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Integrality of quantum 3-manifold invariants

and a rational surgery formula

Anna Beliakova and Thang T. Q. Lê

Abstract

We prove that the Witten–Reshetikhin–Turaev (WRT) SO(3) invariant of an arbitrary
3-manifold M is always an algebraic integer. Moreover, we give a rational surgery formula
for the unified invariant dominating WRT SO(3) invariants of rational homology 3-spheres
at roots of unity of order co-prime with the torsion. As an application, we compute the
unified invariant for Seifert fibered spaces and for Dehn surgeries on twist knots. We show
that this invariant separates Seifert fibered integral homology spaces and can be used to
detect the unknot.

Introduction

The Witten–Reshetikhin–Turaev (WRT) invariant was first introduced by Witten using physics
heuristic ideas, and then mathematically rigorously by Reshetikhin and Turaev [Tur94]. The in-
variant, depending on a root ξ of unity, was first defined for the Lie group SU(2), and was later
generalized to other Lie groups. The SO(3) version of the invariant was introduced by Kirby and
Melvin [KM91]. For this SO(3) version the quantum parameter ξ must be a root of unity of odd
order. One important result in quantum topology, first proved by Murakami for rational homol-
ogy spheres [Mur95] and then generalized by Masbaum and Roberts [MR97], is that the WRT
SO(3) invariant (also known as quantum SO(3) invariant) τM (ξ) of an arbitrary 3-manifold M is an
algebraic integer, when the order of the root of unity ξ is an odd prime. The first integrality result
for all roots of unity, but for the restricted set of 3-manifolds (integral homology 3-spheres), was
obtained by Habiro in [Hab02, Hab06]. Recently, the second author proved [Le05] that, if the order
of ξ is co-prime with the cardinality of the torsion of H1(M, Z), then the SO(3) quantum invariant
τM (ξ) ∈ Z[ξ]. In this paper we remove all the restrictions on the order of ξ.

Theorem 1. For every closed 3-manifold and every root ξ of unity of odd order, the quantum
SO(3) invariant τM (ξ) belongs to Z[ξ].

The integrality has many important applications, among them the construction of an integral
topological quantum field theory and representations of mapping class groups over Z by Gilmer and
Masbaum (see e.g. [GM04]). The integrality is also a key property required for the categorification
of quantum 3-manifold invariants [Kho05].

Our proof of integrality is inspired by Habiro’s work. In [Hab02, Hab06], Habiro constructed an
invariant of integral homology 3-spheres with values in the universal ring

Ẑ[q] = lim←−
n

Z[q]/((q; q)n),
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where (z; q)n := (1− z)(1− qz) · · · (1− qn−1z) and, for any f ∈ Z[q], (f) denotes the ideal generated
by f . Habiro’s invariant specializes at a root ξ of unity to τM (ξ).

In [Le05], the second author generalized Habiro’s theory to rational homology 3-spheres. For a
rational homology sphere M with |H1(M, Z)| = a, he constructed an invariant IM which dominates
the SO(3) invariants of M at roots of unity of order co-prime to a. Habiro’s universal ring was
modified by inverting a and cyclotomic polynomials of order not co-prime to a. Applications of
this theory are the new integrality properties of quantum invariants, new results about Ohtsuki
series and a better understanding of the relation between Lê–Murakami–Ohtsuki (LMO) invariant,
Ohtsuki series and quantum invariants.

In this paper we give a rational surgery formula for the unified invariant IM defined in [Le05]
and refine the ring that contains the values of IM . Let us summarize our main results.

Let t := q1/a and Ra,k ⊂ Q(t) be the subring generated over Z[t±1] by (t; t)k/(q; q)k. Note that

Ra,1 ⊂ Ra,2 ⊂ · · · ⊂ Ra,

where Ra =
⋃∞

k=1Ra,k. The analog of the Habiro ring constructed in [Le05] can be defined as1

R̂a := lim←−
n

Ra/((q; q)n).

Let Ua be the set of all complex roots of unity with orders odd and co-prime with a. For every
ξ ∈ Ua and every f ∈ R̂a one can define an evaluation evξ(f) ∈ C, replacing q by ξ; see § 1.2. It was
shown in [Le05] that, if |H1(M, Z)| = a, then IM ∈ R̂a and evξ(IM ), after a simple normalization,
is the SO(3) quantum invariants of M at q = ξ.

It will be shown that, for f ∈ R̂a, evξ(f) ∈ Z[ξ/a], and, in general, one cannot avoid the
denominator. We will single out a subring Γa of R̂a such that evξ(Γa) = Z[ξ].

Let

xn :=
(qn+1; q)n+1

1− q
=

(1− qn+1)(1− qn+2) · · · (1− q2n+1)
1− q

∈ Z[q].

Then (q; q)n divides xn, which, in turns, divides (q; q)2n+1. Hence the ideals (xn) and (q; q)n are
cofinal in Ra, and we have R̂a := lim←−nRa/(xn). Every element f ∈ R̂a = lim←−nRa/(xn) can
be represented as an infinite series of the form

f =
∞∑

n=0

fn(t)xn, where fn(t) ∈ Ra. (1)

Let Γa be the set of all elements f of R̂a that have a presentation (1) such that fn(t) ∈ Ra,2n+1. It
is easy to see that Γa is a subring of R̂a. The following shows that Γa is strictly smaller than R̂a:
it enjoys stronger integrality.

Proposition 1. Suppose that f ∈ Γa and ξ ∈ Ua, i.e. ξ is a root of unity whose order is odd and
co-prime with a. Then evξ(f) ∈ Z[ξ]. On the other hand, evξ(R̂a) = Z[ξ/a].

Now we can formulate our next result.

Theorem 2. Let M be a rational homology 3-sphere with |H1(M, Z)| = a. Then we have IM ∈ Γa.

In particular, Theorem 2 and Proposition 1 give a new proof of the integrality of SO(3) quantum
invariant of rational homology 3-sphere M with |H1(M, Z)| = a at a root of unity ξ ∈ Ua, a result
proved in [Le05].

1We are grateful to the referee for pointing out that R̂a coincides with the ring Λ̂a in [Le05].
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Further, we compute the unified invariant for Seifert fibered spaces and for Dehn surgeries on
twist knots.

Theorem 3. The unified invariant separates Seifert fibered integral homology spheres.

Theorem 3 follows also from [BNL04], where the computations were done for the LMO invariant
combined with the sl2 weight system, i.e. for the Ohtsuki series. By the result of Habiro in [Hab02,
Hab06], the Ohtsuki series is just the Taylor expansion of IM at q = 1, which determines IM .

For a knot K, let M(K,a) denotes the 3-manifold obtained by surgery on the knot K with
framing a. In general, there are different K,K ′ such that M(K,a) = M(K ′, a) for some a.

Theorem 4. Suppose that, for infinitely many a ∈ Z, the Ohtsuki series of M(K,a) and M(K ′, a)
coincide, i.e. IM(K,a) = IM(K ′,a). Then K and K ′ have the same colored Jones polynomial.

In particular, using the recent deep result of Andersen [And07], that the colored Jones polynomial
detects the unknot, we see that (under the assumption of the theorem), if K is the unknot, then so
is K ′.

1. Quantum invariants

Recall that q = ta. We will use the following notation:

{n} = qn/2 − q−n/2, {n}! =
n∏

i=1

{i}, [n] =
{n}
{1} ,

[
n
k

]
=

{n}!
{k}!{n − k}! .

1.1 The colored Jones polynomial
Suppose that L is a framed, oriented link in S3 with m ordered components. For every positive
integer n there is a unique irreducible sl2-module Vn of dimension n. For positive integers n1, . . . , nm

one can define the quantum invariant JL(n1, . . . , nm) := JL(Vn1 , . . . , Vnm) known as the colored
Jones polynomial of L (see e.g. [Tur94]). Let us recall here a few well-known formulas. For the
unknot U with 0 framing one has

JU (n) = [n] = {n}/{1}. (2)

If L′ is obtained from L by increasing the framing of the ith component by 1, then

JL′(n1, . . . , nm) = q(n2
i−1)/4JL(n1, . . . , nm). (3)

In general, JL(n1, . . . , nm) ∈ Z[q±1/4]. However, there is a number b ∈ {0, 1
4 , 1

2 , 3
4} such that

JL(n1, . . . , nm) ∈ qbZ[q±1].

1.2 Evaluation map and Gauss sum
Throughout this paper let ξ be a primitive root of unity of odd order r. We first define, for each ξ, the
evaluation map evξ, which replaces q by ξ. Suppose that f ∈ Q[q±1/h], where h is co-prime with r,
the order of ξ. There exists an integer b, unique modulo r, such that (ξb)h = ξ. Then we define

evξf := f |q1/h=ξb .

Suppose that t := q1/a and Na is the set of all positive integers co-prime to a. Denote by Φs(t)
the sth cyclotomic polynomial. Recall that

1− tn =
∏
s|n

Φs(t).
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It follows that (t; t)k/(q; q)k is the inverse of the product of many Φs(t) with s �∈ Na. Recall that
Ua is the set of all complex roots of unity with orders odd and co-prime with a. When ξ ∈ Ua and
s �∈ Na, we have Φs(ξ) �= 0. Thus one can evaluate evξ((t; t)k/(q; q)k). The definition also extends
to evξ : R̂a → C, since evξ((q; q)n) = 0 if n � r.

Suppose that f(q;n1, . . . , nm) is a function of variables q and integers n1, . . . , nm. Let∑
ni

ξ
f :=

∑
ni

evξ(f),

where in the sum all the ni run over the set of odd numbers between 0 and 2r. A variation γd(ξ) of
the Gauss sum is defined by

γd(ξ) :=
∑
n

ξ
qd(n2−1)/4.

It is known that, for odd r, |γd(ξ)| =
√

r, and hence is never 0.

Let

FL(ξ) :=
∑
ni

ξ
JL(n1, . . . , nm)

m∏
i=1

[ni].

The following result is well known (compare [Le05]).

Lemma 1.1. For the unknot U± with framing ±1, one has FU±(ξ) �= 0. Moreover, one has

FU±(ξ) = ∓2γ±1(ξ) evξ

(
q∓1/2

{1}
)

. (4)

1.3 Definition of SO(3) invariant of 3-manifolds

All 3-manifolds in this paper are supposed to be closed and oriented. Every link in a 3-manifold is
framed, oriented, and has components ordered.

Suppose that M is an oriented 3-manifold obtained from S3 by surgery along a framed, oriented
link L. (Note that M does not depend on the orientation of L.) Let σ+ (respectively, σ−) be the
number of positive (respectively negative) eigenvalues of the linking matrix of L. Suppose ξ is a
root of unity of odd order r. Then the quantum SO(3) invariant is defined by

τM (ξ) = τ
SO(3)
M (ξ) :=

FL(ξ)
(FU+(ξ))σ+ (FU−(ξ))σ−

.

For the connected sum, one has τM#N (ξ) = τM(ξ)τN (ξ).

1.4 Laplace transform

In [BBL05], together with Blanchet we developed the Laplace transform method to compute τM (ξ).
Here we generalize this method to the case where r is not co-prime with torsion.

Suppose r is an odd number, and d is a positive integer. Let

c := (r, d), d1 := d/c, r1 := r/c.

Let Ld;n : Z[q±n, q±1] → Z[q±1/d] be the Z[q±1]-linear operator, called the Laplace transform,
defined by

Ld;n(qna) :=

{
0 if c � a,
q−a2/d if a = ca1.

(5)
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Lemma 1.2. Suppose that f ∈ Z[q±n, q±1]. Then one has∑
n

ξ
qd(n2−1)/4f = γd(ξ) evξ(Ld;n(f)).

Proof. It is enough to consider the case when f = qna, with a an integer. This case is proven by
Lemma 1.3 in the next subsection.

The point is that Ld;n(f), unlike the left-hand side
∑ξ

nqd(n2−1)/4f , does not depend on ξ, and
will help us to define a ‘unified invariant’. Note that Lemma 1.2 with d = ±1 and f = [n]2 implies
Lemma 1.1.

1.5 Reduction from r to r1

Let Or be the set of all odd integers between 0 and 2r. This set Or can be partitioned into r1 subsets
Or;s with s ∈ Or1 , where Or;s is the set of all n ∈ Or which are equal to s modulo r1. In other
words, Or;s := {s + 2jr1, j = 0, 1, . . . , c− 1}. The point is, the value of ξd(n2−1)/4 remains the same
for all n in the same set Or;s. Let ζ = ξc; then the order of ζ is r1.

Lemma 1.3. One has

γd(ξ) = cγd1(ζ), (6)∑
n

ξ
qd(n2−1)/4 qan =

{
0 if c � a,

γd(ξ)ζ−a2
1d∗1 if a = ca1,

(7)

where d1 is an integer satisfying d1d
∗
1 ≡ 1 (mod r1).

Proof. One has ∑
n

ξ
qd(n2−1)/4 qan =

∑
n∈Or

ξd(n2−1)/4 ξan =
∑

s∈Or1

∑
n∈Or;s

ξd(n2−1)/4ξan .

Using the fact that ξd(n2−1)/4 remains the same for all n in the same set Or;s, we get∑
n

ξ
qd(n2−1)/4qan =

∑
s∈Or1

ξd(s2−1)/4
∑

n∈Or;s

ξan (8)

=
∑

s∈Or1

ξd(s2−1)/4ξsa

(c−1∑
j=0

ξ2ar1j

)
. (9)

Note that (6) follows from (8) with a = 0. We also have
c−1∑
j=0

ξ2ar1j =
c−1∑
j=0

(ξ2ar1)j. (10)

If c � a, then (ξ2ar1) �= 1, but is a root of unity of order dividing c; hence the right-hand side
of (10) is 0. It follows that the right-hand side of (9) is also 0, or

∑
n

ξqd(n2−1)/4qan = 0.
If c|a, then the right-hand side of (10) is c. Hence from (9) we have∑

n

ξ
qd(n2−1)/4 qan = c

∑
s∈Or1

ξd(s2−1)/4ξsa

= c
∑

s∈Or1

ζd1(s2−1)/4ζsa1 = c
∑
n

ζ
qd1(n2−1)/4 qa1n

= cγd1(ζ)ζ−a2
1d∗1 .
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The last equality follows by the standard square completion argument. Using (6) we get the result.

1.6 Habiro’s cyclotomic expansion of the colored Jones polynomial
In [Hab02, Hab06], Habiro defined a new basis P ′k, k = 0, 1, 2, . . . , for the Grothendieck ring of
finite-dimensional sl2-modules, where

P ′k :=
1
{k}!

k∏
i=1

(V2 − q(2i−1)/2 − q−(2i−1)/2).

For any link L, one has

JL(n1, . . . , nm) =
∑

0�ki�ni−1

JL(P ′k1
, . . . , P ′km

)
m∏

i=1

[
ni + ki

2ki + 1

]
{ki}!. (11)

Since there is a denominator in the definition of P ′k, one might expect that JL(P ′k1
, . . . , P ′km

) also
has non-trivial denominator. A difficult and important integrality result of Habiro [Hab02, Hab06]
is stated below.

Theorem 5 [Hab02, Hab06, Theorem 3.3]. If L is an algebraically split and framed link in S3, then

JL(P ′k1
, . . . , P ′km

) ∈ {2k + 1}!
{k}!{1} Z[q±1/2] =

[
2k + 1

k

]
(q2)k Z[q±1/2],

where k = max{k1, . . . , km}.
Thus, JL(P ′k1

, . . . , P ′km
) is not only integral, but also divisible by (q)k.

Suppose that L is an algebraically split link with 0-framing on each component. Then we have

evξ(JL(n1, . . . , nm)) = evξ

( (r−3)/2∑
k1,...,km=0

JL(P ′k1
, . . . , P ′km

)
m∏

i=1

[
ni + ki

2ki + 1

]
{ki}!

)
.

2. Integrality of quantum invariants for all roots of unity

Throughout this section we assume that c = (d, r) > 1, r/c = r1, d/c = d1 and d1d
∗
1 = 1 (mod r1),

where r is the order of ξ and d is the order of the torsion part of H1(M, Z).

2.1 Quantum invariants of links with diagonal linking matrix
The following proposition plays a key role in the proof of integrality.

Proposition 2.1. For k � (r − 3)/2, we have

1
γ±1(ξ)

∑
n

ξ
qd(n2−1)/4

[
n + k
2k + 1

]
{k}!{n} ∈ Z[ξ]. (12)

Proof of Theorem 1 (diagonal case). Suppose that M is obtained from S3 by surgery along an alge-
braically split m-component link L with integral framings d1, d2, . . . , dm. Inserting into the definition
of τM (ξ) (see § 1.3) the formulas (4) and (11) and using Lemma 1.2, we see that Proposition 2.1 and
Theorem 5 imply integrality if di �= 0 for all i. If some of di are zero, then by the same argument as
in § 3.4.2 of [Le05] we have∑

n

ξ
[

n + k
2k + 1

]
{k}!{n} = 2evξ(q(k+1)(k+2)/4 (qk+2; q)r−k−2).

The result now follows from the fact that γd(ξ)/γ1(ξ) ∈ Z[ξ].
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2.1.1 Technical results. This subsection is devoted to the proof of Proposition 2.1.

Lemma 2.2. (a) Suppose that x ∈ Q(ξ) such that x2 ∈ Z[ξ]; then x ∈ Z[ξ].
(b) Suppose that x, y ∈ Z[ξ] such that x2 is divisible by y2; then x is divisible by y.

Proof. (a) Suppose that a = x2. Then a ∈ Z[ξ] and x is a solution of x2−a = 0. Hence x is integral
over Z[ξ], which is integrally closed. It follows that x ∈ Z[ξ].

(b) We have that (x/y)2 = x2/y2 is in Z[ξ]. Hence by part (a), we have x/y ∈ Z[ξ].

Recall that

(ql; q)m =
l+m−1∏

j=l

(1− qj).

Let (̃ql; q)m be the product on the right-hand side, only with j not divisible by c. Also let (̂ql; q)m
be the complement, i.e. (̂ql; q)m := (ql; q)/(̃ql; q)m. Using (ξ; ξ)r−1 = r and (ξc; ξc)r1−1 = r1, we see
that

(̃ξ; ξ)r−1 = c, (13)
where (a; b)m := (1 − a)(1 − ab) · · · (1− abm−1). Note that 1− ξj is invertible in Z[ξ] if and only if
(j, r) = 1. Let

z := (̃ξ; ξ)(r−1)/2 and z′ := ˜(ξ(r+1)/2; ξ)(r−1)/2. (14)

Then zz′ is the left-hand side of (13), hence zz′ = c. We use the notation x ∼ y if the ratio x/y is
a unit in Z[ξ]. Note that z ∼ z′. This is because 1− ξk ∼ 1− ξr−k. Thus we have

z2 ∼ c. (15)

Lemma 2.3. We have that γd(ξ)/γ1(ξ) is divisible by z.

Proof. Using Lemma 2.2(b) and (15), one needs only to show that (γd(ξ))2/(γ1(ξ))2 is divisible
by c. The values of γb(ξ) are well known when b is co-prime with r, the order of ξ. In particular,
γb(ξ) ∼ γ1(ξ); see [LL96].

Recall that ζ = ξc has order r1. Since d1 and r1 are co-prime, we have

γd1(ζ) ∼ γ1(ζ).

Using Lemma 1.3, we have

(γd(ξ))2

(γ1(ξ))2
= c2 (γd1(ζ))2

(γ1(ξ))2
∼ c2 (γ1(ζ))2

(γ1(ξ))2
. (16)

Using the explicit formula for γ1(ξ) =
∑

0�j<r ξj2+j (given e.g. by [LL96, Theorem 2.2]), we
have that

(γ1(ξ))2 = ±rξ−2∗ = cr1ξ
−2∗ , (γ1(ζ))2 = ±r1ζ

−2∗ ,

where 2∗ is the inverse of 2. Plugging this in (16), we get the result.

For k, b ∈ Z we define

Yc(k, b) := (−1)k
�(k+1)/c�∑
n=−�k/c�

(−1)n
[
2k + 1
k + nc

]
qcbn2

. (17)

Lemma 2.4. Suppose that d1d
∗
1 ≡ 1 (mod r1), where r = cr1 is the order of ξ; then we have∑

n

ξ
qd(n2−1)/4

[
n + k
2k + 1

]
{k}!{n} = −2γd(ξ) evξ

(
Yc(k,−d∗1){k}!
{2k + 1}!

)
.

1599

https://doi.org/10.1112/S0010437X07003053 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003053


A. Beliakova and T. T. Q. Lê

Proof. By Lemma 1.2 we have to compute Ld;n({n}{n + k}!/{n − k − 1}!). Since Ld;n is invariant
under n→ −n, one has

Ld;n({n}{n + k}!/{n − k − 1}!) = −2Ld;n(q−nk(qn−k; q)2k+1). (18)

By the q-binomial formula we have

q−nk(qn−k; q)2k+1 =
2k+1∑
j=0

(−1)j
[
2k + 1

j

]
qn(j−k). (19)

Using the definition of Ld;n we get

evξ(Ld;n({n}{n + k}!/{n − k − 1}!)) = −2 evξ(Yc(k,−d∗1)).

Multiplying by {k}!/{2k + 1}!, we get the result.

Theorem 6. For b ∈ Z and k � (r − 3)/2,

γd(ξ)
γ1(ξ)

evξ(Yc(k, b)) is divisible by evξ

({2k + 1}!
{k}!

)
.

Here we modify the proof of Theorem 7 in [Le05].

Proof. The case b = 0 is trivial. Let us assume that b �= 0. Separating the case n = 0 and combining
positive and negative n, we have

Yc(k, b) = (−1)k
[
2k + 1

k

]
+ (−1)k

�(k+1)/c�∑
n=1

(−1)nqcbn2

([
2k + 1
k + nc

]
+

[
2k + 1
k − nc

])
.

Using [
2k + 1
k + cn

]
+

[
2k + 1
k − cn

]
=
{k + 1}
{2k + 2}

[
2k + 2

k + cn + 1

]
(qcn/2 + q−cn/2)

and [
2k + 2
k + 1

]
=

[
2k + 1

k

]{2k + 2}
{k + 1}

we get

Yc(k, b) = (−1)k
[
2k + 1

k

]
SN , (20)

where N = k + 1 and

SN = 1 +
∞∑

n=1

qNcn(q−N ; q)cn
(qN+1; q)cn

(1 + qcn)qcbn2

.

For z defined by (14), we show the divisibility of evξ(SN )z by (ξ; ξ)N in § 2.1.2. This implies the
result, since z|(γd(ξ)/γ1(ξ)) by Lemma 2.3 and[

2k + 1
k

]
{k + 1}! =

{2k + 1}!
{k}! .

Proof of Proposition 2.1. Combining Lemma 2.4 with Theorem 6 we get Proposition 2.1.

2.1.2 Andrews’ identity. Let αn, βn be a Bailey pair as defined in [And85, § 3.4], with a = 1.
Then for any numbers bi, ci, i = 1, . . . , k, and positive integer N , we have the identity (3.43)
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of [And85]:

∑
n�0

(−1)nαnq−(
n
2)+kn+Nn (q−N )n

(qN+1)n

k∏
i=1

(bi)n
bn
i

(ci)n
cn
i

1
(q/bi)n(q/ci)n

=
(q)N (q/bkck)N
(q/bk)N (q/ck)N

∑
nk�nk−1�···�n1�0

βn1

qnk(q−N )nk
(bk)nk

(ck)nk

(q−Nbkck)nk

×
k−1∏
i=1

qni((bi)ni/b
ni
i )((ci)ni/c

ni
i )(q/bici)ni+1−ni

(q)ni+1−ni(q/bi)ni+1(q/ci)ni+1

. (21)

A special Bailey pair is given by (see [And85, § 3.5]):
α0 = 1, αn = (−1)nqn(n−1)/2(1 + qn) for n � 1,
β0 = 1, βn = 0 for n � 1.

Using the decomposition

(qx; q)nc = (qx; qc)n(qx+1; qc)n · · · (qx+c−1; qc)n

for x = −N and x = N +1, we can identify SN with the left-hand side of (21) where the parameters
are chosen as follows. Let s = (c + 1)/2 and k = b + s. Suppose N = mc + t with 0 � t � c − 1.
We consider the limit bi, ci → ∞ for i = s + 1, . . . , k. We put bs = qt−N and cs = qNc+c. For
j = 1, 2, . . . , s − 1, among the integers {0, 1, 2, . . . , c − 1} there is exactly one uj and vj such
that uj = j + t (mod c) and vj = −j + t (mod c). We choose bj = quj−N and cj = qvj−N for
j = 1, 2, . . . , s− 1. The base q in the identity should be replaced by qc. Therefore, in the rest of this
section we put

(qa)m := (qa; qc)m.

The right-hand side of the identity gives us the following expression for SN :

SN =
∑

N�nk�nk−1�...�n2�0

F̂ (nk, . . . , n2)F̃ (nk, . . . , n2), (22)

where

F̂ (nk, . . . , n2) ∼
(qc)N (q−Nc)nk

(qNc+c)ns(q−mc)ns(qmc−Nc)ns+1−ns

(q−Nc)ns+1(qc+mc)ns+1

∏k−1
i=1 (qc)ni+1−ni

×
s−1∏
j=1

(qc+2N−vj−uj)nj+1−nj ,

F̃ (nk, . . . , n2) ∼
s−1∏

j

(quj−N )nj(q
vj−N )nj

(qc+N−uj )nj+1(qc+N−vj )nj+1

.

Here x ∼ y means x/y is a unit in Z[q±1]. Note that c− 2N − vj −uj , which is equal to 2N − 2t± c
or 2N − 2t, is always a multiple of c.

Observe that F̂ (nk, . . . , n2) �= 0 if and only if the following inequalities hold:

nk � N, ns � �N/c� = m (23)

(otherwise (q−Nc)nk
or (q−mc)ns is zero);

ns+1 − ns � N −m (24)

(otherwise (qmc−Nc)ns+1−ns is zero).
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Let us assume that q is a primitive rth root of unity. Then we have in addition

N � r/c, Nc + cns < r (25)

(otherwise (qc)N or (qNc+c)ns is zero). Note that if F̂ (nk, . . . , n2) �= 0 then it is also well defined.

Lemma 2.5. Suppose that q is a primitive rth root of unity. Then zF̃ (nk, . . . , n2) is divisible by

(̃q; q)N .

Proof. It suffices to show that z is divisible by (̃q; q)ND, where D is the denominator of
F̃ (nk, . . . , n2). Since n2 � n3 � . . . � ns, we have

D | (q1+N )ns(q
2+N )ns · · · (qc+N )ns = ˜(q1+N ; q)cns

and so (̃q; q)ND divides (̃q; q)N
˜(q1+N ; q)cns

= (̃q; q)N+cns
, but N + cns � (r − 1)/2. Indeed,

2N + 2cns � 3N + cns � Nc + cns < r

by (23) and (25). Hence, we obtain

(̃q; q)N+cns
| (̃q; q)(r−1)/2 = z.

Lemma 2.6. For a primitive rth root of unity q, F̂ (nk, . . . , n2) is divisible by (̂q; q)N = (qc; qc)m.

Proof. For integer a � b > 0, using the formula

(q−ac)b ∼ (qc)a
(qc)a−b

,

we have

(q−Nc)nk

(q−Nc)ns+1

∏s−1
j=1(q

c+2N−vj−uj )nj+1−nj∏k−1
i=1 (qc)ni+1−ni

∼ (qc)N−ns+1

(qc)N−nk

∏s−1
j=1(q

c+2N−vj−uj )nj+1−nj∏k−1
i=1 (qc)ni+1−ni

.

The latter, using the fact that (qc)a divides (qc+2N−vj−uj)a, is divisible by 1/(qc)ns+1−ns . Thus
F̂ (nk, . . . , n2)/(qc)m is divisible by

(qc)N−m

(qc)ns+1−ns

(qc)N+ns

(qc)m+ns+1(qc)N−m−ns+1+ns

(q−mc)ns .

Note that in the first factor the denominator divides the numerator due to (24), and in the second
factor because of the binomial integrality.

2.2 Diagonalization of the linking matrix
We say that a closed 3-manifold is of diagonal type if it can be obtained by integral surgery along
an algebraically split link.

Proposition 2.7. Suppose that M is a closed 3-manifold. There exist lens spaces M1, . . . ,Mk of
the form L(2l, a) such that the connected sum of (M#M) and these lens spaces is of diagonal type.

We modify the proof of a similar result in [Le05].

2.2.1 Linking pairing. Recall that a linking pairing on a finite Abelian group G is a non-singular
symmetric bilinear map from G × G to Q/Z. Two linking pairings ν, ν ′ on respectively G,G′ are
isomorphic if there is an isomorphism between G and G′ carrying ν to ν ′. With the obvious block
sum, the set of equivalence classes of linking pairings is a semigroup.
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One type of linking pairing is given by non-singular square symmetric matrices with integer
entries: any such n × n matrix A gives rise to a linking pairing φ(A) on G = Zn/AZn defined by
φ(A)(v, v′) = vtA−1v′ ∈ Q mod Z, where v, v′ ∈ Zn. If there is a diagonal matrix A such that a
linking pairing ν is isomorphic to φ(A), then we say that ν is of diagonal type.

Another type of pairing is the pairing φb,a, with a, b non-zero co-prime integers, defined on the
cyclic group Z/b by φb,a(x, y) = axy/b mod Z. It is clear that φb,±1 is also of the former type,
namely, φb,±1 = φ(±b), where (±b) is considered as the 1× 1 matrix with entry ±b.

Proposition 2.8. Suppose that ν is a linking pairing on a finite group G. There are pairs of integers
(bj , aj), j = 1, . . . , s, with bj a power of 2 and aj either −1 or 3, such that the block sum of ν ⊕ ν
and all the φbj ,aj

is of diagonal type.

Proof. The following pairings, in three groups, generates the semigroup of linking pairings;
see [KK80, Wal63].

Group 1: φ(±pk), where p is a prime, and k > 0.

Group 2: φb,a with b = pk as in group 1, and a is a non-quadratic residue modulo p if p is odd, or
a = ±3 if p = 2.

Group 3: Ek
0 on the group Z/2k ⊕ Z/2k with k � 1 and Ek

1 on the group Z/2k ⊕ Z/2k with k � 2.

For explicit formulas of Ek
0 and Ek

1 , see [KK80]. We will use only a few relations between these
generators, taken from [KK80, Wal63].

Any pairing φ in group 1 is already diagonal by definition, hence φ⊕ φ is also diagonal.
A pairing φ = φb,a in group 2 might not be diagonal, but its double φ ⊕ φ is always so. Sup-

pose that b is odd; then one of the relations is φb,a⊕φb,a = φ(b)⊕φ(b), which is diagonal type. Suppose
that b is even; then b = 2k, a = ±3, and one of the relations says that φb,±3⊕φb,±3 = φ(∓b)⊕φ(∓b).

Thus ν ⊕ ν is the sum of a diagonal linking pairing and generators of group 3.
Some of the relations concerning group 3 generators are

Ek
0 ⊕ φ2k ,−1 = φ(2k)⊕ φ(−2k)⊕ φ(−2k),

Ek
1 ⊕ φ2k ,3 = φ(2k)⊕ φ(2k)⊕ φ(2k).

Thus by adding to ν ⊕ ν pairings of the form φ2k ,a with a = −1 or a = 3, we get a new linking
pairing which is diagonal.

2.2.2 Proof of Proposition 2.7. Every closed 3-manifold M defines a linking pairing, which
is the linking pairing on the torsion of H1(M, Z). The connected sum of 3-manifolds corresponds to
the block sum of linking pairings.

First suppose that M is a rational homology 3-sphere, i.e. M is obtained from S3 by surgery
along a framed oriented link L, with non-degenerate linking matrix A. Then the linking pairing
on H1(M, Z) is exactly φ(A). Also, the lens space L(b, a) has linking pairing φb,a. Proposition 2.7
follows now from Proposition 2.8 and the well-known fact that, if the linking pairing on H1(M, Z)
is of diagonal type; then M is of diagonal type; see [Oht96, Le05].

The case when M has the higher first Betti number reduces to the case of rational homology
3-spheres just as in [Le05].

2.3 Proof of Theorem 1 (general case)
Lemma 2.9. Suppose that (a, r) = 1, and M = L(a, b), the lens space. Then τM(ξ) ∈ Z[ξ] and,
moreover, τM (ξ) is invertible in Z[ξ].
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Proof. This follows from the explicit formula for the SO(3) invariant of a lens space given below (26).
Note that, if a∗a = 1 (mod r), then

1− ξ

1− ξa∗ =
1− ξaa∗

1− ξa∗ .

Proof of Theorem 1 (general case). Choose the lens spaces M1, . . . ,Mk as in Proposition 2.7. Since
N := M#M#M1# · · ·#Mk is of diagonal type, its SO(3) invariant is in Z[ξ]. Note that the orders
of the first homology of M1, . . . ,Mk are powers of 2, and hence co-prime with r. Lemma 2.9 shows
that the SO(3) invariant of M#M is in Z[ξ], and by Lemma 2.2, the SO(3) invariant of M is in
Z[ξ] too.

3. Rational surgery formula

3.1 Hopf chain
Let a, b be co-prime integers with b > 0. It is well known that rational surgery with parameter a/b
over a link component can be achieved by shackling that component with a framed Hopf chain and
then performing integral surgery, in which the framings m1,2,...,n are related to a/b via the following
continued fraction expansion.

a

b
= − 1

mn − 1

mn−1 − · · · 1

m2 − 1
m1

Let D := (FU+(ξ))σ
H
+ (FU−(ξ))σ

H
− where σH± is the number of the (positive/negative) eigenvalues of

the linking matrix for the Hopf chain. Let (d
r ) be the Jacobi symbol and s(b, a) the Dedekind sum.

Recall that

s(b, a) :=
|a|−1∑
i=1

((
i

a

))((
ib

a

))
, where ((x)) := x− �x� − 1/2.

Lemma 3.1. For odd r with (b, r) = 1, we have

evξ([j])
D

∑
j1,...,jn

ξ
n∏

i=1

qmi(j2
i −1)/4[ji]

1
jn 1jnj

j

= evξ

((
b

r

)
q3s(a,b)

[
j

b

]
qa(j2−1)/(4b)

) j

.

Proof. The colored Jones polynomial of the (j1, j2)-colored Hopf link is [j1j2]. Thus we have to
compute

ξ∑
j1,...,jn

q
∑

i mi(j
2
i−1)/4(qj1/2 − q−j1/2)(qjij2/2 − q−jij2/2) · · · (qjnj/2 − q−jnj/2).

The result is given by [LL96, Lemma 4.12], where A = ξ1/4 has the same order as ξ, because r
is odd. Moreover, p and q in [LL96] are related to our parameters as follows: a = −q and b = p.
Computations analogous to [LL96, Lemmas 4.15–4.21] imply the result.
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If (r, a) = 1, the SO(3) invariant of the lens space L(a, b), which is obtained by surgery along
the unknot with rational framing a/b, can be easily computed:

τL(a,b)(ξ) =
(

a

r

)
evξ

(
q−3s(b,a) q

1/2a − q−1/2a

q1/2 − q−1/2

)
. (26)

Here we used the Dedekind reciprocity law (see e.g. [KM94]), where sn(d) is the sign of d,

12(s(a, b) + s(b, a)) =
a

b
+

b

a
+

1
ab
− 3 sn(ab), (27)

multiplicativity of the Jacobi symbols (ab
r ) = (a

r )( b
r ) and

γd(ξ)
γsn(d)(ξ)

=
( |d|

r

)
evξ(q(sn(d)−d)/4) (28)

which holds for any non-zero integer d. Note that τL(a,b)(ξ) is invertible in Z[ξ].

3.2 Laplace transform

The Laplace transform method, developed in [BBL05], allows us to construct a unified invariant by
computing the Laplace transform of [

n + k
2k + 1

]
[n],

and by proving its divisibility by {2k + 1}!/{k}!. Let us show how this strategy works for rational
framings.

Suppose that one component of L has rational framing a/b. Then by Lemma 3.1 we have to
compute

La/b;n

([
n + k
2k + 1

]
{k}!

{
n

b

})
=

{k}!
{2k + 1}!La/b;n

({n/b}{n + k}!
{n− k − 1}!

)
.

Let Yk(q, n, b) := {n/b} {n + k}!/{n − k − 1}!. One can easily see that Yk(q, n, b) = Yk(q,−n, b)
and Yk(q, n, b) = Yk(q−1, n, b). This implies for Hk(q, a/b) := L−a/b;n(Yk(q, n, b)) that

Hk(q, a/b) = Hk(q−1,−a/b).

Therefore, it is sufficient to compute Hk(q, a/b) for a > 0.

3.3 Divisibility of the Laplace transform images

Proposition 3.2. For a, b ∈ N, (a, r) = 1, (b, r) = 1 and k � (r − 3)/2, we have∑ξ

n

qa(1−n2)/(4b)

[
n + k
2k + 1

]
{k}!

{
n

b

}
= 2q(b−1)2/(4ab)γ−a/b(ξ) evξ(Fk(q, a, b)),

where Fk(q, a, b) ∈ q(3k+2)(k+1)/4Ra,2k+1.

A similar formula in the case b = 1 was obtained in [Le05]. Proposition 3.2 implies that

Fk(q, a, 1) =
{k}!

{2k + 1}!Y (k, a), (29)

where Y (k, a) was defined in [Le05] as follows:

Y (k, a) :=
2k+1∑
j=0

(−1)j
[
2k + 1

j

]
q(j−k)2/a. (30)
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The proof of Proposition 3.2 is given in Appendix A. In the rest of the section we define Fk(q, a, b).
We put

Ck,a,b = (−1)kq(5k+2)(k+1)/4t(k(k+1)/2)(2b−3) (t; t)2k+1

(q; q)2k+1
.

Let w be a primitive root of unity of order a. Let t be the ath primitive root of q, i.e. ta = q. We
use the following notation: (qx)y = (qx; q)y, (tx)y = (tx; t)y and (w±ity)x = (wity; t)x(w−ity; t)x.

Case a is odd. For odd a we define c = (a− 1)/2, l = c + b− 1, and xi =
∑c−1+i

j=1 mj . Then

Fk(q, a, b)
Ck,a,b

:=
∑

m1,...,ml�0, xb�k

(−1)m1t−m1(m1+1)/2+
∑b

i=1 xi(xi−1)

× (t4k+2)mc−1+2mc−2+···+(c−1)m1

(t2k)ml+2ml−1+···+lm1

× (q−k)k−m1(t
2k+2)m1(t

2k+2)m2 · · · (t2k+2)mc

(t)k−xb
(t)m2(t)m3 · · · (t)ml

× (w±2t−2k−1)m1(w
±3t−2k−1)m1+m2 · · · (w±ct−2k−1)x0

(w±2tm1+1)m2(w±3tm1+1)m2+m3 · · · (w±ctm1+1)x1−m1

. (31)

Case a is even. For even a we define c = a/2− 1, l = c + b, and xi =
∑c+i

j=1 mj . Then

Fk(q, a, b)
Ck,a,b

:=

∑
m1,...,ml�0, xb�k

(−1)m1t−m1(m1+1)/2+
∑b

i=1 xi(xi−1) (t
4k+2)mc−1+2mc−2+...+(c−1)m1

(t2k)ml+2ml−1+...+lm1

× (t3k+1)x−1(−wct4k+2)mc(q−k)k−m1 (t2k+2)m1 · · · (t2k+2)mc−1(−w−ctk+1)mc(−wct2k+2)mc+1

(t)k−xb
(t)m2(t)m3 · · · (t)ml

× (w±2t−2k−1)m1(w±3t−2k−1)m1+m2 · · · (wct−2k−1)x−1(w−ct−2k−1)x0(−t−2k−1)x0

(w±2tm1+1)m2(w±3tm1+1)m2+m3 · · · (wctm1+1)x0−m1(−t−k+x−1)mc(w−ctm1+1)x1−m1(−tm1+1)x1−m1

.

(32)

Example. We consider the following:

Fk(q, 1, b) := q−(3k−2)(k+1)/4qkb(k+1)
∑

m1,m2,...,mb�0,
∑

mi=k

q
∑b−1

i=1 (x2
i−(2k+1)xi)

(q)k∏b
i=1(q)mi

(33)

where xp =
∑p

i=1 mi.

Note that (33) coincides up to units with the formula for the coefficient c′k,b in the decomposition
of ωb computed in [Mas03, (46)]. (The same coefficient (up to units) appears also in the cyclotomic
expansion of the Jones polynomial of twist knots (35).) This is because surgery on the (−1/b)-
framed component can be achieved by replacing this component by b (−1)-framed copies. Indeed,
changing the variables in (33) as s1 = k −m1, s2 = k −m1 −m2, . . . , sb−1 = k −m1 − · · · −mb−1,
we get

Fk(q, 1, b) = q(k+2)(k+1)/4
∑

k�s1�s2�···�sb−1�0

qs2
1+s2

2+···+s2
b−1+s1+···+sb−1

(q)k∏b−1
i=1 (q)si−si+1

.
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4. Unified invariant

In this section we assume that (r, a) = 1, where r is the order of the root of unity ξ and a =
|H1(M, Z)|.

Let M = L(a, b) be a lens space with a > 0. Then the unified invariant IM was defined in [Le05]
as follows:

IM := q3s(1,a)−3s(b,a) 1− q−1/a

1− q−1
.

Note that 3(s(1, a) − s(b, a)) ∈ Z and IM is invertible in Λa.
For an arbitrary rational homology sphere M with a = |H1(M, Z)|, it was shown in [Le05] that

there are lens spaces M1, . . . ,Ml such that M ′ = (#l
i=1Mi)#M can be obtained by surgery on an

algebraically split link and IMj are invertible in Λa. Then we can define

IM = IM ′

( l∏
i=1

IMi

)−1

.

It remains to define IM when M is given by surgery along an algebraically split link L.
Assume that L has m components with non-zero rational framings a1/b1, . . . , am/bm. Then we
have |H1(M, Z)| = a for a =

∏
i ai. Let L0 be L with all framings switched to zero.

Theorem 7. For M as above, the unified invariant is given by the following formula:

IM = q(a−1)/4
∞∑

ki=0

JL0(P
′
k1

, . . . , P ′km
)

m∏
i=1

sn(ai)q1/(2ai)−3s(bi,ai)Fki
(q−sn(ai), |ai|, bi). (34)

Moreover, we have (
a

r

)
τM (ξ) = evξ(q(1−a)/4IM ).

Proof. Note first that, if bi = 1 for all i, our formula coincides with [Le05, (21)]. It follows from (29)
and

q(3 sn(ai)−ai)/4q3s(1,ai) = q1/(2ai).

Here we used that

3s(1, a) =
1
2a

+
a− 3 sn(a)

4
by the reciprocity law (27).

Let us collect the coefficients in the definition of τM . From Lemmas 1.1 and 3.1, Proposition 3.2
and (28) we have

q3s(ai,bi)−(bi−1)2/(4aibi)+3 sn(ai)/4−ai/(4bi) = q−3s(bi,ai)q1/(2ai).

The Corollary 0.3(d) in [Le05] allows us to drop the conditions (bi, r) = 1, because IM is
determined by its values at any infinite sequence of roots of prime power order from Ua.

4.1 Proof of Theorem 2
The statement holds trivially if M = L(a, b). Indeed, we have m = 1, fk = 0 for k > 0, and
f0 = q3s(1,a)−3s(b,a)(1− t)/(1 − q) ∈ Γa.

The general case follows from (34), Proposition 3.2 and Theorem 5. Note that multiplication of
IM by the inverse of IL(a,b) multiplies all fki

by an element of Z[t±1]. Moreover, IM does not contain
fractional powers of q1/a (compare the proof of Lemma 4.2 in [Le05]).
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4.2 On the ring R̂a
Here we present the proof (of the referee) that R̂a coincides with the ring Λ̂a of [Le05]. The ring Λ̂a

in [Le05] is obtained from Ra by first inverting a, and then completing using (q; q)n:

Λ̂a := lim←−
n

Ra[1/a]/((q; q)n).

To prove that Λ̂a = R̂a one needs only to show that a is invertible in R̂a.
Suppose that p is a prime factor of a. For any integer l ∈ Na we have Φpl(t) ∈ (p,Φl(t)) in Z[t±1].

Since pl �∈ Na, Φpl is invertible in Ra. Therefore (p,Φl(t)) = 1 in Ra, or p is invertible in Ra/(Φl).
Since

tm − 1 =
∏
l|m

Φl(t),

it follows that if, m ∈ Na, then p is invertible in Ra/((tm−1)j) for every j � 1. Hence p is invertible
in the completion of Ra with respect to the directed system of ideals {(tm − 1)jRa}j�1,m∈Na . Note
that {(q; q)nRa}n�1 and {(tm−1)jRa}j�1,m∈Na are cofinal, hence they define the same completion.
This completes the proof.

4.3 Proof of Proposition 1

First note that, if f = 1/a, then f ∈ R̂a, and evξ(f) = 1/a. It follows that evξR̂a = Z[ξ/a].
Assume that the order of ξ ∈ Ua is r. Suppose that f ∈ Γa has a presentation given by formula (1).

Since evξ(xn) = 0 if 2n + 1 � r, we have

evξ(f) =
(r−3)/2∑

n=0

evξ(fn(t)) evξ(xn).

Since xn ∈ Z[q±1], then evξ(xn) ∈ Z[ξ]. We will show that evξ(fn(t)) ∈ Z[ξ] for n � (r − 3)/2.
Note that

fn(t) ∈ Ra,k = Z[t±1]
[

(t; t)k
(q; q)k

]
,

with k = r− 1. Since k < r, evξ((q; q)k) �= 0. Hence, with an integer a∗ such that aa∗ ≡ 1 (mod r),
we have

evξ

(
(t; t)k
(q; q)k

)
=

k∏
j=1

1− ξa∗j

1− ξj
∈ Z[ξ].

It follows that evξ(fn(t)) ∈ Z[ξ] for every fn(t) ∈ Ra,k. This completes the proof of Proposition 1.

5. Applications

In this section we compute the unified invariant IM for Seifert fibered spaces and for a/b surgeries
on twist knots.

5.1 Seifert fibered spaces with a spherical base

Let M = L(b; a1/b1, . . . , an/bn) be the Seifert fibered space with base space S2 and with n excep-
tional fibers with orbit invariants (ai, bi) (with ai > 0, 0 � bi � ai, (ai, bi) = 1), and with bundle
invariant b ∈ Z.
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It is well known [Mon85] that M is a rational homology sphere if e := b +
∑

bi/ai �= 0 and
|H1(M, Z)| = |e|∏i ai. Furthermore, M can be obtained by surgery on the following (rationally
framed) link.

...

b

n11a /b a /b22 a  /bn

Theorem 8. Let M = L(b; a1/b1, . . . , an/bn) be as above. Assume that e �= 0, and |H1(M, Z)| = d.
Then we have

IM = q(d−1)/4 q(e−3 sn(e))/4q−3
∑

i s(bi,ai)

{1} L−e;j

(∏n
i=1{j/ai}
{j}n−2

)
.

Proof. The linking matrix of the surgery link has n positive eigenvalues and the sign of the last
eigenvalue is equal to −sn(e) = −sn(b). Let us color the rationally framed components of the surgery
link by ji, i = 1, . . . , n, and the (−b)-framed component by j.

The main ingredient of the proof is the following computation. Using Lemmas 1.1 and 3.1 we
have (

bi

r

)
q3s(ai,bi)

FU+(ξ)

ξ∑
qai(j

2
i −1)/(4bi)

[
ji

bi

]
[jji] =

(
ai

r

)
q−3s(bi,ai)q−bi(j

2−1)/(4ai)

[
j

ai

]
.

Applying finally the Laplace transform L−e;j and collecting the factors, we get the result.

5.2 Proof of Theorem 3
Note that M = L(b; a1/b1, . . . , an/bn) is an integral homology sphere if e−1 = ±∏

i ai. Then M is
uniquely determined by the pairwise co-prime integers ai. (Knowing the ai and e, one can compute
the bi and b using the Chinese remainder theorem.)

Suppose for simplicity that e > 0. Rewriting
1

{j}n−2
= (−1)n−2q(n−2)/2

∑
k=0

ckq
k

with ck ∈ Z, we see that the image of the Laplace transform is the sum of the following terms:

(−1)n−2ck q(
∏

i ai/4)(±1/a1±1/a2...±1/an+2k+n−2)2 .

The leading term in IM for k →∞ behaves asymptotically like

qk2
∏

i ai+k(n−2)
∏

i ai+k
∑

i a1···âi···an ,

where âi means delete ai. This allows us to determine the ai. In the case e < 0, we have the same
asymptotic expression after replacing q by q−1.

5.3 Dehn surgeries on twist knots
Let Kp be the twist knot with p twists. Masbaum [Mas03] calculated the P ′n colored Jones polynomial
of this knot. For p > 0 we have

JKp(P
′
n) = qn(n+3)/2

∑
i1,i2,...,ip�0,

∑
j ij=p

q
∑

i(s
2
i +si)

(q)n∏p
j=1(q)ij

, (35)

where sk =
∑k

j=1 ij . The formula for negative p can be obtained from the given one by sending
p→ −p, q → q−1, forgetting the factor qn(n+3)/2 and multiplying the result by (−1)n.
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Corollary 5.1. Let Ma/b be obtained by (a/b) surgery in S3 on the twist knot Kp. Then we have

IMa/b
:= q(a−1)/4 sn(a)q−3s(b,a)+1/(2a)

∞∑
n=0

JKp(P
′
n)Fn(q−sn(a), |a|, b). (36)

5.4 Proof of Theorem 4
Assume that K and K ′ are 0-framed. We expand the function QK(N) := JK(N)[N ] around q = 1
into power series. Suppose that q = eh; then we have

QK(N)|q=eh =
∑

2j�n+2

cj,n(K)N jhn.

It is known that cj,n is zero if j is odd. Applying the Laplace transform, we have to replace N2j by
(−2)j(2j − 1)!!/ajhj (see [Le03]). Therefore, the following expression coincides (up to some standard
factor) with the Ohtsuki series:∑

2j�n+2

c2j,n(K)(−2)j(2j − 1)!! a−jhn−j.

From the fact that the Ohtsuki series for M(K,a) and M(K ′, a) coincide, we derive∑
2j�n+2

(c2j,n(K)− c2j,n(K ′))(−2)j(2j − 1)!!a−jhn−j = 0.

Because the last system of equations should hold for infinitely many a ∈ Z, we have c2j,n(K) =
c2j,n(K ′) and JK(N) = JK ′(N) for any N ∈ N.

Appendix A

The main technical ingredient we use in the proof of Proposition 3.2 is the Andrews’ generalization
of Watson’s identity [And75, Theorem 4, p. 199]:

2p+4φ2p+3

[
α, t
√

α,−t
√

α, b1, c1, . . . , bp, cp, t
−N

√
α,−√α,αt/b1, αt/c1, . . . , αt/bp, αt/cp, αtN+1 ; t,

αptp+N

b1c1 . . . bpcp

]
=

(αt)N (αt/bpcp)N
(αt/bp)N (αt/cp)N

∑
m1,...,mp−1�0

(bp)∑
i mi

(cp)∑
i mi

(t−N )∑
i mi

(bpcpt−N/α)∑
i mi

×
p−1∏
i=1

tmi(αt)(p−i−1)mi(αt/bici)mi(bi)∑
j<i mj

(ci)∑
j<i mj

(t)mi(αt/bi)∑
j�i mj

(αt/ci)∑
j�i mj

(bici)
∑

j<i mj
, (A.1)

where

rφs

[
a1, a2, · · · , ar

b1, . . . , bs
; t, z

]
=
∞∑

n=0

(a1)n(a2)n · · · (ar)n
(t)n(b1)n · · · (bs)n

[(−1)nt(
n
2)]1+s−rzn (A.2)

are the basic q-hypergeometric series and (a)n := (a; t)n.

Proof of Proposition 3.2. We have to compute L−a/b;n({n/b} {n + k}!/{n − k − 1}!). Note that

{n/b}{n + k}!/{n − k − 1}! = q−n/2−nk−n/(2b)(1− qn/b)(qn−k)2k+1.

Using the q-binomial theorem and (5) (with c = 1) we get

q(2bk+b+1)2/(4ba)
∞∑

j=0

(q−2k−1)j
(q)j

q(b/a)j2+(1−2b/a)kj+(1−(b+1)/a)j(1− q(2j−2k−1)/a).
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We put t := q1/a and choose a primitive ath root of unity w. Then using

(qx; q)j = (tx; t)j(wtx; t)j(w2tx; t)j · · · (wa−1tx; t)j ,

we can rewrite the previous sum as follows:

2k+1∑
j=0

(t−2k−1)j(wt−2k−1)j · · · (wa−1t−2k−1)j
(t)j(wt)j · · · (wa−1t)j

tbj
2+(a−2b)kj+(a−b−1)j(1− t2j−2k−1). (A.3)

The main point is that (A.3) is equal to (1 − t−2k−1) times the left-hand side of the generalized
Watson identity (A.1) with the specialization of parameters described below. We consider the limit
α→ t−2k−1. We set p = max{b, a+ b−2}, bi, ci →∞ for i = a−1, . . . , p−1; and bp → t−k, cp →∞
and N →∞.

Case when a is odd. We put c = (a − 1)/2; bi = wit−2k−1, ci = w−it−2k−1 for i = 1, . . . , c; and
bi, ci → t−k for i = c + 1, . . . , a− 2.

Case when a is even. We put c = a/2 − 1. Let p = a + b − 2, bi = wit−2k−1, ci = w−it−2k−1 for
i = 1, . . . , c − 1; bc = wct−2k−1, cc = −t−k; bc+1 = −t−2k−1, cc+1 = w−ct−2k−1; and bi, ci → t−k

for i = c + 2, . . . , a− 2.

To simplify (A.1) we use the following limits:

lim
c→∞

(c)n
cn

= (−1)ntn(n−1)/2, lim
c→∞

(
t

c

)
n

= 1,

lim
c1,c2→∞

(c1)n(c2)n
(t−N c1c2)n

= (−1)ntn(n−1)/2tNn, lim
α→t−2k−1

(αt)∞
(
√

αt)∞
= 2(t−2k)k.

Finally, the formulas below allow us to separate the factor (t)2k+1/(q)2k+1:

{2k + 1}!
{k}! = q−(3k+2)(k+1)/4(−1)k+1(qk+1)k+1,

(q)j = (−1)(k−j)q(j−k)(k+j+1)/2 (q)k
(q−k)k−j

,

(t−k)j = (−1)jt−kj+j(j−1)/2 (t)k
(t)k−j

.

The next lemma implies the result.

Lemma A.1. We have
Fk(q, a, b)

Ck,a,b
∈ Z[t±1].

Proof. First note that Fk(q, a, b) does not depend on w, because w does not occur in the left-hand
side of the identity.

Suppose a is odd. Let z := x1 − m1 = m2 + m3 + · · · + mc. Let us complete (wctm1+1)z to
(qm1+1)z by multiplying the numerator and the denominator of (31) with

(tm1+1)z(w±tm1+1)z(w±2tm1+m2)z−m2 · · · (w±(c−1)tm1+z−mc)mc .

Now up to units the denominator of (31) is equal to (qm1+1)x1−m1(t)k−xb
(t)m2(t)m3 · · · (t)ml

, which
divides the numerator. The even case is similar.
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BBL05 A. Beliakova, C. Blanchet and T. T. Q. Lê, Unified quantum invariants and their refinements for
homology 3-spheres with 2-torsion, Preprint (2005), math.QA/0509394.

GM04 P. Gilmer and G. Masbaum, Integral lattices in TQFT, Preprint (2004), math.GT/0411029.
Hab02 K. Habiro, On the quantum sl2 invariants of knots and integral homology spheres, Geom. Topol.

Monogr. 4 (2002), 55–68.
Hab06 K. Habiro, A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres, Preprint

(2006), math.GT/0605314.
KM91 R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin–Turaev for sl(2, C),

Invent. Math. 105 (1991), 473–545.
Kho05 M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, Preprint

(2005), math.QA/0509083.
KM94 R. Kirby and P. Melvin, Dedekind sums, µ-invariants and the signature cocycle, Math. Ann. 299

(1994), 231–267.
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