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Electron flow through biological
molecules: does hole hopping protect
proteins from oxidative damage?
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Abstract. Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances.
Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to
microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer distances by
hole hopping (multistep tunneling) through intervening tyrosines and tryptophans. In this perspective, we advance the hypothesis that such
hole hopping through Tyr/Trp chains could protect oxygenase, dioxygenase, and peroxidase enzymes from oxidative damage. In support of
this view, by examining the structures of P450 (CYP102A) and 2OG-Fe (TauD) enzymes, we have identified candidate Tyr/Trp chains that
could transfer holes from uncoupled high-potential intermediates to reductants in contact with protein surface sites.
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Background
Many vital biological transformations involve the incorpor-
ation of one (monooxygenases) or two (dioxygenases)
O-atoms from molecular oxygen into organic substrates.
Enzymes that utilize oxygen must coordinate the delivery of
four protons and four electrons to O2 in order to prevent the
formation of harmful molecular oxidants (O2

−, HO2
• H2O2,

and HO•), collectively known as reactive oxygen species
(ROS). It is our view that the risks posed by reactive intermedi-
ates are so great that oxygen-utilizing enzymes have protection
mechanisms to help them avoid inactivationwhen the primary
electron/proton transfer mechanism is disrupted.

The mechanism of O2 reduction by cytochrome c oxidase
illustrates some of the challenges facing these enzymes
(Wikström, 2012; Yu et al. 2011, 2012). Reaction of the
fully four-electron reduced enzyme (CuA

II,I, FeII-heme a,
FeII-heme a3, and CuB

I) with O2 generates an intermediate
designated as PR. When the two-electron reduced, mixed

valence enzyme (CuA
II,II, FeIII-heme a, FeII-heme a3, and

CuB
I) reacts with O2, the PM intermediate is formed. The

O–O bond has been cleaved in both PR and PM to produce
FeIV(O)-heme a3 and CuB

II in the binuclear site. The differ-
ence between PR and PM is in the source of the fourth elec-
tron: PM is thought to have a Tyr244 radical (bovine
numbering), whereas the fourth electron in PR is provided
by FeII-heme a. When PM is prepared using H2O2, the
hole on (TyrO•)244 is believed to migrate through (Trp•+)236

to (TyrO•)129; the latter residue is suggested to participate in
proton pumping (Yu et al. 2012). The key point is that
Tyr244 is available to fill the gap when the fourth electron
required for O2 reduction cannot be supplied by FeII-heme
a (Wikström, 2012; Yu et al. 2012).

In many oxygenases, including the cytochromes P450
(P450) and the 2-oxo-glutarate-dependent nonheme iron
oxygenases (2OG-Fe), the four electrons required for O2

reduction have different origins (Fig. 1). Typically, two elec-
trons are delivered from a reductase (P450) or co-substrate
(2OG), and the remaining two electrons are provided by the
organic substrate (Denisov et al. 2005; Hausinger, 2004;
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Whitehouse et al. 2012). In the consensus mechanism for
iron oxygenases, the first two electrons induce O–O bond
cleavage, producing a powerfully oxidizing ferryl species.
The ferryl complex abstracts a hydrogen atom from the sub-
strate and HO• rebound leads to hydroxylated product
(Denisov et al. 2005; Hausinger, 2004; Whitehouse et al.
2012). For enzymes with broad substrate specificities, or
when operating in the presence of xenobiotic compounds,
the fidelity of substrate oxidation is less than 100%, with po-
tentially damaging consequences (Chen et al. 2008; De
Matteis et al. 2012; Denisov et al. 2007a; Grinkova et al.
2013; Saban et al. 2011; Staudt et al. 1974). This circum-
stance is manifested as an increased molar ratio of O2 con-
sumption to substrate hydroxylation (uncoupling). We think
it likely that organisms have evolved protection mechanisms
to guard against deactivation of oxygenase enzymes in the
event of uncoupled O2 consumption. In particular, we suggest
that radical transfer pathways are employed to deliver strongly
oxidizing holes (E°∼1 V versusNHE) from ferryl complexes in
active sites to less fragile regions of oxygenases.

In this perspective, we will advance the hypothesis that there
are potentially protective radical chains in P450 and
2OG-Fe; but first we will review what we know about the
factors controlling hopping through aromatic amino acids
in multistep electron tunneling constructs designed in
azurin, a prototypal cupredoxin.

Radical transfer pathways in azurin
Azurin is a robust cupredoxin (128 residues) that is amen-
able to site-directed mutagenesis and surface-labeling with
photosensitizers (Farver & Pecht, 2011; Gray & Winkler,
2010; Reece & Nocera, 2009; Wilson et al. 2013). Oxidized
radicals of Trp and Tyr are substantially stronger acids

than their neutral precursors (Trp, pKa > 14; Trp
•+, pKa = 4;

TyrOH, pKa = 10; TyrOH•+, pKa =−1) (Aubert et al. 2000;
Bonin et al. 2010; Costentin et al. 2009; Harriman, 1987;
Jovanic et al. 1986); management of the acidic proton is a
critically important factor controlling radical formation
with these amino acids. Proton management is particularly
challenging for buried amino acids and, thus far, we have
not succeeded in detecting buried Trp or Tyr radicals as
electron transfer (ET) intermediates. Our kinetics data indi-
cate that surface exposed Trp•+ and NO2TyrO

• radicals can,
in appropriate constructs, accelerate CuI oxidation by dis-
tant Re- and Ru-diimine complexes (Shih et al. 2008;
Warren et al. 2013a).

Multistep ET through Trp and Tyr radicals in azurin

We have used Pseudomonas aeruginosa azurin as a test
bed for mechanistic investigations of Trp and Tyr radical
formation in protein ET reactions (Blanco-Rodriguez
et al. 2011; Shih et al. 2008; Takematsu et al. 2013;
Warren et al. 2012, 2013a). Our initial investigation revealed
that CuI oxidation by a photoexcited ReI–diimine complex
(ReI(CO)3(4,7-dimethyl-1,10-phenanthroline)) covalently
bound at His124 on a His124Gly123Trp122Met121 β-strand
(ReHis124Trp122CuI-azurin) occurs in a few nanoseconds,
fully two orders of magnitude faster than documented for
single-step electron tunneling at a 19-Å donor–acceptor dis-
tance, owing to a two-step hopping mechanism involving a
Trp•+ radical intermediate (Shih et al. 2008).

Our work on multistep ET in sensitizer-modified azurin is
informed by semiclassical ET theory (Marcus & Sutin,
1985). Given a particular spatial arrangement of redox
cofactors, we can predict driving-force dependences of the
relative time constants for single-step (τss = 1/kss) and multi-
step (τhop) electron transport (Warren et al. 2012).
Alternatively, given the redox and reorganization energetics,
we can predict the hopping propensity for different cofactor
arrangements (Warren et al. 2013a). We considered
three Ru(2,2′-bipyridine)2(imidazole)(HisX)-labeled azurins
(RuHis107, RuHis124, and RuHis126) and examined the hop-
ping advantage (τss/τhop) for a protein with a generalized in-
termediate (Int) situated between a diimine-RuIII oxidant
and CuI (Warren et al. 2013a). In all cases, the greatest hop-
ping advantage occurs in systems where the Int–RuIII dis-
tance is up to 5 Å shorter than the Int–CuI distance. The
hopping advantage increases as systems orient nearer a lin-
ear Donor–Int–Acceptor configuration, owing to minimized
intermediate tunneling distances. The smallest predicted
hopping advantage is in RuHis124 azurin, which has the
shortest Ru–Cu distance of the three proteins. The hopping
advantage is nearly lost as ΔG° for the first step (RuIII← Int)
rises above +0.15 eV. Isoergic initial steps provide a wide
distribution of arrangements, where advantages as great as
104 are possible (for a fixed donor–acceptor distance of
23.7 or 25.4 Å). A slightly exergonic Int→ RuIII step

Fig. 1. Schematic representation of the catalytic mechanisms of
P450 and 2OG-Fe oxygenases: RH, substrate; 2OG, 2-oxogluta-
rate; Suc, succinate. Black arrows indicate the functional substrate
hydroxylation pathways. Blue arrows indicate oxidase uncoupling
pathways.
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provides an even larger distribution of arrangements for
productive hopping, which will be the case as long as the
driving force for the first step is not more favorable than
that for overall transfer.

We tested these predictions experimentally in three Ru–
His-labeled azurins using nitrotyrosinate (NO2TyrO

–)
as a redox intermediate (RuHis107(NO2TyrOH)109;
RuHis124(NO2TyrOH)122; and RuHis126−(NO2TyrOH)122;
E°′(NO2TyrO

•/–)≈ 1.02 V versus NHE) (Fig. 2) (Warren
et al. 2013a). The first two systems have cofactor placements
that are close to the predicted optimum; the last system has
a larger first-step distance, which is predicted to decrease the
hopping advantage. The phenol pKa of 3-nitrotyrosine (7.2)
permitted us to work at near-neutral pH, rather than high
pH (>10) required for hopping with tyrosinate. ET via nitro-
tyrosinate avoids the complexities associated with the
proton-coupled redox reactions of tyrosine. We found spe-
cific rates of CuI oxidation more than 10 times greater
than those of single-step ET in the corresponding azurins
lacking NO2TyrOH, confirming that NO2TyrO

– accelerates
long-range ET. The results are in excellent agreement with
hopping maps developed using semiclassical ET theory
and parameters derived from our body of protein ET mea-
surements (Gray & Winkler, 2010; Warren et al. 2012,
2013a).

Potential radical transfer pathways in
iron oxygenases
The cytochromes P450 are members of a superfamily of
heme oxygenases that perform two broad functional roles:
xenobiotic metabolism and biosynthesis (Denisov et al.

2005; Johnson & Stout, 2013; Nebert et al. 2013; Orr et al.
2012; Whitehouse et al. 2012). The oxygenation chemistry
catalyzed by some P450 enzymes is tightly coupled to sub-
strate hydroxylation: one mole of product is produced for
each mole of O2 consumed. In many enzymes, however,
particularly the eukaryotic proteins with broad substrate
specificities, hydroxylation is much less efficiently coupled
to O2 consumption (frequently less than 10%) (Denisov
et al. 2007a; Grinkova et al. 2013; Staudt et al. 1974).
When the enzyme does not transfer an O-atom to substrate,
it can produce ROS (O2

−, H2O2) or a second H2O molecule
(Puntarulo & Cederbaum, 1998). The production of ROS
can lead to rapid degradation of the enzyme and other
harmful chemistry. In the case of oxidase chemistry (forma-
tion of 2H2O from O2), two reducing equivalents must be
delivered by sources other than the substrate. When a
CYP enzyme binds a refractory substrate, ferryl formation
is likely to proceed, but substrate hydroxylation is inhibited.
Under these circumstances, chains of redox-active Tyr, Trp,
Cys, and/or Met residues can direct the oxidizing hole to the
protein periphery where it can react with intracellular anti-
oxidants such as glutathione.

Enzymes from the 2OG-Fe superfamily use 2-oxoglutarate
as a 2-electron donating co-substrate, Fe2+ as a cofactor,
and O2 to effect the hydroxylation of organic substrates
(Fig. 1). The 2OG-Fe enzymes exhibit a wide array of bio-
logical functions including collagen biosynthesis, lysyl hy-
droxylation of RNA splicing proteins, DNA repair, RNA
modification, chromatin regulation, epidermal growth
factor-like domain modification, hypoxia sensing, and
fatty acid metabolism (Mantri et al. 2012; Rose et al.
2011). The 2OG-Fe oxygenase enzymes have conserved
double-stranded β-helix folds with octahedral Fe-binding
sites with the HXD/E…H triad providing two His imidazole
ligands and one monodentate carboxylate ligand. The re-
maining three coordination sites in the resting enzyme are
occupied by O-donors from 2OG and a water ligand.

Several 2OG-Fe enzymes have been reported to undergo
autocatalyzed oxidative modifications of aromatic amino
acids. In the taurine-2OG dioxygenase that catalyzes the
conversion of taurine to bisulfite, EPR data indicate
the transient formation of a Tyr73-based radical that con-
verts to an FeIII-catecholate (Mantri et al. 2012). In
2,4-dichlorophenoxyacetate oxygenase (TfdA) and factor-
inhibiting hypoxia-inducible factor (FIH) there is evidence
for Trp hydroxylation when substrate is unavailable
(Mantri et al. 2012). These aromatic amino acid oxidations
lead to inactivation of the enzyme. As with P450, we suggest
that radical chains of Trp, Tyr, Cys, and/or Met residues in
2OG-Fe hydroxylases protect the enzymes from damage in
the event of slow or unsuccessful substrate hydroxylation
by diverting the powerfully oxidizing hole from FeIV(O) to
the protein surface, where it can react with intracellular
reductants (e.g. glutathione). This diversion of oxidizing

Fig. 2. (a) Space-filling structural model of RuHis107NO2TyrOH
109Cu-

azurin. (b) Space filling models of the residues comprising the hole-
hopping pathway from Cu to RuHis107.
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equivalents would extend the functional lifetime of an
enzyme.

When considering the many remarkable transformations
catalyzed by natural enzymes, it is easy to be left with the
impression that these macromolecules are perfect catalysts
that, after millions of years of tinkering, have solved the rid-
dle of simultaneously maximizing speed, selectivity, and
specificity. Upon closer inspection, however, heme and non-
heme oxygenases are far from perfect catalysts, yet manage
to accomplish their primary functions. Indeed, in many oxy-
genases, the coupling between oxygen consumption and
substrate hydroxylation is extremely low. The most abun-
dant P450 in human liver, CYP3A4, is a case in point
(Denisov et al. 2007b; Grinkova et al. 2013). For enzyme in-
corporated into nanodiscs (Grinkova et al. 2010), the coup-
ling of substrate hydroxylation to NADH consumption was
≤16% for testosterone as a substrate, ≤10% for bromocrip-
tine, and 2% for tamoxifen (Grinkova et al. 2013). It is fair
to say that, although the primary CYP3A4 function may be
substrate hydroxylation, the primary enzyme activity is dis-
tributed more or less equally between H2O2 and H2O pro-
duction (Grinkova et al. 2013). Indeed, it would not be
inaccurate to characterize CYP3A4 as a flawed oxidase
that occasionally oxygenates organic substrates. More im-
portantly, unless the enzyme was protected from damage in
the event of uncoupled turnover, CYP3A4 would function
not as a catalyst but as a stoichiometric reagent. A similar situ-
ation exists for uncoupled turnover in the 2OG-Fe enzymes.

The active sites of heme and nonheme oxygenases often are
deeply buried within a polypeptide matrix. Consequently,
powerfully oxidizing active site holes cannot efficiently mi-
grate in single-step tunneling reactions to the enzyme sur-
face for reduction by external reagents (Winkler & Gray,
2014a, b). We have shown that multistep tunneling reac-
tions can be hundreds to thousands of times faster than
their single-step counterparts (Shih et al. 2008; Warren
et al. 2012, 2013a, b). Radical transfer pathways composed
of Tyr, Trp, Cys, and Met residues are ideally suited to de-
liver active-site oxygenase holes to enzyme surfaces when re-
action with substrate is disrupted.

A biologically useful Fe-oxygenase protection mechanism
requires that a fine balance be struck between substrate re-
action and hole migration to the surface. Overly efficient
hole migration would lower enzyme hydroxylation activity,
while a sluggish pathway would be ineffective at protecting
the enzyme. Active-site hole scavenging in P450 by the
natural reductase may be possible, but the timing of this re-
action would be extremely variable, owing to fluctuations in
reductase concentration. In the 2OG-Fe enzymes, there is
no reductase that could protect the enzyme. An intraprotein
radical transfer mechanism can be tuned to provide the
proper balance between enzyme protection and substrate re-
action. We suggest that the first step in the hole-migration

pathway is the critical determinant of ferryl survival time.
Once a radical forms on the first residue in the pathway
(the gateway residue), further migration to the surface is
rapid. In the potential pathways that we have identified,
the distance from the active site to the first pathway residue
is often longer than subsequent steps. In addition to the
longer distance, proton coupling and enzyme conforma-
tional changes could contribute to limiting the rate of the
first step in the transfer chain.

CYP102A1

CYP102A1 from Bacillus megaterium (also known as P450
BM3) is a rare example of a bacterial Class II cytochrome
P450 enzyme in which both reductase and heme domains
are contained within a single polypeptide chain (Miura &
Fulco, 1974; Narhi & Fulco, 1986). The enzyme catalyzes
the remarkably rapid hydroxylation of long-chain fatty
acids using NAD(P)H and O2, without the presence of
any other proteins or cofactors (Narhi & Fulco, 1986).
The full-length enzyme (CYP102A1HR) has been expressed
in Escherichia coli, as have independent heme (CYP102A1H)
and reductase (CYP102A1R) domains (Boddupalli et al.
1990, 1992; Li et al. 1991a; Narhi et al. 1988; Oster et al.
1991). The individual domains, as well as an assembly be-
tween the heme domain and a flavin-containing reductase
domain, have been structurally characterized (Girvan et al.
2007; Sevrioukova et al. 2000; Warman et al. 2005). The sol-
uble, 119 kDa CYP102A1H enzyme serves as a convenient
model system for the more complex membrane-bound en-
zyme assemblies (Whitehouse et al. 2012).

Uncoupled substrate, O2, and NAD(P)H consumption in
P450 catalysis is a well-recognized and relatively common
phenomenon (De Matteis et al. 2002, 2012; Denisov et al.
2007a; Grinkova et al. 2013; Puntarulo & Cederbaum,
1998; Staudt et al. 1974). If two reducing equivalents are
not delivered to O2 by the substrate, then alternative sources
are necessary to avoid ROS production and/or enzyme
degradation. In some cases, the extra equivalents can be
delivered by NAD(P)H, leading to NAD(P)H :O2 molar
consumption ratios greater than 1 (De Matteis et al.
2012). Exogenous reductants such as bilirubin and uropor-
phyrinogen have been shown to contribute reducing equi-
valents during NAD(P)H/O2 CYP102A1 turnover in the
presence of halogenated (perfluorolaurate) substrates
(De Matteis et al. 2012). Although it is possible that an ac-
tive site hole could tunnel to the protein surface in a single
step, a multistep radical transfer mechanism would be far
more efficient. There are two attractive radical transfer path-
ways from the CYP102A1 heme to the protein surface
(Fig. 3) (Girvan et al. 2007). Pathway I is comprised of
heme–Trp96–Trp90–Tyr334; pathway II is heme–Cys156–
Tyr115–Met112–Tyr305.
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CYP102A1 radical transfer pathway I

The shortest direct distance between aromatic atoms of
CYP102A1 Trp96 and the heme is 7.3 Å and Trp(Nε)96 is
hydrogen bonded to the heme propionate (Girvan et al.
2007). Sequence alignment (UniProtKB) in the P450 family
suggests that Trp is conserved at this position in >75% of the
members of this group. Interestingly, of the 698 sequences
with Trp at this position, all but 5 derive from eukaryotic
sources, whereas about half of the proteins with His at
this position derive from bacterial or archaeal sources. In
this regard, it is noteworthy that archaeal CYP119 does
not have a Trp residue at this site and is the only P450 in
which Cmpd-1 has been characterized (Park et al. 2002;
Rittle & Green, 2010). The strong conservation of the
Trp96 residue has been noted previously (Munro et al.
1994). To the best of our knowledge, no role other than
structural has been reported for this highly conserved Trp
residue in P450 (Whitehouse et al. 2012).

We suggest that Trp96 is the gateway residue for hole trans-
fer from the heme to the protein surface during uncoupled
turnover. Studies of the reactions of substrate-free P450cam
(CYP101) with peracids revealed that a second intermediate
(Cmpd-ES) forms as a result of ET from a Tyr residue to
Cmpd-1 (Schünemann et al. 2004; Spolitak et al. 2005,
2006, 2008). A Cmpd-ES intermediate has been detected
in CYP102A1 and Trp96 has been implicated as one of the
residues hosting the oxidized radical (Raner et al. 2006).
Addition of NADPH to Cmpd-ES of the CYP102HR holoen-
zyme regenerates the ferric resting state; and formation of
these radicals may play a protective role during uncoupled
P450 catalysis (Spolitak et al. 2006). A combined computa-
tional/experimental investigation of CYP102A1 implicated

buried Trp96, Trp90, His92, and Tyr334 residues as compo-
nents of an ET pathway that could deliver reducing equiva-
lents to Cmpd-1 from the protein surface (Vidal-Limon
et al. 2013). The shortest aromatic contacts in this chain
are: Trp96–Trp90, 8.4 Å; Trp90–Tyr334, 4.4 Å (Girvan et al.
2007). The environment around Tyr334 appears well-suited
for radical formation: the phenol hydroxyl group is
hydrogen-bonded to both a carboxylate (Asp68) and a
water molecule (HOH1215).

Our prior studies of P450 ET reactions are consistent with
involvement of Trp96 in a radical transfer pathway to the
heme (Ener et al. 2010). We have found that
RuII(bpy)2(phen

•––Cys97) can deliver an electron across
24 Å to the FeIII-heme in 20 μs, and RuIII(bpy)2(phen–
Cys97)CYP102A1H can oxidize the heme to a porphyrin
radical in under 2 μs (Ener et al. 2010). The latter reaction
is particularly rapid given the low driving force (<200
meV) expected for the transformation. We have prepared
a Trp96His mutant and found that RuIII(bpy)2(phen–
Cys97)(His96)CYP102A1H does not promote photochemical
heme oxidation to Cmpd-2. Electron transfer to the
FeIII-heme from RuII(bpy)2(phen

•–−Cys97)(His96), however,
is unaffected by the Trp96His mutation.

CYP102A1 radical transfer pathway II

The second potential radical transfer pathway in
CYP102A1, heme–Cys156–Tyr115–Met112–Tyr305, does not
appear as favorable as pathway I, due largely to a long dis-
tance between the heme and the first step in the path. The
distance from Cys(Sγ)156 to the closest heme aromatic

Fig. 3. (a) Space-filling structural model of the heme domain of
CYP102A1 (PDB #2IJ2) highlighting the surface locations of ter-
minal residues in pathways I (Tyr334) and II (Tyr305). (b)
Space-filling model of the residues comprising CYP102A1 radical
transfer pathways I and II. Blue spheres represent structurally re-
solved water molecules.

Fig. 4. (a) Space-filling structural model of E. coli TauD (PDB
#1OS7) highlighting the surface locations of terminal residues in
postulated radical transfer pathways (Trp238, Trp174, and Tyr162).
(b) Space-filling model of the residues comprising TauD radical
transfer pathways.
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carbon atom (10.8 Å) is slightly longer than the shortest
aromatic–aromatic contact between the heme and Tyr115

(10.2 Å). If a radical is formed on Tyr115, then hole trans-
port to the surface Tyr305 via Met(Sδ)112 could provide a
secondary protection route.

Potential radical transfer pathways in
2OG-Fe oxygenases
TauD

The 2-oxoglutarate nonheme iron oxygenases catalyze sub-
strate hydroxylation reactions in a fashion that is remi-
niscent of the cytochromes P450, but with some critical
distinctions (Fig. 1). The consensus mechanism for catalysis
involves Fe2+ binding to the apo-enzyme followed by 2OG
incorporation. Substrate binding induces loss of the water
ligand from Fe2+, creating a vacant coordination site for
O2 binding. Oxidation of 2OG produces CO2, succinate,
and an FeIV(O) center that is thought to hydroxylate sub-
strate via the usual H-atom abstraction, hydroxyl rebound
cycle (Mantri et al. 2012; Rose et al. 2011). The 2OG-Fe
hydroxylases differ from the P450 enzymes in that substrate
hydroxylation proceeds from the FeIV(O) oxidation level
(equivalent to P450 Cmpd-2). The E. coli 2OG-Fe enzyme
TauD is synthesized under conditions of sulfur deprivation
(Hausinger, 2004); large quantities of TauD have been

prepared by over expression in E. coli BL21(DE3)
(pME4141) cells (Eichhorn et al. 1997; Ryle et al. 1999).
The enzyme catalyzes the hydroxylation of taurine
(2-aminoethanesulfonate), producing an unstable species
that decomposes into sulfite and aminoacetaldehyde
(Hausinger, 2004). In the absence of taurine, the enzyme
will slowly consume O2 and become inactivated: protein
analysis indicates hydroxylation of Tyr73 (Koehntop et al.
2006; Ryle et al. 2003). Although with deuterated substrates
coupling between oxygen consumption and substrate hy-
droxylation is diminished, 2OG oxidation is not, suggesting
that FeIV(O) continues to be formed in the presence of re-
fractory substrates; and bis-Tris buffer, a potential reducing
agent, decreases coupling between O2 activation and C–H
hydroxylation (McCusker & Klinman, 2009). We suggest
that when FeIV(O) is unable to effect substrate hydroxyl-
ation, the oxidizing hole is directed to the protein surface
where it can be reduced by external reagents.

TauD radical transfer pathways

We have identified two possible radical transfer pathways in
the structure of TauD: the most attractive pathway from Fe
to the surface has four Trp residues: Fe–Trp248–Trp128–
Trp240–Trp238; relevant distances are: Fe–Trp248, 4.8 Å;
Trp248–Trp128, 3.1 Å; Trp128–Trp240, 3.7 Å; Trp240–Trp238,
3.7 Å (Fig. 4) (O’Brien et al. 2003). The structure of this

Fig. 5. Distributions of radical transfer chain lengths among structurally characterized oxidoreductases from enzyme sub-classes EC 1.11
(peroxidases, blue), 1.13 (oxygenases, green), and 1.14 (dioxygenases, red). Radical transfer chains are defined to be composed of Tyr,
Trp, heme, Fe, and Cu residues. Tyr residues were included only if a carboxylate (Asp, Glu) oxygen atom, an imidazole (His) nitrogen
atom, or a water molecule was within 4 Å of the Tyr hydroxyl oxygen atom.
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Trp chain compares favorably to that identified in E. coli
DNA photolyase (4–5 Å separations) (Byrdin et al. 2003;
Lukacs et al. 2006). The photolyase chain has just three
Trp residues, and hole migration from FADH•* to Trp306

at the protein surface is complete in less than 10 ns
(Byrdin et al. 2003; Lukacs et al. 2006). We anticipate that
a hole injected by FeIV(O)-TauD into Trp248 should migrate
to Trp238 at the surface in less than 1 μs. A secondary radical
transfer pathway in TauD [Fe–Tyr73–Tyr164–(Trp174,
Tyr162)] is of particular interest because hydroxylated
Tyr73 has been found during turnover in the absence of
taurine (Koehntop et al. 2006; Ryle et al. 2003). Both
Trp174 and Tyr162 are well-exposed at the enzyme surface
and both (or just one) of these residues could be involved
in a radical transfer pathway. Relevant distances are:
Fe–Tyr73, 6.5 Å; Tyr73–Tyr164, 5.0 Å; Tyr164–Trp174,
4.2 Å; Tyr164–Tyr162, 7.6 Å; Trp174–Tyr162, 8.8 Å (O’Brien
et al. 2003).

Outlook
Functional radical transfer pathways have been identified in
several enzymes, including ribonucleotide reductase
(Argirevic et al. 2012; Holder et al. 2012; Offenbacher
et al. 2013a, b; Sjöberg, 1997; Stubbe & van der Donk,
1998; Stubbe et al. 2003; Worsdorfer et al. 2013;
Yokoyama et al. 2011), photosystem II (Boussac et al.
2013; Keough et al. 2013; Sjoholm et al. 2012), DNA photo-
lyase (Aubert et al. 1999, 2000; Byrdin et al. 2003; Kodali
et al. 2009; Li et al. 1991b; Lukacs et al. 2006; Sancar,
2003; Taylor, 1994; Woiczikowski et al. 2011), and MauG
(Davidson & Liu, 2012; Davidson & Wilmot, 2013; Geng
et al. 2013; Yukl et al. 2013). If radical transfer pathways
do indeed provide protection mechanisms for enzymes
operating at high electrochemical potentials, then it is likely
that they will be found in many more redox-active enzymes.
A survey of oxidoreductases in the protein data bank reveals
that nearly 80% of structurally characterized peroxidases,
oxygenases, and dioxygenases (enzyme classes EC 1.11,
1.13, and 1.14; 587 structures with sequence identity less
than 90%) contain chains of 2 or more redox-active residues
(Tyr, Trp, heme, Fe, and Cu) separated by no more than 5 Å
(Fig. 5). The fraction increases to almost 90% if the cutoff
distance is increased to 8 Å. We think it very likely that
hole hopping through these types of radical transfer chains
greatly reduces the production of ROS that destroy enzymes
and other molecules in living cells.
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