs (Figure 8). Overall the error tends to
decrease the longer the models learn and it does not seem to matter whether we evaluate the performance
on the train set or the test set (difference between black and red lines in Figure 8 is small). For small sample
sizes (n= 30) the best performance might be reached for epochs smaller than 30,000 (Figure 8a,b) and the
l2 norm between the extremal coefficients of evtGAN and the train set could be used as a stopping
criterion. An improvement in performance with increasing sample size is clearly visible (compare
Figure 8a,b with Figure 8e,f). Furthermore, the model errors for temperature extremes are smaller than
the ones for precipitation extremes (left vs. right column in Figure 8).
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Figure 6. Scatter plots of the extremal correlations for temperature extremes (a–c) and precipitation
extremes (d–f) between 100 randomly selected locations. The x-axes always show the estimates based on
the test set. Estimates on the y-axes are based on the train set (a,d), on the output of evtGAN (b,d), and on
the Brown–Resnickmodel. The colors represent the empirically estimated density: the spectrum goes from
yellow to gray, reflecting a decrease in density.
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4. Discussion

The use of evtGAN combines the best of two worlds: correct extrapolation based on extreme value theory
on the one hand, and flexible dependence modeling through GANs on the other hand. GANs are an
excellent tool to model complex dependencies in high-dimensional spaces. However, they are typically
not tailored to model extremes in the marginals well. Indeed, for a standard DCGAN implementation
where the marginals are not estimated by GEV distributions but empirically transformed, Figures 4d,i,n
and 5d,i,n show that the generated samples are bounded by the range of the training sample. For an
accurate extrapolation that resembles the marginal distributions of the test set, extreme value theory is
required (panels c,e,h,j,m, and o of Figures 4 and 5).

On the other hand, classical methods of spatial extreme value theory such as the Brown–Resnick
process have accurate extrapolation properties for the marginal distributions. However, for an application
to a spatially heterogeneous data set on a large domain (Figure 3), their parametric assumption may be too
restrictive. Indeed, Figure 6c,f shows a clear bias of the Brown–Resnick model in terms of bivariate
extremal correlations, which is particularly visible for pairs with weak extremal dependence. Another
indication for this bias can be seen in Figure 5j,o where the distributions of the Brown–Resnick samples
differ strongly from the test set distributions. The evtGAN does not make prior assumptions on spatial
stationarity or isotropy and therefore it does not exhibit a bias (points in Figure 6b,e are centered around
the diagonal). This is particularly noteworthy since modeling complex nonstationarities for extremes is
very difficult with parametric models (Huser andGenton, 2016; Engelke andHitz, 2020). Considering the
fitted bivariate distributions of evtGAN and Brown–Resnick underlines this point.

The spectral distributions of the Brown–Resnickmodel are restricted to a parametric class of functions,
which, for instance, are symmetric around 1=2. The blue lines in Figure 7 show that this is too restrictive
for our data since the strength of dependence is not correctly modeled (Figure 7b) or the asymmetry is not
captured (Figure 7c,f). The evtGAN (red lines) on the other hand can model weak and strong

a) BR
evtGAN

b) c)

0 0.5 1

d) e)

ω
0 0.5 1

f)

0 0.5 1

Figure 7. Spectral distributions for a threshold of 0.95 for selected pairs of locations with varying tail
dependence for temperature (a–c) and precipitation (d–f). (a,d) weak tail dependence, (b,e) mild tail
dependence, (c,f) strong tail dependence. Shown are kernel density estimates of the evtGAN (red), the
Brown–Resnick model (blue) and bars for the ground truth (magenta).
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dependences, and it even adapts to possible asymmetries. This is also evident from the scatterplots in
Figures 4 and 5, where the shape of the Brown–Resnick samples is restricted to a parametric subclass of
distributions, the so-called Hüsler–Reiss family (Hüsler and Reiss, 1989).

A further restriction of classical spatial max-stable processes is the fact that they are limited to
modeling asymptotic dependence. For precipitation, it can be seen in Figure 6d–f that most of the test
extremal correlations are close to zero, indicating asymptotic independence. While the evtGAN is able to
capture this fairly well (Figure 6e), the Brown–Ressnickmodel always has positive extremal correlations,
explaining the bias in the bottom left corner of Figure 6f. A spatial asymptotically independent model
(e.g., Wadsworth and Tawn, 2012) would be a possible remedy for this, but such processes would still
suffer from the limitation induced by nonstationarity and asymmetry described above.

Overall, evtGAN tends to perform better in capturing dependencies between temperature extremes
than precipitation extremes (Figure 8). This is likely related to the fact that extremes in temperature are
more spatially coherent (Keggenhoff et al., 2014; Figure 3).

5. Conclusions

Understanding and evaluating the risk associated with extreme events is of primal importance for society,
as recently emphasized in the 6th Assessment Report of the Intergovernmental Panel on Climate Change
(Seneviratne et al., 2021). Extreme event analysis and impact assessments are often limited by the
available sample sizes. Furthermore, simulations with complex climate models are very expensive. Here
we combine a machine learning approach with extreme value theory to model complex spatial
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Figure 8.Model performance versus training epochs fordifferent sample sizes in evtGAN for temperature
(a,c,e) and precipitation (b,d,f) extremes. A number of observations equal to ntest ¼N�ntrain were
sampled from evtGAN, where N¼ 2000 for temperature, and N¼ 1999 for precipitation. The mean l2

norms for train (black) and test set (red) are defined as Cte ¼ χevtG�χtek k2, Ctr ¼ χevtG�χtrk k2, where
χevtG, χte, and χtr denote the vectors of extremal correlations calculated on the samples from evtGAN, the
test set and the train set, respectively.

e5-14 Environmental Data Science

https://doi.org/10.1017/eds.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.4


dependencies between extreme events in temperature and precipitation across Europe based on a limited
sample size. We demonstrate that this hybrid approach outperforms the typically used approach in
multivariate extreme value theory and can well represent the marginal distributions and extremal
dependencies across spatially distributed climate extremes. The approach can be easily adapted to other
types of extremes and used to create large sample sizes that are often required for climate risk assessments.
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