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LONG-TIME BEHAVIOUR IN A MODEL
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Abstract

We study a continuous-time stochastic process on strings made of two types of particle,
whose dynamics mimic the behaviour of microtubules in a living cell; namely, the strings
evolve via a competition between (local) growth/shrinking as well as (global) hydrolysis
processes. We give a complete characterization of the phase diagram of the model, and
derive several criteria of the transient and recurrent regimes for the underlying stochastic
process.
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1. Introduction

Microtubules are important structural components of the cytoskeleton, which play a vital
role in many processes in a living cell. Their unique ability of rapid growth and even more
rapid shrinking (often called dynamical instability) is exploited by the nature to segregate
chromosomes during cell division, and as such, microtubules have been the subject of intensive
study. At the same time, the high complexity of the involved processes turns the experimental
study of microtubules into a challenging task, with many key questions in the area remaining
unanswered.

In a recent paper [1] the authors suggested a simplified stochastic model of microtubule
growth aimed at deriving the dynamical instability from the interplay of a small number of
parameters. (The actual behaviour of microtubules is much more complex; see, e.g. review [7]
and the references therein.) Mathematically, the model represents microtubules as long poly-
mers made from two types of monomer, ⊕ and � (guanosin triphosphate (GTP+) and guanosin
diphosphate (GDP−) tubulin complexes), subject to several stochastic transformations occur-
ring with fixed rates, namely growth, i.e. attachment of ⊕ monomers to the active end (with the
rate depending on the type of the extremal monomer), hydrolysis, i.e. irreversible transformation
of a ⊕ monomer into a � monomer (independently of the state of all other monomers composing
the microtubule), and depolymerisation/shrinking, i.e. spontaneous departure of the hydrolysed
extreme monomer (for a formal definition, see Section 1.1). The authors described analytically
the limiting behaviour of the model in several particular cases, but had to rely upon numerical
simulations in ‘the more biologically relevant case of intermediate parameter values’ [1].

Our aim here is to describe the phase diagram of this model, in particular, to give several
equivalent characterisations of the phase boundary, the set in the parameter space separating
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Long-time behaviour in a model of microtubule growth 269

the region of the unbounded growth of microtubules from that of the ‘compact phase’, where
the average microtubule length remains bounded. According to one of our main results (for a
complete list and rigorous statements, see Section 1.2), for every point in the parameter space
(i.e. a collection of fixed rates), there is a well-defined value of the velocity of the position of the
microtubule’s active end, and it is the zero-velocity set in the parameter space which separates
the regions of unbounded growth (positive velocity) from that of ‘compact phase’ (negative
velocity).

1.1. The model

Following [1], we think of microtubules m as long polymers consisting of ⊕ and � mono-
mers, m = · · ·m2m1m0, where mk ∈ {⊕,�} for all k ≥ 0, with the ‘extreme’ monomer m0
located at the active end of the microtubule. Initially, all monomers are in the � state, and the
time evolution of the microtubule (formally described below) guarantees that, with probability 1
at every moment of time, the microtubule contains at most a finite number of ⊕ monomers; it is
thus convenient to describe the current state of a microtubule at time t in terms of the position
xt of the extreme monomerm0 and the head (or the populated zone [1]) wt of the microtubule,
defined as the shortest word mk · · ·m1m0 such that all other monomers mn, n > k, are in the
� state. Since attachment of new monomers occurs at the active end of a microtubule, every
nonempty head wt spans between the active end of the microtubule and its leftmost ⊕ monomer.

Let {⊕,�} be a two-symbol alphabet, and let Ŵ = ⋃
k≥0{⊕,�}k denote the collection of

all possible finite words, including the empty one. We call a head any word belonging to the
set

W = {∅} ∪ {w = ⊕ŵ with ŵ ∈ Ŵ},
so that every nonempty head w can be written as a finite wordwk · · ·w0 for some integer k ≥ 0
with its leftmost monomer being in the ⊕ state, wk = ⊕. (Here and below, if ŵ′ = ŵ′

k · · · ŵ′
0

and ŵ′′ = ŵ′′
l · · · ŵ′′

0 are two finite words in Ŵ , we write ŵ′ŵ′′ for the concatenated word
ŵ′
k · · · ŵ′

0ŵ
′′
l · · · ŵ′′

0 of k+ l+ 2 symbols.) It is convenient to decompose the set W of all finite
heads into a disjoint union

W = W+ ∪ W−, where W+ = {w = wk · · ·w0 ∈ W : w0 = ⊕}. (1.1)

In this decomposition the heads w ∈ W+ correspond to microtubules whose active monomer
m0 is in the ⊕ state, whereas the set of heads W− is associated with those microtubules for which
m0 = �; in particular, initially, we havemk ≡ � for all k ≥ 0, i.e. the head is empty and, thus,
∅ ∈ W−. Of course, every finite word ŵ ∈ Ŵ corresponds to a unique head w = 〈ŵ〉 ∈ W
obtained by removing all its � monomers to the left of the leftmost ⊕ monomer in ŵ; it is
convenient to think of 〈·〉 : Ŵ → W as a projection operator.

Similarly, for integers m ≥ 0 and � ≥ 0, let [·]m� : W → {⊕,�}m+1 be the projection
operator such that

w = wk · · ·w0 �→ ŵ ≡ [w]m� = ŵm · · · ŵ0, (1.2)

where ŵj = w�+j for j ∈ {0, . . . , m}, and we assume that the word ŵ is extended with
� monomers on the left if necessary, i.e. ŵj = � if � + j > k for j under consideration. If
� = 0, we shall use a simplified notation [w]m for the word consisting of the m+ 1 rightmost
monomers in w, again extended on the left as necessary.

Our main object here is a continuous-time Markov process

yt ≡ (xt ,wt ), t ≥ 0,
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270 O. HRYNIV AND M. MENSHIKOV

taking values in Y ≡ Z × W , where xt ∈ Z is the position at time t ≥ 0 of the rightmost
monomer w0 of the head wt ∈ W . We shall assume that initially the microtubule consists of
an empty head located at the origin,

y0 = (x0,w0) = (0,∅), (1.3)

and that the transitions of yt are described in terms of fixed positive constants λ+, λ−, and µ
as follows.

Attachment. A ⊕ monomer attaches to the right end of the microtubule,

(x,w) �→ (x + 1,w⊕),
at rate λ+ if w ∈ W+ and rate λ− if w ∈ W−; of course, if w = ∅ ∈ W−, the head w⊕
should be understood as 〈w⊕〉 ≡ ⊕.

Detachment. If w ∈ W−, i.e. w = ∅ or w = w′� with some w′ ∈ W \ {∅}, the microtubule
shrinks at rate µ,

(x,∅) �→ (x − 1,∅) or (x,w′�) �→ (x − 1,w′), respectively.

Conversion. For a nonempty head w = wk · · ·w0 ∈ W , let Jw denote the list of positions of
all ⊕ monomers in w, Jw = {j ≥ 0 : wj = ⊕}; then every wj with j ∈ Jw hydrolyses,
wj = ⊕ �→ �, at rate 1, independently of all other wj , j ∈ Jw. In other words, if ŵ is
any word obtained from w by converting one of its ⊕ monomers into the � state, then at
rate 1,

(x,w) �→ (x, 〈ŵ〉),
where transformations into different resulting words ŵ are independent. Note that if the
leftmost ⊕ monomer wk in w hydrolyses, the resulting word ŵ starts with �, so that in
this case the new head 〈ŵ〉 is shorter than w and might even become empty.

In our analysis of the main microtubule process, (yt )t≥0, we shall rely upon two auxiliary
processes approximating yt .

Let 0 = τ̃0 < τ̃1 < · · · be the moments of consecutive returns of the Markov process (yt )t≥0
to states with empty head,

ỹ� ≡ yτ̃� = (x̃�,∅), � ≥ 0. (1.4)

Clearly, the discrete-time Markov chain (ỹ�)�≥0 can be identified with the process (x̃�)�≥0,
where x̃0 = 0. Set θ� = τ̃� − τ̃�−1, � > 0. As the differences

(x̃� − x̃�−1, θ�) ≡ (xτ̃� − xτ̃�−1 , τ̃� − τ̃�−1)

are mutually independent and have the same distribution, the process (x̃�)�≥0 is a discrete-time
random walk on Z with independent and identically distributed (i.i.d.) increments.

Our second auxiliary process is a ‘finite-state version’ of the process (yt )t≥0. For a fixed
integer m ≥ 0, let [·]m : W → {⊕,�}m+1 be the projection operator defined above. We then
set

ŷt ≡ (̂xmt , ŵ
m
t ) ≡ ŷmt := [yt ]m = (xt , [wt ]m),
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and equip the process ŷt with jumps (and rates) inherited from the process yt ; then the conversion
move for ŷt is the same as for yt , whereas the attachment move should be understood as

(x, ŵ) �→ (x + 1, [ŵ⊕]m),
and the detachment move becomes

(x,∅) �→ (x − 1,∅) or (x, ŵ�) �→ (x − 1, [�ŵ]m),
if ŵ contains at least one ⊕ monomer (in the ‘finite-state’ situation here and below, ∅ denotes
the word of length m+ 1 made of � monomers only). As a result, for every fixed m ≥ 0, the
process (ŷt )t≥0 ≡ (ŷmt )t≥0 is a continuous-time Markov chain on a ‘finite’strip Z×{⊕,�}m+1.
The transience and recurrence properties of such chains are similar to those of discrete-time
chains on strips; see, e.g. [4, Chapter 3].

1.2. Results

We now are ready to state our main results.

Theorem 1.1. The random vectors

(�lx̃,�lτ̃ ) ≡ (x̃l − x̃l−1, τ̃l − τ̃l−1), l ≥ 1, (1.5)

share a common distribution with finite exponential moments in a neighbourhood of the origin.
Consequently, the discrete-time random walk (x̃l)l≥0 in Z, generated by the i.i.d. steps �lx̃,
satisfies all classical limiting results, including the (strong) law of large numbers, the central
limit theorem, and the large deviation principle.

Since the increments of the sequence (τ̃l)l≥0 have exponential moments, the embedded
random walk (x̃l)l≥0 captures the long-time behaviour of the main process (yt )t≥0. In what
follows, we shall often say that the process (yt )t≥0 is transient towards +∞ (or −∞) if the
random walk (x̃l)l≥0 has the corresponding property.

Corollary 1.1. The velocity v of the process (xt )t≥0, defined as the almost-sure limit

v := lim
t→∞

xt

t
,

satisfies v = E x̃1/E τ̃1. In particular, E x̃1 > 0 corresponds to the transience of xt towards
+∞ and E x̃1 < 0 corresponds to the transience of xt towards −∞.

Remark 1.1. Our arguments apply equally to a modified, but biologically more realistic, model
when xt is restricted to the half-line Z

+ = {0, 1, 2, . . . }. Then the condition E x̃1 > 0
corresponds to unbounded growth (with speed v > 0), whereas the condition E x̃1 < 0
corresponds to the ‘compact phase’ of positive recurrence.

Remark 1.2. Existence of exponential moments for the vectors in (1.5) allows for a fast
numerical estimation of E x̃1, and, thus, provides a constructive way of describing the phase
boundary for the Markov process (yt )t≥0.

We now give another characterisation of the transient regime towards +∞.

Theorem 1.2. If λ− ≥ µ + λ+, the Markov process (yt )t≥0 is transient towards +∞. Alter-
natively, if λ− < µ+ λ+, the process (yt )t≥0 is transient towards +∞ if and only if, for some
m ≥ 0, the m-projected process (ŷmt )t≥0 is transient towards +∞.
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Remark 1.3. The transience and recurrence properties of the ‘finite-strip’ process (ŷmt )t≥0 can
be easily described through the solution π̂m to a finite system of linear equations; see (3.2),
below. This, together with the fact that the Markov process (yt )t≥0 is well approximated by
(ŷmt )t≥0 for large enough m (for precise results see Section 3), provides a constructive way of
describing the +∞ transient regime of (yt )t≥0.

We now give an alternative description of the ‘compact phase’. Let the Markov process
(yt )t≥0 start from the empty-head initial condition (1.3). Assuming that the first event results in
the arrival of a⊕monomer at position 1, we define its arrival time via ζ01 := min{t > 0 : xt = 1},
and, on the event when ζ01 is finite, we define the departure time ζ10 of this monomer via
ζ10 := min{t > ζ01 : xt = 0}. Then the difference

T1 := ζ10 − ζ01 > 0 (1.6)

describes the lifetime of the ⊕ monomer at position 1. Note, that the lifetime of every monomer
attached to the microtubule after the initial time t = 0 does not depend on the configuration of
the microtubule at the moment of arrival and, therefore, has the same distribution as T1.

Of course, T1 is almost surely finite, and we formally set T1 = +∞ if either of the times ζ01
or ζ10 is infinite. At the same time, we obviously have E T1 > 0.

In what follows we shall see that it is the finiteness of E T1 which is central to describing the
‘compact phase’; moreover, if E T1 < ∞ then the Laplace transform ϕ(s) := E e−sT1 of T1 is
finite for some s < 0, or, equivalently, T1 has finite exponential moments in a neighbourhood
of the origin.

Theorem 1.3. The Markov process (yt )t≥0 is transient towards −∞ if and only if E T1 < ∞,
or, equivalently, if ϕ(s) is finite in a neighbourhood of the origin.

The average lifetime E T1 can be computed from ϕ(s) in the usual way,

E T1 ≡ − lim
s↓0

d

ds
ϕ(s),

and the latter has the following property.

Lemma 1.1. The Laplace transform ϕ(s) ≡ E e−sT1 of the lifetime T1 satisfies the following
functional equation: for all s ≥ 0,

ϕ(s) = (1 + λ+ϕ(s))(µ+ λ−ϕ(s))
(1 + λ+ + s)(µ+ λ− + s)

+ λ+((µ+ s)ϕ(s)− µ)

(1 + λ+ + s)(µ+ λ− + s)
ϕ(s + 1). (1.7)

Remark 1.4. In addition to being potentially useful for the numerical evaluation of ϕ(s),
Lemma 1.1 can be used to study the properties of various lifetimes; see Section 4.

The rest of the paper is devoted to the proofs of the above results. In Section 2 we shall use the
intrinsic renewal structure of (yt )t≥0 and the regularity property of birth-and-death processes
from Appendix A to derive Theorem 1.1 and Corollary 1.1. Then, in Section 3 we shall
investigate stochastic monotonicity properties of the processes (ŷmt )t≥0 and use them to verify
the finite-strip approximation result, Theorem 1.2. Finally, in Section 4 we prove Lemma 1.1
and Theorem 1.3, and establish a similar characterisation of the transience towards +∞, based
upon the large deviation estimate from Appendix B.
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2. Renewal structure

In this section we shall exploit the intrinsic renewal property of the Markov process (yt )t≥0
related to the consecutive moments τ̃l , l ≥ 0, when its head becomes empty, wτ̃l = ∅. By the
strong Markov property, for every fixed l > 0, the process yτ̃l+t ≡ (xτ̃l+t ,wτ̃l+t ), t ≥ 0, has
the same law as (yt )t≥0 if started from the initial state (xτ̃l ,∅); in addition, this law does not
depend on the behaviour of (yt )t∈[0,τ̃l ). It is thus sufficient to study (yt )t≥0 over a single cycle
interval [0, τ̃1).

2.1. A single cycle behaviour

Fix arbitrary positive rates λ+, λ−, and µ, and define λ = max(λ+, λ−) > 0. Our aim here
is to relate the Markov process (yt )t≥0, whose dynamics are governed by the rates λ+, λ−, and
µ, to the continuous-time birth-and-death process (Yt )t≥0 with birth rate λ and death rate 1 (per
individual); see Appendix A. In fact, we shall couple them in such a way that the total number
of ⊕ monomers in wt ≡ w(t),

‖wt‖ :=
∑
j≥0

1{wj (t)=⊕} (2.1)

is bounded above by the total number of individuals Yt in the birth-and-death process; in
particular, the moment τ̃1 of the first disappearance of the head of the process yt shall occur no
later than the first return of Yt to the origin.

Formal construction. We couple the Markov process (yt )t≥0 with rates (λ+, λ−, µ, 1)
described above, and the birth-and-death process (Yt )t≥0 with death rate 1 and birth rate λ =
max(λ+, λ−) (see Appendix A), in such a way that the inequality 0 ≤ ‖wt‖ ≤ Yt is preserved
for all times t ≥ 0.

To start, we shall assume that λ− ≥ λ+, so that λ = λ− (the necessary changes needed in
the case λ− ≤ λ+ shall be commented on below), and then define

λ0 := min(λ−, λ+) > 0, δλ := |λ+ − λ−| ≥ 0. (2.2)

Two cases need to be considered separately.
Case I. Let yt = (xt ,wt ) with wt ∈ W−, and let Yt = n + ‖wt‖ with n ≥ 0. We define

four independent exponentially distributed random variables, ζ1 ∼ Exp(λ), ζ2 ∼ Exp(µ),
ζ3 ∼ Exp(‖wt‖), and ζ4 ∼ Exp(n), and we set ζ ≡ min(ζ1, ζ2, ζ3, ζ4). Then the first transition
occurs at time t + ζ and is given as follows.

• If ζ = ζ1 then Yt+ζ = Yt + 1 and a ⊕ monomer attaches to the microtubule, i.e. yt+ζ =
(xt + 1,w′) with w′ = wt⊕.

• If ζ = ζ2 then Yt+ζ = Yt and the extremal � monomer w0(t) leaves the microtubule
(i.e. for wt = ∅, we have yt+ζ = (xt − 1,∅), and in the case wt ∈ W− \ {∅} we have
yt+ζ = (xt − 1,w′) with w′

j = wj+1(t) for all j ≥ 0).

• If ζ = ζ3 then Yt+ζ = Yt − 1 and one ⊕ monomer in wt hydrolyses (uniformly at
random).

• If ζ = ζ4 then Yt+ζ = Yt − 1 and yt+ζ = yt .

By using the well-known properties of exponential random variables, it is immediate to
verify that jumps of both processes (yt )t≥0 and (Yt )t≥0 have correct distributions. We also
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note that the last transition above can only happen if n > 0; as a result, the key inequality
‖wt+ζ‖ ≤ Yt+ζ is preserved after the jump.

Case II. Let yt = (xt ,wt ) with wt ∈ W+, and let Yt = n + ‖wt‖ with n ≥ 0. We
now consider four independent exponential random variables, ζ1 ∼ Exp(λ0), ζ2 ∼ Exp(δλ),
ζ3 ∼ Exp(‖wt‖), and ζ4 ∼ Exp(n) (recall (2.2)), and we set ζ ≡ min(ζ1, ζ2, ζ3, ζ4). Then the
first transition occurs at time t + ζ and is given as follows.

• If ζ = ζ1 then Yt+ζ = Yt + 1 and a ⊕ monomer attaches to the microtubule, i.e. yt+ζ =
(xt + 1,w′) with w′ = wt⊕.

• If ζ = ζ2 then Yt+ζ = Yt + 1 and yt+ζ = yt .

• If ζ = ζ3 then Yt+ζ = Yt − 1 and one ⊕ monomer in wt hydrolyses (uniformly at
random).

• If ζ = ζ4 then Yt+ζ = Yt − 1 and yt+ζ = yt .

Again, it is straightforward to check that the transitions above provide a correct coupling.
By using an appropriate case at every step we construct a correct coupling of two processes

Yt and yt for all t ≥ 0 in the region λ− ≥ λ+. The construction for λ− < λ+ is similar with
the only difference that the simultaneous moves with rate λ = λ+, i.e. | · · · ⊕〉 �→ | · · · ⊕ ⊕〉
and Yt+ζ = Yt + 1, occur when w0(t) = ⊕ (case II), whereas a pair of moves with rates λ0
and δλ (recall lines ζ = ζ1 and ζ = ζ2 in case II above) occurs when w0(t) = �, i.e. in case I.

Observe that in the coupling described above, every jump of the microtubule process (yt )t≥0
involving ⊕ monomers (attachment or hydrolysis) corresponds to an appropriate move (up or
down) in the birth-and-death process (Yt )t≥0. We shall use this coupling below to study the
microtubule process (yt )t≥0.

2.2. Proofs of Theorem 1.1 and Corollary 1.1

To prove Theorem 1.1, fix positive jump rates λ+, λ−, and µ as above and consider the
Markov process (yt )t≥0 starting from the initial condition (1.3), y0 = (0,∅). Recall that τ̃1 > 0
is the first moment of time when the process yt enters a state with empty head, yτ̃1 = (x̃1,∅).
Our aim is to show that the expectation

	0(z, s) := Ey0 [zx̃1 esτ̃1 ]
is finite for some z > 1 and s > 0. By using the strong Markov property at the end of the initial
holding time η1 ∼ Exp(λ− + µ) we deduce the relation

	0(z, s) = λ− + µ

λ− + µ− s

(
µ

λ− + µ
z−1 + λ−

λ− + µ
z	1(z, s)

)
, (2.3)

where 	1(z, s) is defined as 	0(z, s), but with the initial condition y′ = (1,⊕), i.e. with the
head w consisting of a single ⊕ monomer at position x = 1. It thus suffices to show that
	1(z, s) is finite for some z > 1 and s > 0.

To this end, we shall use the construction from Section 2.1 to couple the microtubule
process (yt )t≥η1 and the birth-and-death process (Yt )t≥η1 with birth rate λ = max(λ+, λ−),
death rate 1, and the initial condition Yη1 = 1. Let τ̄1 be the hitting time, and let κ̄1 be the total
number of jumps until the process (yt )t≥η1 starting at yη1 = (1,⊕) hits an empty head state
(x̃1,∅). Similarly, write τ0 for the hitting time and κ0 for the total number of jumps until the
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birth-and-death process Yt hits the origin. Finiteness of	1(z, s)will follow from monotonicity
of this coupling and the results of Appendix A.

Let � be the total number of ⊕ monomers attached to the microtubule during the time
interval [0, τ̃1). Since, by the time τ̃1, all these ⊕ monomers have hydrolysed and some of
the resulting � monomers might have detached from the microtubule, we obviously have
2� ≤ κ0 + 1 and, therefore,

κ̄1 ≤ 3� ≤ 3

2
(κ0 + 1), −1 ≤ x̃1 ≤ � ≤ κ0 + 1

2
.

It now follows from the inequality τ̄1 ≤ τ0 and Proposition A.1 that

	1(z, s) ≡ E1[zx̃1 esτ̄1 ] ≤ √
zE[zκ0/2esτ0 ] < ∞,

provided that
√
z ≤ z̄ and s ≤ s̄ for some z̄ > 1 and s̄ > 0. This estimate, together with the

decomposition (2.3), implies the first claim of Theorem 1.1. The other results for the random
walk x̃n now follow in a standard way (see [2] and [5]).

Note that the argument above also proves the following result.

Corollary 2.1. Let τ̄1 be the hitting time, and let κ̄1 be the total number of jumps until the
process (yt )t≥η1 with initial state yη1 = (1,⊕) hits an empty-head state (x̃1,∅). Then there
exist z̄ > 1 and s̄ > 0 such that E1[zκ̄1 esτ̄1 ] < ∞ everywhere in the region z ≤ z̄ and s ≤ s̄.

Of course, Corollary 1.1, the strong law of large numbers for the renewal scheme with
increments (1.5), follows immediately from Theorem 1.1 (see, e.g. [3, Section 5.2]). In addition,
the estimate maxt∈[0,τ̃1) |xt − x0| ≤ κ̄1 + 1 and the corollary above imply the corresponding
concentration result, namely sharp exponential estimates for the probabilities of the events
|x̃t /t − E x̃1/E τ̃1| > ε with small fixed ε > 0 and large t .

3. Finite approximations

By Theorem 1.1, the process wt is an irreducible, continuous-time, positive recurrent Markov
chain in W . If π is its unique stationary distribution, define

π+ ≡ π(W+) =
∑

w∈W+
π(w), π− ≡ π(W−) =

∑
w∈W−

π(w),

i.e. π+ and π− are the probabilities that the rightmost monomer in w is a ⊕ monomer and a
� monomer, respectively (recall (1.1)).

Similarly, for every fixed m ≥ 0, the projected chain ŵt ≡ [wt ]m has a unique stationary
distribution π̂m, for which we define

π̂m+ ≡
∑

w∈{⊕,�}m
π̂m(w⊕), π̂m− ≡

∑
w∈{⊕,�}m

π̂m(w�).

We then have the following result.

Proposition 3.1. Define v+ ≡ λ+ > 0 and v− ≡ λ− − µ. Then, almost surely,

lim
t→∞

1

t
xt = π+v+ + π−v−, lim

t→∞
1

t
x̂mt = π̂m+ v+ + π̂m− v−. (3.1)

As a result, if v− ≥ v+ then the process xt is transient towards +∞ and, for everym ≥ 0, the
process x̂mt is transient towards +∞. On the other hand, if v− < v+ then xt is transient towards
+∞ if and only if, for all sufficiently large m ≥ 0, the process x̂mt is transient towards +∞.
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Of course, if the velocity on the right-hand side of (3.1) does not vanish then xt is transient
towards +∞ or −∞ depending on the sign of this velocity. We shall deduce Proposition 3.1
below by first showing that π̂m+ < π̂m+1+ < π+ for all m ≥ 0 and then proving that, in fact,
π+ = limm→∞ π̂m+ .

Remark 3.1. Let Q̂m be the generator of the finite-state Markov chain ŵt . By irreducibility, its
stationary distribution π̂m is the only probability distribution satisfying the finite-dimensional
system of equations

π̂mQ̂m = 0. (3.2)

Proposition 3.1 implies that if, for some m ≥ 0, the solution to this system makes the right-
hand side of (3.1) positive, then both processes (yt )t≥0 and (ŷmt )t≥0 are transient towards +∞.
This gives another numerical method for establishing transience towards +∞ for the process
(yt )t≥0.

Remark 3.2. If m = 0, the stationary distribution π̂m becomes

π̂0 = (π̂0+, π̂0−) =
(

λ−

1 + λ− ,
1

1 + λ−

)
,

and, therefore, the velocity v0 ≡ π̂0+v+ + π̂0−v− is nonnegative if and only if

µ ≤ λ−(1 + λ+). (3.3)

It has been argued in [1, SectionV.B] that the right-hand side of (3.3) provides an asymptotically
correct approximation to the ‘phase boundary’ v = 0 in the limit of small λ+ and λ−. It is
interesting to note that, according to Lemma 3.1 below, every point in the phase space for
which the equality in (3.3) holds belongs to the region of positive velocity v for the process yt ,
i.e. where yt is transient towards +∞.

We start by noting that the explicit expressions in (3.1) for the limiting velocity of the
process xt in Proposition 3.1 follow directly from the ergodic theorem for continuous-time
Markov chains. Indeed, for a fixed m ≥ 0, consider the Markov chain ŷt ≡ ŷmt with the initial
condition ŷ0 = (0,∅). Decomposing the difference x̂mt ≡ x̂mt − x̂m0 into a sum of individual
increments and rearranging gives

x̂mt =
∑

w,w′∈Wm

kw,w′(t)[xw′ − xw], (3.4)

where kw,w′(t) is the total number of transitions w �→ w′ for wt during the time interval [0, t].
Of course,

xw′ − xw =

⎧⎪⎨
⎪⎩

+1 if w′ = [w⊕]m,

−1 if w′ = �[w]m1 ,

0 otherwise,

so it is sufficient to concentrate on the transitions which change the position of the microtubule
active end. It is not difficult to deduce that the ratios kw,w′(t)/t converge to definite limits as
t → ∞. For example, fix w ∈ Wm+ , w′ = [w⊕]m, and write kw(t) for the total number of visits
to w for ŵm

t during the time interval [0, t]. If Tw denotes the first return time to state w, then
the ergodic theorem and the strong law of large numbers imply the almost-sure convergence

kw(t)

t
→ 1

Ew Tw
,

kw,w′(t)

kw(t)
→ λ+

‖w‖ + λ+ , as t → ∞.
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Consequently [6, Chapter 3],

kw,w′(t)

t
→ λ+

(‖w‖ + λ+)Ew Tw
≡ π̂wλ

+

almost surely as t → ∞, where π̂ = π̂m stands for the unique stationary distribution of the
Markov chain ŵm

t . Repeating the same argument for all other pairs of states w, w′ in (3.4) and
re-summing, we deduce the second equality in (3.1). A similar argument implies the velocity
formula for the process (yt )t≥0.

Our main result here is the following observation.

Lemma 3.1. Let positive rates λ+, λ−, and µ be fixed. Then, for all integer m ≥ 0, we have
π̂m+ < π̂m+1+ . Moreover, limm→∞ π̂m+ = π+.

Remark 3.3. If one interprets the projection operator [·]m as an enforced conversion ⊕ �→ �
outside a finite region, the statement of the lemma justifies the heuristics that ‘a less strict
enforcement policy increases the chances of seeing ⊕ monomers at the active end of
microtubules’.

The remainder of this section is devoted to the proof of this lemma. We first establish a
nonstrict monotonicity of π̂m+ inm via a coupling argument in Section 3.1, and then deduce the
strict monotonicity of π̂m+ from a suitable probabilistic bound in Section 3.2. Finally, Section 3.3
is devoted to a proof of the convergence claim of Lemma 3.1.

3.1. Comparison of finite chains

Fix positive rates λ+, λ−, and µ and an integer m ≥ 0, and consider two Markov chains

y′
t ≡ (x′

t ,w
′
t ) := ŷmt and y′′

t ≡ (x′′
t ,w

′′
t ) := ŷm+1

t

with initial conditions y′
0 = (0,∅) and y′′

0 = (0,∅); in the finite size setting here and below,
∅ refers to a string of an appropriate length consisting of � monomers only.

We now construct a coupling of the processes y′
t and y′′

t in such a way that, for all t ≥ 0, the
following monotonicity property holds:

w′
t ≺ w′′

t , i.e. for all k, w′
k(t) = ⊕ implies that w′′

k (t) = ⊕. (3.5)

Of course, in view of the intrinsic renewal structure and the strong Markov property, it is
sufficient to construct a coupling on a single cycle of the Markov chain y′′

t , i.e. on the time
interval between two consecutive visits by w′′

t to the state ∅. Again, we shall proceed by
defining a coupling of a single step at a time.

Recall that we use [·]ml to denote the projection operator [·]ml : W → {⊕,�}m+1 from (1.2),
and that ‖wt‖ is the total number of ⊕ monomers in wt , recall (2.1). In our construction below
we shall separately consider four different cases.

Case I. At time t ≥ 0 we have the following configuration:

y′
t = (x′

t ,w
′), y′′

t = (x′′
t ,w

′′), w′ ≺ w′′ ∈ W−,

so that both w′ and w′′ end with a � monomer (in particular, we might have w′ = ∅ or
w′ = w′′ = ∅). Define

J0 := {j ≥ 0 : w′
j = w′′

j = ⊕}, J1 := {j ≥ 0 : w′
j = �, w′′

j = ⊕},
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so that ‖w′‖ = |J0| and ‖w′′‖ = |J0 ∪ J1| = |J0| + |J1|. With n0 = |J0| and n1 = |J1|,
we consider four independent exponential random variables, ζ1 ∼ Exp(λ−), ζ2 ∼ Exp(n0),
ζ3 ∼ Exp(n1), and ζ4 ∼ Exp(µ), and we define ζ = min(ζ1, ζ2, ζ3, ζ4). Then the next
transition occurs at time t + ζ and is given as follows.

• If ζ = ζ1 then a ⊕ monomer simultaneously attaches to both processes, i.e. y′
t+ζ =

(x′
t + 1, [w′⊕]m) and y′′

t+ζ = (x′′
t + 1, [w′′⊕]m+1).

• If ζ = ζ2 then two ⊕ monomers w′
j and w′′

j , with j ∈ J0 selected uniformly at random,
hydrolyse simultaneously, i.e. w′

j (t + ζ ) = � and w′′
j (t + ζ ) = �, whereas all other

monomers in w′ and w′′ do not change; as a result, we have x′
t+ζ = x′

t and x′′
t+ζ = x′′

t .

• If ζ = ζ3 then the ⊕ monomerw′′
j , with j ∈ J1 selected uniformly at random, hydrolyses,

whereas all other monomers in w′ and w′′ as well as the x-components of both y processes
do not change.

• If ζ = ζ4 then the rightmost � monomer detaches from both microtubules, i.e. y′
t+ζ =

(x′
t − 1, [w′]m1 ) and y′′

t+ζ = (x′′
t − 1, [w′′]m+1

1 ).

Case II. At time t ≥ 0 we have the following configuration:

y′
t = (x′

t ,w
′), y′′

t = (x′′
t ,w

′′), w′ ≺ w′′, w′ ∈ W+,

so that both w′ and w′′ end with a ⊕ polymer. Defining index sets J0 and J1, and their cardinal-
ities n0 = |J0| and n1 = |J1| as in case I, we consider three independent exponential random
variables, ζ1 ∼ Exp(λ+), ζ2 ∼ Exp(n0), and ζ3 ∼ Exp(n1), and we define ζ = min(ζ1, ζ2, ζ3).
Then the next transition occurs at time t + ζ and coincides with the corresponding ζ -transition
in case I.

Case III. Our construction in this case shall depend on which of the ‘attachment’parametersλ
is bigger; we thus use the notation in (2.2),

λ0 := min(λ−, λ+) > 0, δλ := |λ+ − λ−| ≥ 0,

and consider two subcases separately.

Subcase IIIa. Let λ− ≥ λ+, and let the configuration at time t ≥ 0 be

y′
t = (x′

t ,w
′), y′′

t = (x′′
t ,w

′′), w′ ≺ w′′, w′ ∈ W−, w′′ ∈ W+.

Define index sets J0 and J1, and their cardinalities n0 = |J0| and n1 = |J1| as above,
consider five independent exponential random variables, ζ1 ∼ Exp(µ), ζ2 ∼ Exp(n0),
ζ3 ∼ Exp(n1), ζ4 ∼ Exp(λ0), and ζ5 ∼ Exp(δλ), and set ζ = min(ζ1, ζ2, ζ3, ζ4, ζ5).
Then the next transition occurs at time t + ζ and is given as follows.

• If ζ = ζ1 then the rightmost � monomer detaches from the head w′, i.e. y′
t+ζ =

(x′
t − 1, [w′]m1 ), and w′′ does not change, i.e. y′′

t+ζ = y′′
t .

• If ζ = ζ2 then two ⊕ monomers w′
j and w′′

j , with j ∈ J0 selected uniformly at
random, hydrolyse simultaneously, whereas all other monomers in w′ and w′′ as
well as the x-components of both y processes do not change.

• If ζ = ζ3 then a ⊕ monomer w′′
j , with j ∈ J1 selected uniformly at random,

hydrolyses, whereas all other monomers in w′ and w′′ as well as the x-components
of both y processes do not change.
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• If ζ = ζ4 then a ⊕ monomer simultaneously attaches to both processes, i.e. y′
t+ζ =

(x′
t + 1, [w′⊕]m) and y′′

t+ζ = (x′′
t + 1, [w′′⊕]m+1).

• If ζ = ζ5 then a ⊕ monomer attaches to the head w′
t only, i.e. y′

t+ζ = (x′
t + 1,

[w′⊕]m) and y′′
t+ζ = y′′

t .

Subcase IIIb. If λ− < λ+ and the departing configuration is the same as in subcase IIIa, we
use the same construction as there with the only difference that, for ζ = ζ5 ∼ Exp(δλ),
a ⊕ monomer attaches to y′′

t only, i.e. y′′
t+ζ = (x′′

t + 1, [w′′⊕]m+1) but y′
t+ζ = y′

t .

Lemma 3.2. Let positive ratesλ+, λ−,µ and an integerm ≥ 0 be fixed. Consider the truncated
processes

y′
t = (x′

t ,w
′
t ) := ŷmt , y′′

t = (x′′
t ,w

′′
t ) := ŷm+1

t ,

starting from the ‘empty’ initial conditions y′
0 = (0,∅) and y′′

0 = (0,∅).
If λ− ≥ λ+ then, for every fixed t ≥ 0 in the coupling above, either w′

t = w′′
t or there exists

a unique j0 ≥ 0 such that w′′
j0

= ⊕, w′
j0

= �, and

w′
j (t) = w′′

j (t) for all j < j0, w′
j (t) = w′′

j (t) = � for all j > j0.

Remark 3.4. In other words, Lemma 3.2 states that in the region λ− ≥ λ+, for every t ≥ 0,
the words �ŵm

t and ŵm+1
t either coincide at all positions or have exactly one discrepancy at

the position of the leftmost ⊕ monomer in ŵm+1
t .

Proof of Lemma 3.2. It is straightforward to verify that the claim of the lemma holds until
the first visit to the state (w′

t ,w
′′
t ) = (∅,⊕). Then in the case ζ = ζ3 or ζ = ζ5 of subcase IIIa

we obtain w′
t+ζ = w′′

t+ζ (with common value ∅ or ⊕, respectively) and in the case ζ = ζ1 or
ζ = ζ4 the discrepancy remains of the same type (at a single place); clearly, n0 = 0 implies
that ζ = ζ2 does not happen with probability 1. The result now follows from a straightforward
induction.

It remains to study the case in which λ+ > λ−.

Lemma 3.3. For fixed integer m ≥ 0 and positive rates λ+, λ−, and µ, consider truncated
processes (y′

t )t≥0 and (y′′
t )t≥0 as defined in Lemma 3.2.

If λ+ ≥ λ− then, for every fixed t ≥ 0, we have �w′
t ≺ w′′

t , recall (3.5). Moreover, if these
heads do not coincide (�w′

t �= w′′
t ) then there exist j1 ≥ j0 ≥ 0 such that w′

j0
(t) = w′

j1
(t) = �,

w′′
j0
(t) = w′′

j1
(t) = ⊕, and

w′
j (t) = w′′

j (t) for all j < j0, w′
j (t) = � for all j > j0,

w′′
j (t) = � for all j > j1.

Remark 3.5. In other words, Lemma 3.3 states that in the region λ+ ≥ λ−, for every fixed
t ≥ 0, the words �w′

t and w′′
t either coincide or there exists j0 ≥ 0 such that both strings �w′

t

and w′′
t coincide to the right of j0 and w′

j (t) = � for all j ≥ j0. Note that in contrast to the
case in which λ− ≥ λ+, the discrepancy between �w′

t and w′′
t can now spread out over an

interval containing several consecutive leftmost ⊕ monomers in w′′
t .

Proof of Lemma 3.3. As in the case in which λ− ≥ λ+, there is at most one discrepancy
between �w′

t and w′′
t over the time interval until the first visit to the state (w′

t ,w
′′
t ) = (∅,⊕);

moreover, it can only happen at the position of the leftmost ⊕ monomer in w′′
t .
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We next observe that the joint dynamics described above guarantee that if at a moment t ≥ 0
the rightmost monomers in w′

t and w′′
t coincide, i.e.w′

0(t) = w′′
0(t), then both processes y′

t and
y′′
t will run in parallel with all pairs of ⊕ monomers attached to w′ and w′′ at times t + s ≥ t

evolving identically until at least the first of the following events happens:

• the pair (w′
0(t), w

′′
0(t)) simultaneously leaves the process (y′

t , y
′′
t );

• the number of monomers to the right of the initial pair reaches m; at this moment, t + s,
we have either �w′

t+s = w′′
t+s (if this pair has simultaneously hydrolysed by time t + s)

or w′
t+s = [w′′

t+s]m and w′′
(m+1) = ⊕.

In other words, the discrepancy between w′
t and w′′

t does not grow when j0 > 0 and it can
only grow when j0 = 0, or, equivalently, when w′′

t ∈ W+ and w′
t = ∅; note, however, that this

discrepancy can shorten or disappear due to spontaneous hydrolysis of unmatched ⊕ monomers
in w′′

t or due to the ‘enforced’hydrolysis on the left end of the heads. A straightforward induction
now completes the proof of the lemma.

As a result, the joint dynamics described above give the ordering (3.5), w′
t ≺ w′′

t for all
t ≥ 0, so that the ergodic theorem implies that π̂m+ ≤ π̂m+1+ . Our next step is to establish the
strict inequality π̂m+ < π̂m+1+ .

3.2. Strict monotonicity of π̂m+
To show the strict monotonicity of π̂m+ as a function of m, we prove here that in addition to

the ordering property (3.5), the coupling constructed in the previous section guarantees that the
long-time density π̂

m,m+1
�,⊕ of the moments when w′

t ∈ W− and w′′
t ∈ W+ is strictly positive.

Then Lemma 3.1 follows directly from the standard ergodic theorem.
Our argument below will be based upon the following three facts.

Fact I. Let T̃ m+1 be the time between the consecutive returns by ŵm+1
t to the initial state ∅, and

let �m+1
t denote the number of returns by (ŵm+1

t )t≥0 to ∅ by time t . A straightforward
generalization of the coupling in Section 2.1 shows that T̃ m+1 is stochastically smaller
than τ̃1, which, by Theorem 1.1, has exponential moments in a neighbourhood of the
origin. Therefore, E T̃ m+1 ≤ E τ̃1 < ∞ and the strong Markov property together with

the large deviation principle imply that the probability of the complement A1
t to the event

A1
t := {ω : �m+1

t ≥ t/2 E τ̃1} decays exponentially fast as t → ∞.

Fact II. Now consider the joint dynamics of (ŷmt )t≥0 and (ŷm+1
t )t≥0 starting from the ‘empty

head’ initial states ŷm0 = (0,∅) and ŷm+1
0 = (0,∅) as described above. Denote by p̂m�⊕

the probability of the event

{ω : for some s < T̃ m+1, ŵm
s = ∅, ŵm+1

s = ⊕}.

By a ‘single-trajectory’ argument we easily deduce that p̂m�⊕ > 0.
We next write T̃ m+1

k for the kth return of the pair (ŵm
t , ŵ

m+1
t )t≥0 to the state (∅,∅),

and use ��⊕
k ≡ ��⊕(k) to denote the total number of returns to the state (∅,⊕) up to

time T̃ m+1
k by the pair of processes (ŵm

t , ŵ
m+1
t )t≥0. Using the strong Markov property

together with the large deviation principle for binomial random variables, we deduce that

the probability of the complement A2
k to the event A2

k := {ω : ��⊕
k ≥ p̂m�⊕k/2} decays

exponentially fast as k → ∞.

https://doi.org/10.1239/aap/1269611153 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1269611153


Long-time behaviour in a model of microtubule growth 281

Fact III. By the construction in Section 3.1, the holding time η̂m�⊕ of the process (ŵm
t , ŵ

m+1
t )t≥0

at the state (∅,⊕) has exponential distribution with parameter

ν = 1 + µ+ max(λ+, λ−) > 0.

Let pν > 0 be the probability of the event {ω : η̂m�⊕ > 1/ν}. Now consider L separate
visits by (ŵm

t , ŵ
m+1
t )t≥0 to the state (∅,⊕) and denote by �νL the number of those visits

whose holding times η̂m�⊕ are larger than 1/ν. By the standard large deviation principle we

deduce that the probability of the complement A3
L to the event A3

L := {ω : �νL ≥ pνL/2}
decays exponentially fast as L → ∞.

We now deduce the strict monotonicity of π̂m+ in Lemma 3.1; to this end, consider the events

B1
t :=

{
ω : �m+1

t ≥ t

2 E τ̃1

}
,

B2
t :=

{
ω : ��⊕

t ≥ p̂m�⊕
2

t

2 E τ̃1

}
,

B3
t :=

{
ω : �νt ≥ pν

2

p̂m�⊕
2

t

2 E τ̃1

}
.

It follows from the discussion above that the probabilities P(B1
t ), P(B2

t | B1
t ), and P(B3

t | B2
t )

decay exponentially fast as t → ∞ (here and below, we write A for the complement of the
event A). On the event B1

t ∩B2
t ∩B3

t , the total time spent at the state (∅,⊕) by the trajectories
(ŵm

s , ŵ
m+1
s )0≤s≤t is bounded below by pνp̂m�⊕t/(16ν E τ̃1) for all large enough t , t ≥ t1. On

the other hand, by the elementary inequality

P(A ∩ B ∩ C) ≤ P(A)+ P(B | A)+ P(C | B)

and the estimates above, the probability of the complement to B1
t ∩ B2

t ∩ B3
t satisfies

p̄ ≡ P(B1
t ∩ B2

t ∩ B3
t ) ≤ P(B1

t )+ P(B2
t | B1

t )+ P(B3
t | B2

t ) ≤ 1
2 ,

provided that t is large enough, t ≥ t2.
We finally deduce that, for all t ≥ max(t1, t2), we have

π̂m+1+ − π̂m+ ≡ π̂
m,m+1
�,⊕

:= lim
t→∞

1

t

∫ t

0
1{ŵm0 (s)=�} 1{ŵm+1

0 (s)=⊕} ds

≥ pνp̂
m�⊕

16ν E τ̃1
(1 − p̄)

≥ pνp̂
m�⊕

32ν E τ̃1

> 0.

This completes the proof of the strict monotonicity of π̂m+ in Lemma 3.1.
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3.3. Convergence of π̂m+
We first observe that an obvious modification of the construction in Section 3.1 provides a

coupling of the processes y′
t ≡ (x′

t ,w
′
t ) := ŷmt and y′′

t ≡ yt . Consequently, the ergodic theorem
implies that

π+ − π̂m+ = lim
t→∞

1

t

∫ t

0
1{ŵms ∈W−} 1{ws∈W+} ds ≥ 0,

so it remains to bound above the last integral. We shall do this by an argument similar to that
used in Section 3.2.

Let an integer m ≥ 0 be fixed. As in (1.4), we shall use τ̃� to denote the moment of the
�th return to the state ∅ by the process wt (by monotonicity of the coupling we then also have
ŵm
τ̃�

= ∅). We shall say that the discrepancy event occurs during the �th cycle if, for some
t ∈ [τ̃�−1, τ̃�), we have (wt , ŵm

t ) ∈ W+ × {∅}, i.e. at time t the rightmost monomer of wt is a
⊕ monomer, whereas ŵm

t is empty. Of course, this is only possible if at some s ∈ [τ̃�−1, t) we
have ws = wm+1 · · ·w1w0 with wm+1 = w0 = ⊕ and during [s, t) all monomers to the right
of wm+1 detach from ws with wm+1 still being in the ⊕ state.

By independence and the memoryless property of the hydrolysis process for individual
monomers, the probability of the discrepancy event during any given cycle drops sharply as
m increases. Indeed, by the observation above, the discrepancy event cannot occur for cycles
with less than 3(m+ 1)+ 2 = 3m+ 5 transitions, whereas, by Corollary 2.1, the probability
of the event {κ̄1 ≥ 3m+ 5} is exponentially small as a function of m.

Let t > 0 be fixed; write Dm
t for the collection of all indices � such that a discrepancy event

occurs during [τ̃�−1, τ̃�). If �0 ≡ max{� : τ̃� ≤ t} then

Jm(t) :=
∫ t

0
1{ŵms ∈W−} 1{ws∈W+} ds ≤

∑
�∈Dm

t

(τ̃� − τ̃�−1)+ (t − τ̃�0). (3.6)

Our aim here is to prove the following result.

Lemma 3.4. For every ε > 0, there exists m ≥ 0 large enough such that, for some A > 0 and
a > 0, we have P(Jm(t) ≥ εt) ≤ Ae−at uniformly in t ≥ 0.

In view of the trivial bound Jm(t) ≤ t , the Borel–Cantelli lemma implies that, for every
fixed ε > 0, we have, with probability 1,

0 ≤ π+ − π̂m+ ≤ lim sup
t→∞

1

t
Jm(t) ≤ 2ε

if only m ≥ mε. It thus remains to verify the claim of the lemma.
Let an arbitrary ε > 0 be fixed. We shall use the following three facts.

Fact I. Define �t := min{� ≥ 0 : τ̃� ≥ t}. Since the differences τ̃�+1 − τ̃�, � ≥ 0, are i.i.d.
random variables with the same distribution as τ̃1, Theorem 1.1 implies that, for every
ζ > 0, there exist positive A1 and a1 such that

P

(∣∣∣∣�t − t

E τ̃1

∣∣∣∣ ≥ ζ t

)
≤ A1e−a1t for all t ≥ 0.

Fact II. For � = 1, . . . , �t , let κ̃�0 be the total number of transitions of the jump chain during
the �th cycle, i.e. for t ∈ [τ̃�−1, τ̃�). By the discussion above, if the discrepancy event
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occurs during the �th cycle, we necessarily have κ̃�0 ≥ 3m+ 5. Define

Km
t :=

�t∑
�=1

κ̃�0 1{κ̃�0≥3m+5} .

By Corollary B.1, for every ζ2 > 0 small enough, there exist ζ ′
2 ∈ (0, ζ2), m ≥ 0,

A2 > 0, and a2 > 0 such that

P(Km
t /∈ (ζ ′

2t, ζ2t)) ≤ A2e−a2t for all t ≥ 0.

Fact III. During every cycle, each holding time is exponentially distributed with parameter not
smaller than ν = min(1, λ− + µ) > 0. As a result, the duration of every single cycle of
κ jumps is stochastically dominated by the sum of κ i.i.d. Exp(ν) random variables.

Note also that if ηj ∼ Exp(ν), j = 1, . . . , k, are i.i.d. random variables then, by the
classical large deviation principle, for every ζ3 > 0, there exist A3 > 0 and a3 > 0 such
that, for all κ ≥ 0,

P

( κ∑
j=1

ηj ≥
(

1

ν
+ ζ3

)
κ

)
≤ A3e−a3κ .

Combining these observations we deduce that Jm(t) from (3.6) is stochastically smaller

than
∑Km

t

j=1 ηj , with ηj ∼ Exp(ν), j ≥ 1, being i.i.d. random variables. Taking ζ2 = εν/3 and
ζ3 = 1/(2ν), we deduce that, for some m ≥ 0, A > 0, and a > 0,

P

(Km
t∑

j=1

ηj ≥ ε

2
t

)
≤ Ae−aζ ′

2t ,

i.e. the result of Lemma 3.4 holds. Consequently, limm→∞ π̂m+ = π+, as claimed.

4. Properties of the lifetimes

4.1. Proof of Lemma 1.1

By the Markov property, the lifetime T⊕ of the extreme ⊕ monomer at the origin can be
rewritten as (recall (1.6))

T⊕ ≡ min{t > 0 : yt = (−1,∅) | y0 = (0,⊕)}.
Similarly, the lifetime T� of the extreme � monomer satisfies

T� ≡ min{t > 0 : yt = (−1,∅) | y0 = (0,∅)}.
For s ≥ 0, consider the Laplace transforms of these times, ϕ⊕(s) := E e−sT⊕ and ϕ�(s) :=
E e−sT� .

Suppose that the process yt starts from y0 = (0,∅). After an exponential holding time
η0 ∼ Exp(µ+ λ−), the extreme � monomer either departs from the system or a ⊕ monomer
attaches to it, thus increasing the total lifetime by T ′⊕ + T ′�, where T ′⊕ and T ′� are independent
and have the same distributions as T⊕ and T�, respectively. As a result, the strong Markov
property implies that

ϕ�(s) ≡ E(e−sη0)

(
µ

µ+ λ− + λ−

µ+ λ− ϕ�(s)ϕ⊕(s)
)
. (4.1)
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Similarly, after a holding time η1 ∼ Exp(1 + λ+), the initial configuration y0 = (0,⊕)
becomes either (0,∅) or (1,⊕⊕). In the second case, after a time T ′′⊕ ∼ T⊕, the process yt
arrives either in (0,∅) or in (0,⊕), depending on whether the ⊕ monomer initially at the origin
hydrolyses by time T ′′⊕ or not. Consequently, if T⊕⊕ denotes the lifetime of the head ⊕⊕, we
obtain

E[e−sT⊕⊕ | T ′′⊕] = e−sT ′′⊕(e−T ′′⊕ϕ⊕(s)+ (1 − e−T ′′⊕)ϕ�(s))

= e−(s+1)T ′′⊕(ϕ⊕(s)− ϕ�(s))+ e−sT ′′⊕ϕ�(s),

and, as a result,

E e−sT⊕⊕ = ϕ⊕(s + 1)(ϕ⊕(s)− ϕ�(s))+ ϕ⊕(s)ϕ�(s).

Combining this with the first-step decomposition at time η1,

ϕ⊕(s) = E e−sη1

(
1

1 + λ+ ϕ�(s)+ λ+

1 + λ+ E e−sT⊕⊕
)
,

we obtain

ϕ⊕(s) = E e−sη1

1 + λ+ (ϕ�(s)+ λ+ϕ⊕(s + 1)(ϕ⊕(s)− ϕ�(s))+ λ+ϕ⊕(s)ϕ�(s)). (4.2)

Finally, recalling that, for η ∼ Exp(ρ), we have E e−sη = ρ/(ρ + s), we rewrite (4.1) and
(4.2) as

(µ+ λ− + s)ϕ�(s) = µ+ λ−ϕ⊕(s)ϕ�(s),
(1 + λ+ + s)ϕ⊕(s) = (1 + λ+ϕ⊕(s))ϕ�(s)+ λ+(ϕ⊕(s)− ϕ�(s))ϕ⊕(s + 1).

Getting rid of ϕ�(s), we deduce that ϕ⊕(s) satisfies (1.7). This completes the proof of
Lemma 1.1.

Differentiating (4.1), or, equivalently, the first equation in the last display, we immediately
deduce the following fact.

Corollary 4.1. For all positive µ, λ+, and λ−, we have 1 + µE T� = λ− E T⊕; in particular,
both E T� and E T⊕ are finite or infinite simultaneously.

Remark 4.1. Our argument above implies that the lifetime T⊕ stochastically dominates T�,
i.e. P(T⊕ > t) ≥ P(T� > t) for all t ≥ 0.

4.2. Proof of Theorem 1.3

Our aim here is to verify the following fact.

Proposition 4.1. Let T⊕ be the lifetime of the extreme ⊕ monomer, and let v be the velocity of
the process xt as described in Corollary 1.1. Then v < 0 if and only if E T⊕ < ∞. Moreover,
if v < 0 then T⊕ has exponential moments in a neighbourhood of the origin.

Of course, Theorem 1.3 follows directly from Corollary 1.1 and Proposition 4.1.

Proof of Proposition 4.1. First let E T⊕ < ∞, and let the process yt = (xt ,wt ), t ≥ 0,
start from y0 = (0,∅). To deduce that v < 0, consider a sequence of stopping times S0 = 0,
Sk = min{t > Sk−1 : xt = −k}, k ≥ 1. Of course, {Sk} is just a renewal sequence whose
increments Sk − Sk−1 are independent and share the same distribution as T�.
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Consider the subwalk ˜̃xk := x̃Sk of the random walk x̃� corresponding to the consecutive
moments when the head wt becomes empty, recall (1.4). As in Section 2.2, the strong law
of large numbers implies that, with probability 1, as k → ∞, we have ˜̃xk/Sk → −1/E T�.
Combining this with Corollary 1.1, we deduce that v = −1/E T� < 0, and observe that, by
Corollary 4.1, the condition E T� < ∞ is equivalent to E T⊕ < ∞.

We next assume that v < 0, and we deduce the existence of exponential moments for T⊕ in
a neighbourhood of the origin. To this end, it is sufficient to verify the following property: for
every v < 0, there exist positive constants K , A, and a such that

P(T⊕ > Kn) ≤ Ae−an for all n ≥ 1. (4.3)

Indeed, for every α ∈ (0, a/K), bound (4.3) implies that

E eαT⊕ ≤ αeαK
∞∑
n=0

eαKn P(T⊕ > Kn) ≤ AαeαK

1 − eαK−a < ∞.

It thus remains to derive property (4.3). We begin by considering the random walk ỹl =
(x̃l, w̃l ) starting from ỹ0 = (0,∅), as in (1.4). By Theorem 1.1 and Corollary 1.1, for every
ζ1 > 0, the large deviation probability P(x̃n > (v+ ζ1)n) is exponentially small as n → ∞. In
particular, for ζ1 = |v|/2, there exist positive constants A1 and a1 such that P(x̃n > vn/2) ≤
A1e−a1n for all n ≥ 1.

Assume that the process yt starts from y0 = (0,⊕). Consider the collection τ ∗
l , l ≥ 0, of

consecutive moments of time when yt enters states with empty head, i.e. wt = ∅. Clearly, all
variables τ ∗

0 > 0, τ ∗
1 − τ ∗

0 , τ ∗
2 − τ ∗

1 , . . . , are independent and have exponential moments in a
neighbourhood of the origin; moreover, all but the first variable share the common distribution
with the stopping time τ̃1 from (1.4). We defineLn ≡ max{l ≥ 0 : τ ∗

l ≤ Kn} (whereLn = −∞
if τ ∗

0 > Kn), and introduce the event

B1
n ≡

{
Ln ≥ 2Kn

E τ̃1

}
.

By the usual large deviation principle estimate (similar to fact I in Section 3.3), the complement
B1
n of B1

n is exponentially small: for every K > 0, there exist positive constants A2 and a2
such that

P(B1
n) ≡ P

(
Ln <

2K

E τ̃1
n

)
≤ A2e−a2n

for all n ≥ 1. To simplify the notation, we set K = E τ̃1/2 and assume that the constants A2
and a2 are compatible with this choice. On the event B1

n , we now haveLn ≥ n, or, equivalently,
τ ∗
n ≤ Kn = nE τ1/2.

Let x∗
0 ≡ xτ∗

0
be the position of the end of the microtubule at the first moment, τ ∗

0 > 0, when
the head wt vanishes (recall that w0 = ⊕). By Corollary 2.1, x∗

0 has exponential moments in a
neighbourhood of the origin, so that, for every ζ3 > 0, there exist positive A3 and a3 such that
P(x∗

0 > ζ3n) ≤ A3e−a3n for all n ≥ 1.
We finally observe that on the event B1

n we have {T⊕ > Kn} ⊆ {xτ∗
n

≥ 0}, so that, using
the strong Markov property at the moment τ ∗

0 , we obtain

P(xτ∗
n

≥ 0) =
∑
k≥0

P(xτ∗
0

= k)P(xτ∗
n

− xτ∗
0

≥ −k).
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Now, taking ζ = min(ζ1, ζ3), we can bound the right-hand side above by

ζn∑
k=0

P(xτ∗
0

= k)P(xτ∗
n

− xτ∗
0

≥ −ζn)+ P(xτ∗
0
> ζn) ≤ A4e−a4n,

where A4 = A1 + A3 > 0 and a4 = min(a1, a3) > 0.
Putting all these estimates together, we obtain

P(T⊕ > Kn) ≤ P(B1
n)+ P(T⊕ > Kn | B1

n) ≤ P(B1
n)+ P(xτ∗

n
≥ 0) ≤ Ae−an

for all n ≥ 1, where A = A2 + A4 > 0 and a = min(a2, a4) > 0. This completes our proof
of (4.3) and that of Proposition 4.1.

Appendix A. Regularity of birth-and-death processes

For fixed λ > 0 and µ > 0, consider a continuous-time birth-and-death process Yt , t ≥ 0,
whose birth rate is λ and death rate per individual is µ. In other words, Yt is a Markov process
on Z

+ = {0, 1, 2, . . . }, such that every jump from state k ≥ 0 to k + 1 has rate λ, and jumps
from k > 0 to k − 1 have rate kµ. Let τ0 be the hitting time, and let κ0 be the total number of
jumps until the Markov chain Yt hits the origin. For z ≥ 0 and s ∈ R, consider the function

ψm(z, s) := Em[zκ0 esτ0 ],
where, as usual, Em stands for the conditional expectation corresponding to the initial state
X0 = m > 0. Our aim here is to verify the following result.

Proposition A.1. Let an integer M satisfy Mµ > λ. Then there exist z̄ > 1 and s̄ > 0 such
that maxm=1,...,M ψ̄m(z, s) is finite, provided that z ≤ z̄ and s ≤ s̄.

Our proof of Proposition A.1 in Section A.3 will be based upon two auxiliary results for
finite-state Markov chains (Section A.1) and random walks with negative drift (Section A.2).

A.1. Finite-state Markov chains

For a fixed integer M > 1, set

SM = {1, 2, . . . ,M}, ∂SM = {0,M + 1}, (A.1)

and let strictly positive numbers pm, qm, ρm with m ∈ SM satisfy pm + qm = 1 for all
m ∈ SM . Let Xt be the continuous-time random walk on SM = SM ∪ ∂SM whose generator
Q = (Qij )

M+1
i,j=0 has the following entries:

Qij =

⎧⎪⎨
⎪⎩
pmρm, i = m, j = m+ 1,

qmρm, i = m, j = m− 1, for all m ∈ SM,

−ρm, i = m, j = m,

and Qij = 0 for all other i, j ∈ SM . In other words, Xt is a continuous-time Markov chain
on SM with absorbing boundary ∂SM , such that upon arrival at state m ∈ SM the chain waits
a random time ξm ∼ Exp(ρm) and afterwards jumps to m+ 1 or m− 1 with probabilities pm
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and qm, respectively. For b ∈ ∂SM , let τb be the hitting time and let κb be the total number of
steps until the chain Xt reaches state b. For real s and nonnegative z, consider the functions

ϕ0
m(z, s) := Em[zκ0 esτ0 1{τ0<τM+1}],

ϕM+1
m (z, s) := Em[zκM+1esτM+1 1{τM+1<τ0}],

(A.2)

where, as before, Em(·) denotes the conditional expectation corresponding to the initial state
X0 = m ∈ SM . Clearly, the quantities

ϕ0
m(1, 0) ≡ Pm(τ0 < τM+1) and ϕM+1

m (1, 0) ≡ Pm(τM+1 < τ0)

are both positive and add up to 1. Our aim here is to verify the following claim.

Lemma A.1. There exist z0 > 1 and s0 > 0 such that, for |z| ≤ z0 and s ≤ s0,

max
m∈SM

{ϕ0
m(z, s), ϕ

M+1
m (z, s)} < 1.

Proof. We start by observing that, for ξ ∼ Exp(ρ) and s < ρ, the exponential moment E esξ

of ξ satisfies E esξ = ρ/(ρ − s) with the right-hand side being a decreasing function of ρ > 0.
This implies that every holding time ξm satisfies

E esξm ≤ ρ̄

ρ̄ − s
< ∞ if only s < ρ̄ := min

m
ρm > 0.

Next, for every fixed trajectoryXt with k jumps, where k < min(κ0, κM+1), its time duration
is a sum of independent holding times at all visited states, so that the exponential moment of
the total time duration of this trajectory is bounded above by ρ̄k/(ρ̄ − s)k . Consequently, for
every m ∈ SM ,

ϕ0
m(z, s) ≤ Em

[(
zρ̄

ρ̄ − s

)κ0
]
, ϕM+1

m (z, s) ≤ Em

[(
zρ̄

ρ̄ − s

)κM+1
]
.

We now observe that in view of the estimate (cf. [8, Lemma 10.11])

min
m

Pm(κ0 ≤ M) ≥ p̄ :=
(

min
m
(pm, qm)

)M
> 0,

the stopping time κ0 has exponential tails, maxm Pm(κ0 > nM) ≤ (1 − p̄)n; since a similar
estimate holds for κM+1, we deduce that maxm{Em[z̄κ0 ],Em[z̄κM+1 ]} is finite for some z̄ > 1.
Therefore, the estimate

max
m

{ϕ0
m(z, s), ϕ

M+1
m (z, s)} < ∞ (A.3)

holds for all s ≤ s′ and |z| ≤ z′ with s′ > 0 and z′ ∈ (1, z̄) satisfying the condition ρ̄z′/(ρ̄ −
s′) ≤ z̄, or, equivalently, s′ ≤ ρ̄(1 − z′/z̄). Since all functions on the left-hand side of (A.3)
are continuous for z and s in the region under consideration, and

max
m
(ϕ0
m(1, 0), ϕM+1

m (1, 0)) ≡ max
m
(Pm(τ0 < τM+1),Pm(τM+1 < τ0)) < 1,

the claim of the lemma follows.
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A.2. Random walks with negative drift

For fixed λ > 0 and ν > 0, let Xt be the continuous-time homogeneous random walk on
the half-line Z

+ = {0, 1, 2, . . . } with absorption at the origin, whose jumps from state k > 0
to k + 1 have rate λ and those from k > 0 to k − 1 have rate ν. Let τ0 be the hitting time, and
let κ0 be the total number of jumps until the Markov chain Xt hits the origin. For z ≥ 0 and
s ∈ R, consider the functions

ψm(z, s) := Em[zκ0 esτ0 ], m ∈ N. (A.4)

Our aim here is to verify the following claim.

Lemma A.2. Let ν > λ. If s′ > 0 and z′ > 1 are such that

s′ + 2(z′ − 1)
√
λν < (

√
ν − √

λ)2, (A.5)

then ψ1(z, s) < ∞ for all z ≤ z′ and s ≤ s′.

Remark A.1. Note that if ν > λ (i.e. Xt has negative drift) then, for all m ∈ N, we have
Pm(τ0 < ∞) = 1, and Lemma A.2 implies that ψ1(z, s) ↘ 1 as z ↘ 1 and s ↘ 0.

Our proof below is a straightforward adaptation of the standard argument for the discrete-
time walks (see, e.g. [6, Section 1.4]). We note, however, that an alternative proof of LemmaA.2
can be obtained by computing ψm(z, s) explicitly. Namely, by conditioning on the jump chain
we deduce (similarly to the argument in Section A.2) that

ψm(z, s) = Em

[(
(λ+ ν)z

λ+ ν − s

)κ0
]

=
(

E1

[(
(λ+ ν)z

λ+ ν − s

)κ0
])m

,

so it remains to observe that the last expectation is finite if and only if 4λνz2 ≤ (λ + ν − s)2

(missing details behind the last two steps and the explicit expression for the generating function
can be found in the classical monograph [5, Section 14.4]).

Proof of Lemma A.2. Applying the strong Markov property at the moment of the first jump
out of the initial state 1, we obtain

ψ1(z, s) ≡ z
λ+ ν

λ+ ν − s

(
λ

λ+ ν
ψ2(z, s)+ ν

λ+ ν

)
.

On the other hand, the strong Markov property implies that ψm(z, s) ≡ [ψ1(z, s)]m for all
m ∈ N, so that ψ1(z, s) is given by the smallest positive solution ψ to the quadratic equation
λψ2 + ν = aψ with a = (λ + ν − s)/z. Such a solution exists and is finite if and only if
a2 ≥ 4λν, or, equivalently, if λ + ν − s ≥ 2z

√
λν; as z > 0, the latter condition coincides

with (A.5).

A.3. Proof of Proposition A.1

Our argument is based upon Lemmata A.1 and A.2, as well as on the following fact.

Lemma A.3. Let Yt , t ≥ 0, be the continuous-time birth-and-death process with intensities
λ > 0 and µ > 0, as described above. Fix an integer M > 1 such that Mµ > λ, and
use τ̂ and κ̂ to denote the hitting time and the total number of steps until the process Yt hits
state M . Then there exist real numbers ẑ > 1 and ŝ > 0 such that the generating function
ψ̂M(z, s) := EM+1[zκ̂esτ̂ ] is finite for all s ≤ ŝ and z ≤ ẑ.
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1

M

0

M ′

u1

t1 t 2

u2

B1B0

B1
′

Figure 1: Three groups of trajectories: B0, trajectories hitting state 0 without visiting stateM ′ = M+1;
B1, trajectories visiting stateM ′ exactly once before hitting state 0; and B ′

1, trajectories visiting stateM ′
more than once.

Proof. Let Xt, t ≥ 0, be the continuous-time simple random walk on Z with upwards rate
λ and downwards rate ν ≡ Mµ > λ. Coupling Xt and Yt starting from the common state
X0 = Y0 = M + 1 in a monotone way (e.g. by using the Harris construction), we obtain
ψ̂M(z, s) ≤ ψ1(z, s), where ψ1(·, ·) is determined as in (A.4) for the random walk Xt . The
result now follows from Lemma A.2.

We now turn to the proof of Proposition A.1. Let an integerM be as in Lemma A.3, namely,
letM satisfy the condition thatMµ > λ > 0. We also fix an initial statem ∈ SM , recall (A.1).
It is convenient to re-sum the parts of the trajectories of Yt connecting statesM+1 andM , thus
transforming the birth-and-death process (Yt )t≥0 into a continuous-time finite-state Markov
chain with the state space SM (recall (A.1)). We shall split all trajectories contributing to

ψ̄m(z, s) ≡ Em[zκ0 esτ0 ]
into groups B� with an integer � ≥ 0 specifying the number of transitions from state M + 1 ∈
∂SM to state M ∈ SM before the trajectory hits the absorbing state 0 ∈ ∂SM ; see Figure 1.

Of course, on B0 we have Em[zκ0 esτ0 1B0 ] ≡ ϕ0
m(z, s) (recall (A.2)), with the right-hand

side being finite in the region specified by Lemma A.1. Otherwise, the trajectory in question
visits state M + 1 at least once and, thus, both stopping times t1 and u1,

t1 := min{t > 0 : Yt = M + 1}, u1 := min{u > t1 : Yu = M}
are well defined. By the strong Markov property,

E1[zκ0 esτ0 1B1 ] ≡ ϕM+1
1 (z, s)ψ̂M(z, s)ϕ

0
M(z, s).

Similarly, defining stopping times t�, u�, � > 1, via

t� := min{t > u�−1 : Yt = M + 1}, u� := min{u > t� : Yu = M},
we deduce that, for � > 1,

Em[zκ0 esτ0 1B� ] ≡ ϕM+1
m (z, s)ψ̂M(z, s)[ϕM+1

M (z, s)ψ̂M(z, s)]�−1ϕ0
M(z, s).
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As a result,

ψ̄m(z, s) ≡
∑
�≥0

Em[zκ0 esτ0 1B� ]

= ϕ0
m(z, s)+

∑
�>0

ϕM+1
m (z, s)ψ̂M(z, s)[ϕM+1

M (z, s)ψ̂M(z, s)]�−1ϕ0
M(z, s)

= ϕ0
m(z, s)+ ϕM+1

m (z, s)ψ̂M(z, s)ϕ
0
M(z, s)

1 − ϕM+1
M (z, s)ψ̂M(z, s)

,

provided that the last expression is finite.
Finally, the product ϕM+1

M (z, s)ψ̂M(z, s) is continuous in the region

|z| ≤ z̃ := min(z0, ẑ), s ≤ s̃ := min(s0, ŝ),

where by Lemmata A.1 and A.2 we have z̃ > 1 and s̃ > 0. Since

ϕM+1
M (1, 0)ψ̂M(1, 0) ≤ PM(τM+1 < τ0) < 1,

the claim of the proposition follows by continuity.

Appendix B. Long jumps density estimate for a class of random walks

Our aim here is to derive a simple estimate for random walks whose jumps have exponential
moments in a neighbourhood of the origin. This observation is at the heart of our argument in
Section 3.3, but is also of independent interest. Of course, the statement and the proof below
can be generalized to continuous distributions.

Let Xj , j ≥ 1, be a sequence of i.i.d. random variables with values in N = {1, 2, . . . },
whose common distribution has finite exponential moments in a neighbourhood of the origin,
i.e. E[s̄X] < ∞ for some s̄ > 1. For a fixed K ∈ N, we think of X1, …, XK as jumps of a
random walk in Z+, and, for A > 0, set SAK := ∑K

j=1Xj 1{Xj>A}, i.e. SAK is the total length of
jumps Xj , 1 ≤ j ≤ K , longer than A. We then have the following result.

Lemma B.1. For every ε > 0, there exist A0 > 0,K0 > 0, and α > 0 such that the inequality
P(SAK > εK) ≤ e−αK holds for all A ≥ A0 and K ≥ K0.

In view of the a priori estimate SAK ≥ A
∑K
j=1 1{Xj>A}, the claim of the lemma and the

standard large deviation principle for binomial random variables with parametersK and pA =
P(X > A) imply the following observation.

Corollary B.1. For every ε > 0, there exist A0 > 0 and ε1 ∈ (0, ε) such that the probability

P(SAK /∈ (ε1K, εK)) (B.1)

decays exponentially fast as K → ∞.

Remark B.1. Of course, the very existence of two constants 0 < ε1 < ε in (B.1) is a
straightforward consequence of the large deviation principle. The main result in the lemma and
the corollary above is that the velocity of the random walk SAK, K ≥ 0, vanishes asymptotically
as A → ∞.
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Proof of Lemma B.1. For a fixedA > 0, set X̃j := Xj 1{Xj>A}. The integer-valued random
variables X̃j ≥ 0 are i.i.d. and satisfy, for s̄ > 1 as above, E[s̄X̃] ≤ E[s̄X] < ∞. Moreover,
by dominated convergence, E X̃ ≡ E[X 1{X>A}] → 0 as A → ∞, and we fix A > 0 such that
E X̃ < ε/2. By the standard large deviation principle, there exists α̃ > 0 such that

P

(
SAK ≥

(
E X̃ + ε

2

)
K

)
≤ e−α̃K for all large enough K .
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