
Design thinking and computational
thinking: a dual process model for
addressing design problems
Nick Kelly 1 and John S. Gero 2

1 Queensland University of Technology, Brisbane, QLD, Australia
2 University of North Carolina at Charlotte, Charlotte, NC, USA

Abstract
This paper proposes a relationship between design thinking and computational thinking. It
describes design thinking and computational thinking as two prominent ways of under-
standing how people address design problems. It suggests that, currently, each of design
thinking and computational thinking is defined and theorized in isolation from the other. A
two-dimensional ontological space of the ways that people think in addressing problems is
proposed, based on the orientation of the thinker towards problem and solution generality/
specificity. Placement of design thinking and computational thinking within this space and
discussion of their relationship leads to the suggestion of a dual processmodel for addressing
design problems. It suggests that, in thismodel, design thinking and computational thinking
are processes that are ontological mirror images of each other, and are the two processes by
which thinkers address problems. Thinkers can move fluently between the two. The paper
makes a contribution towards the theoretical foundations of design thinking and proposes
questions about how design thinking and computational thinking might be both investi-
gated and taught as constituent parts of a dual process.

Key words: design thinking, computational thinking, design framing, dual process

1. Introduction
The term design thinking is widely discussed in design literature and has its
foundations in research on how designers know, act and think (Cross 2011; Dorst
2011). A second form of ‘thinking’, called computational thinking, has its founda-
tions in research on how computer scientists know, act and think (Wing 2006;
Shute et al. 2017). Each form of ‘thinking’ has found widespread popularity, as
indicated by the international adoption of both terms within formal education
systems (Grover & Pea 2013; Koh et al. 2015), and, in the case of design thinking,
within business and government (Brown 2008).

These two forms of thinking are distinct from other kinds of thinking in two
ways. First, each was inspired by a body of knowledge and expertise – design and
computer science, respectively – that was recognized as valuable, and each can be
understood as a transfer of away of thinking froma particular tradition to something
that is useful far more broadly. This is distinct from other popularized forms of
thought, such as critical thinking (Ennis 1993) or creative thinking (De Bono 1995),
which have long histories (at least to Greek times) and a clear breadth of application.

Received 02 August 2020
Revised 18 March 2021
Accepted 18 March 2021

Corresponding author
N. Kelly
nick.kelly@qut.edu.au

©TheAuthor(s), 2021. Published by
Cambridge University Press. This is
an Open Access article, distributed
under the terms of the Creative
Commons Attribution-
NonCommercial-ShareAlike licence
(http://creativecommons.org/
licenses/by-nc-sa/4.0/), which
permits non-commercial re-use,
distribution, and reproduction in any
medium, provided the same
Creative Commons licence is
included and the original work is
properly cited. The written
permission of Cambridge University
Press must be obtained for
commercial re-use.

Des. Sci., vol. 7, e8
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2021.7

1/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://orcid.org/0000-0001-8621-105X
https://orcid.org/0000-0001-9026-535X
mailto:nick.kelly@qut.edu.au
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://journals.cambridge.org/dsj
https://doi.org/10.1017/dsj.2021.7
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dsj.2021.7&domain=pdf
https://doi.org/10.1017/dsj.2021.7


Second, design thinking and computational thinking are the only two forms of
thinking to gain prominence since the turn of the 21st century.

The relationship between design thinking and computational thinkingmatters,
because these forms of thinking are rapidly being adopted by schools and univer-
sities as useful ways of thinking for addressing problems; yet each is commonly
taught in isolation from the other. Even basic questions about the relationship
between the two kinds of thinking have no established answers: are design thinking
and computational thinking discrete, orthogonal or overlapping notions? Con-
sider, for example, the case of a software engineer trying to understand a client’s
needs. Such activity might readily be understood through the lens of either design
thinking or computational thinking. In another example of the blurred boundaries
between these terms, JeanetteWing has suggested that computational thinking is ‘a
creative process’ that ‘relies on human ingenuity, flashes of insight and taste in
design’ (Wing 2019, p. 5) – cognitive abilities that are typically taken to be markers
of design thinking, yet they equally seem to be applicable to some definitions of
computational thinking.

This paper aims to compare and contrast these two forms of thinking to provide
some clarity about the relationship between them, which we conclude to be as dual
processes used in addressing design problems. The significance of the work is to
position design thinking in relation to another form of thinking that seems,
intuitively, to be counterposed to it, contributing to the theoretical foundations
of design thinking. The work is ontological in that it aims to specify representa-
tional terms that describe a domain (Gruber 1993). The paper highlights the
significance of framing for both design thinking and computational thinking
and contrasts the class of outcomes that each type of thinking produces. This leads
to a proposal for two orthogonal variables that frame metacognitive approaches to
design problems. In theDiscussion section, we suggest that this space has relevance
for how design thinking and computational thinking are taught, both inside and
outside of formal education. In the rest of the paper, we will refer to the person
engaged in either design thinking or computational thinking as the thinker, for
consistency. Throughout, we will refer to ‘problems’ and ‘solutions’ that are arrived
at through design thinking and computational thinking; again, this is done for
consistency, while recognizing that much design activity does not have clearly
defined problems and that design solutions do not necessarily ‘solve’ problems but
address them in a designerly way.

2. Design thinking
Design thinking has become an overloaded and ambiguous term, but has its roots in
the scientific study of design cognition and design methods. Design thinking is
considered here to be the knowledge that has been developed relating to how
people reason when engaging with design problems (Lawson 2006; Cross 2011;
Dorst 2011), also described as ‘designerly ways of knowing, thinking and acting’
(Cross 2001) and as designerly thinking (Johansson‐Sköldberg et al. 2013). There
are currently multiple discourses using the term design thinking, as is described in
two papers tracing its origins (Kimbell 2011; Johansson‐Sköldberg et al. 2013).
Johansson‐Sköldberg et al. (2013) trace the development of both a designerly and a
management discourse on design thinking. Within the designerly discourse, Kim-
bell (2011) describes different accounts of design thinking as a cognitive style, as a

2/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


general theory of design, and as an organizational resource. In a subsequent paper,
Kimbell (2012) critiques the way that some of these accounts: (1) create a dualism
between thinking and acting/knowing; (2) fail to recognize the (socially and
environmentally) situated nature of design and (3) essentialize what it is that
designers do, ignoring the diversity in ways of thinking and knowing. The defini-
tion of design thinking adopted here recognizes the interrelationship between
design science and practice (e.g., the scholarship of Cross and Lawson). It also
recognizes that design is a situated phenomenon (e.g., the scholarship of Gero and
Dorst). Finally, although people who undertake design activity think in diverse
ways, theremay be commonalities between their ways of thinking (where that word
assumes a situated understanding of cognition) that can be understood through
science.

Two further counts of disambiguation are required. First, design thinking is
occasionally used in the public sphere as shorthand for the suite of tools, skills and
mindsets that are well-suited for teaching nondesigners how to approach complex
problems in a designerly way (e.g., Goldman et al. 2012). This notion of design
thinking, which Kimbell (2011) refers to as ‘design thinking as an organizational
resource’, is not what we are referring to here, as it focusses upon some of the useful
outcomes from studying design cognition rather than the cognition itself. Second,
claims about design thinking are sometimes made on the basis that they were
developed by studying what designers do. It is true that seminal studies in design
thinking were made by investigating the practices and habits of design profes-
sionals; yet it does not follow that the science of design thinking only applies to
those who practice in professions that bear the label ‘design’. Rather, it applies to
anyone who is engaged in design activity.

These two terms of design problems and design thinking are related. Gero (1990)
defines design as ‘a goal-oriented, constrained, decision-making, exploration and
learning activity which operates within a context which depends on the designer’s
perception of the context’. Design problems are then those problems which are
both goal-oriented and constrained and which depend upon a designer’s perception
of the context of the problem. This allows for design problems to be distinguished
from problems which may not be goal-oriented and constrained, such as some
artistic problems involving self-expression. It also allows them to be distinguished
from problems in which all variables are known at the outset, such as engineering
optimization problems or some mathematical problems, in which the designer’s
perception of the context of the problem is irrelevant to the potential solutions. It
follows that design problems occur in awide range of contexts; they are only related
to the formally recognized design professions in that professional designers tend to
frequently engage in working with design problems. Design thinking is then
understood as the knowledge that has been developed relating to how people reason
when engaging with design problems, where this notion of reasoning is understood
as situated, embodied cognition (Clancey 1997; Barsalou 2008) rather than as its
impoverished Cartesian conception.

The core of design thinking is an understanding that a designer creates the
frame within which design activity is undertaken (Schön 1983/2017; Gero 1990;
Dorst 2015). This idea of a frame hasmultiple origins. One can be found in situated
cognition (where a frame is referred to as the situation), in the empirically
supported argument that knowledge (e.g., concepts) cannot be abstracted from
the situation (or frame) within which it is used and learned (Brown et al. 1989;

3/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


Clancey 1997). Another can be found in Minsky’s suggestion that frames can be
used as a way to specify the top-level of organization in a system for structuring
knowledge in the context of artificial intelligence (Minsky 1974). A third can be
found in the sociological tradition of Goffman (1974), who described frames as
social constructions of reality that are used by individuals to organize experience.
All three can be linked to Simon’s (1969/2019) discussion of agents with limited
capacity of knowledge and reasoning, operating within a complex environment.

The common thread and relevance for design is that while a designer might
‘know’ a great deal about the world, that knowledge is not stored in discrete,
abstract chunks waiting to be ‘deployed’ during design activity. Rather, when faced
with a design problem, a designer cognitively, but unconsciously, constructs a
complex assemblage of interrelated knowledge – referred to as the frame. This
frame forms the lens through which the object of attention – in this case, the design
problem – comes to be understood and within which design actions that might be
taken are available.

Many insights into designerly ways of acting and knowing relate to the ability
that designers have to frame problems, and the strategies that they have for acting
such that the frame changes in a desirable way (sometimes referred to as reframing;
e.g., Beckman 2020). One such insight is that designers typically have a conception
of the understanding of the problem, a problem space, and a conception of possible
solutions, a solution space, that both form a part of the frame. Designers, when
observed, appear to be coevolving these two different spaces, changing the under-
standing of possible designs and possible solutions in parallel and in an inter-
dependent way (Poon & Maher 1997; Dorst & Cross 2001). Another frame-based
design phenomenon, identified by Suwa, Gero and Purcell, is that designers make
unexpected discoveries within their own external representations (e.g., sketches)
that change the trajectory of the design process (Suwa et al. 2000). These insights fit
with the description of design as something that occurs ‘within a context which
depends on the designer’s perception of the context’ (Gero 1990). This has broad
implications, for example, that the same design problem approached by the same
designer at two different times might be conceived in entirely different ways (Gero
1998; Kelly & Gero 2015).

Problems that are well suited to design thinking are problems in which frames
that include a useful solution are not immediately available to a thinker – the
solution space needs to be evolved in some way for a solution to become apparent.
Wicked problems are a good example of the type of problem in which design
thinking is needed, in which variables are unknown and the knowledge needed to
address the problem is incomplete, such as the kinds of problems encountered in
social planning (Rittel & Webber 1973). A problem in which all variables are
known at the outset (e.g., solving a tangram puzzle) is not a good candidate for
design thinking. Skill in addressing this type of problem requires a capability for
working with frames in a particular way. Expert designers havemetacognitive skills
that enable them to observe the frame that they have created for the design problem
and, critically, have access within this frame to conceive of appropriate actions that
might expand their understanding of the problem in a useful direction.

Many renowned examples of outstanding design – examples like Jørn Utzon’s
Sydney Opera House and Frank LloydWright’s Fallingwater – can be recast as tales
of exceptional capability in framing and bringing things into or out of the frame.
The Sydney Opera House was designed through a competition, where other

4/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


entrants heeded the rules in their designs (keeping them in the frame), and Jørn
Utzon broke them in service to his vision for a design bymaking the footprint of his
design larger than the site. Frank LloydWright introduced many novel ideas in his
design of Fallingwater, driven, in part, by his inclusion in the frame the idea that the
design of any house should enhance the landscape within which it is situated –
leading him to challenge many of the requests of the client including even the
location of the house.

In schools of design around the world, whether they are studying architecture,
industrial design, engineering, fashion design, web design and so on, students are
taught how to think about the user of their design, how to think about the context/
site/situation and how to do research about the design. All of these can be
considered useful guides for actions to take when confronted with a novel design
problem; they all also denote strategies that will implicitly change the frame in a
direction that is useful for moving towards a design solution.

The outcome from the design process is design documentation, some kind of
communicable representation of the design solution. A notable feature of design
solutions is that they tend to be specific to the problem that they were created for –
they cannot (typically) be taken and applied directly to other users or other design
scenarios. For example, the architectural design of a house needs to be specific to
the site where it is located – aspect, topography, landscape, surroundings and
history – as well as its inhabitants – the specific needs of the people who will be
living in it – to be considered an example of good design. The reuse of the design of
a house from one design situation to another in cookie cutter fashion generally
results in poor design outcomes. This tendency for design solutions to be specific to
a design problem is common across different design disciplines.

3. Computational thinking
The term computational thinking has its origins in the recognition that computer
science has been the foundation for much innovation and discovery in solving
human problems in themodern world, and that there is a broad need for laypeople
in society to have the foundational cognitive capabilities that underpin computer
science (Wing 2008). The fruits of computational thinking now underpin much of
modern life. Because of its importance to society and to economies (National
Research Council 2010), there has been widespread uptake of computational
thinking as an explicit form of learning in educational systems worldwide. Coun-
tries such as Russia, South Africa, New Zealand andAustralia have already brought
computational thinking into the K–12 curriculum, and there has been a move
towards making computational thinking a part of compulsory education in many
nations (Grover & Pea 2013; Voogt et al. 2015). Computational thinking has its
origins in the kinds of thinking that are used by computer scientists but is
recognized as a form of thinking that is useful for anybody for solving problems
that they may encounter in personal or professional lives.

There is a pattern for review articles about computational thinking to com-
mence by noting its importance, its widespread uptake within education, but also
its lack of robust definition (Brennan & Resnick 2012; Grover & Pea 2013; Shute
et al. 2017). The definitional confusion around computational thinking is sum-
marized by Shute et al., who suggest that ‘[computational thinking] definitions
vary in their operationalization of [computational thinking] in certain studies, and

5/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


are not particularly generalizable’ (Shute et al. 2017). There are two trends in
attempts to define computational thinking. The first trend defines computational
thinking based on the types of reasoning that are used. An example of this isWing’s
initial work in suggesting that ‘computational thinking involves solving problems,
designing systems and understanding human behaviour, by drawing on the
concepts fundamental to computer science’ (Wing 2006, p. 33). The second trend
defines computational thinking based on the types of solutions that it produces.
Many papers in the literature refer to a definition developed by Wing and
colleagues as ‘the thought processes involved in formulating problems and their
solutions, so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent’ (Wing 2011, p. 21), where the idea
is that an information-processing agent can be either human or computational.
Here, we will first consider the cognitive markers of computational thinking, and
then discuss the types of solutions that it produces. The term computational
thinking is not used to suggest that humans reason in ways that are similar to
computers (e.g., theories subscribing to computationalism); it is shorthand for
referring to the problem-solving approaches that computer scientists make use of.

The primary cognitive ability required for computational thinking is abstrac-
tion and the competencies that support abstraction. The ‘value of abstraction as
[computational thinking]’s keystone (distinguishing it from other types of think-
ing) is undisputed’ (Grover & Pea 2013, p. 39), where abstraction is concerned with
defining patterns as generalized from specific instances. Abstraction is the type of
reasoning that involvesmoving from specific instances to general patterns, keeping
relevant information and discarding irrelevant data. Through abstraction, people
‘glean relevant information (and discard irrelevant data) from complex systems to
generate patterns and find commonalities among different representations’ (Shute
et al. 2017, p. 144). A cliché in teaching computational thinking is to take the
process of making toast, break it down into individual steps and specify an
algorithm for how anybody could make toast. This is a useful activity, because it
demonstrates an algorithm as a sequence of steps while simultaneously making it
clear that it is useful to specify certain things in the algorithm (e.g., putting toast in
the toaster) while unhelpful to specify others (e.g., how to coordinate the hand to
reach inside a bag of sliced bread). One of the core skills in computational thinking
is learning to find the right abstraction.

Problems that require computational thinking are typically highly structured; or
rather, the way that the problem is framed requires that a well-structured solution
(e.g., an algorithm) be a part of that frame. They are also typically recurrent
problems, problems that either occur in many places or recur within the same place.
The value in taking the time to solve a problem in such a way that a computer can
carry out the process is so that the solution can be deployed in other circumstances
with similar problems. For example, businesses often invest significant resources in
developing specific software that automates workflow, as they know that eventually
the software will pay for itself in time saved or in a competitive advantage. Software
developers can create a solution to a very specific problem in their immediate
circumstance and then suddenly find that, by solving this problem better than
anyone else, they have a global market of people interested in it.

Computational thinking requires thinking about problems in a way that
enables solutions to be found – often, but not always, using computers – that
apply to many other similar problems and where the steps required to solve those

6/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


problems can be represented and used in applicable circumstances. For example,
the problem of wayfinding within a city can be solved by the development of
navigational software combined with GPS-enabled smartphones and data about
city geography (e.g., Google Maps). Solving the problem in one city enables the
solution to be deployed in another city with only a change of the data being used –
the algorithms and hardware can remain unchanged.

The solution to a computational thinking problem is typically a representation
of a solution at the appropriate level of abstraction to allow the solution to be
applied in other similar circumstances, as typified by an algorithm. In this respect,
the solutions provided by computational thinking aim to be generally applicable.
However, they also tend to have clearly stated conditions on applicability – such as
the kind of variables that a function can accept – and solutions are transferable and
repeatable to other situations in which these conditions apply.

4. Design thinking and computational thinking
Despite the popularity of both terms, there is little in the literature that compares
design thinking and computational thinking to consider the relationship between
the two – perhaps due to the lack of a consensus on definition for both terms. One
exception is a brief comparison by Shute et al., who suggest that themain difference
lies in the domains where each type of thinking operates, but do not discuss
differences in the types of thinking utilized (Shute et al. 2017). Additionally, there
is theory within the design literature that recognizes the nature of design problems
as being inherently embedded within complex systems (e.g., technical, political,
economic, ethical etc.), where the embedded systemic way of ‘seeing the whole’ can
be juxtaposed with the need for designers to, at times, see component parts and the
relationships between them (Nelson & Stolterman 2003). This view is taken up in
the Discussion section of this paper, suggesting that design thinking and compu-
tational thinking can be considered archetypes within a spectrum of metacognitive
approaches to addressing problems, and where the thinker is may well move
around within this spectrum during the one problem.

There are clearly activities that are almost entirely focussed on design thinking –
say, the engineering design of a machine – with little or no computational thinking
involved; and the inverse also, tasks such as sorting a list which require computa-
tional thinking and little or no design thinking. There are also tasks that appear to
involve both computational thinking and design thinking, such as a web designer
responding to a client’s brief. In all three tasks, there is a thinker, a design problem to
be addressed, and a solution. On what basis can these three tasks be compared?

We identify two variables that can form the basis for differentiation between
design thinking and computational thinking as: (1) the generality/specificity of
solutions and (2) the generality/specificity of the frame.

4.1. Specificity of solutions

A synthesis of the descriptions of design thinking and computational thinking
suggests that solutions from each type of thinking seem to fall at opposite ends of a
continuum. A typical design solution is highly specific to the design problem that
the thinker is addressing – specific to the users, the situation, the context etc. It is
rare that a design solution from a prior problem can be directly transferred into a

7/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


new problem without further design thinking being done to adapt it. In contrast to
this, most computational thinking solutions can be applied to new problems
without any further computational thinking being done – for some scholars, this
is a definitional quality of computational thinking.

This leads to the proposal that one variable that explains the difference between
design thinking and computational thinking is the specificity of the solution in
relation to the problem to which it pertains. In design thinking, solutions aim to
solve, as coherently as possible, the unique problem being addressed, with little or
no thought for the reapplication of that solution in other circumstances. In
contrast, in computational thinking, solutions aim to be more general than the
problem that they are created to solve. Figure 1 depicts this as an ontological
category with values ranging from specific to general.

The continuum can be further understood by considering the two extreme
ends. Thinking about solutions is taken to be maximally specific if the thinker is
entirely concerned with solving this particular problem, with no thought for how
their thinking or its produce might be used elsewhere. Thinking about solutions is
taken to be maximally general if the thinker is entirely concerned with how their
thinking can be applied to something at a level of abstraction above the present
problem. As an ontological category, the claim is not that thinkers are likely to sit at
either end of the continuum, but rather that the continuum exists and that all
problem-solving sits somewhere between these two ends, and that a thinker will
typically move to different places along it while addressing a problem.

4.2. Specificity of framing

A second variable that can be used to explain differences between design thinking
and computational thinking relates to the way that the thinker frames the problem.
In design thinking, many activities – doing user research, playing with materials,
researching theory and cases etc. – are oriented towards an expansion of the frame
of understanding surrounding the problem. For example, it is usually an indicator
of good design if parts of culture relating to the design are given consideration by
the thinker and are brought into the frame. In contrast, computational thinking
involves abstraction – capturing what is the core relationship between information
and processes and abstracting away what can be removed. In the context of
computational thinking, culture tends to be abstracted away.

This leads to the proposal that a second ontological category that is used to
explain the difference between design thinking and computational thinking is the
specificity of the frame in relation to the problem to which it pertains. Figure 2
depicts this as an ontological category with values ranging from specific to general.
In addressing a design problem, a thinker is likely to move between different parts
of this spectrum. In moving between different frames for a problem, a thinker can
be seen to have an orientation towards making the frame more specific or more
general, in relation to frames. The suggestion is that design thinking has an

Figure 1. The specificity of the solution in relation to the problem as an ontological
category with values ranging from specific to general.

8/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


orientation towards frames that are more general, although a designer may well
use, say, a highly specific frame as one part of the overall design activity.

At one end of this continuum, a thinker can be entirely concerned with
cognitive strategies that make the frame more specific to the problem, an overall
narrowing of the frame: abstracting away all that can be removed from the thinker’s
understanding of the problem (e.g., by removing variables and reducing ambigu-
ity). At the other end of this continuum, a thinker can be entirely concerned with
cognitive strategies that provide a more general understanding of the problem and
its context, an overall expanding of the frame (e.g., adding variables and increasing
ambiguity). Again, a thinker likely moves to different points along this continuum
as they address a problem.

4.3. An ontology for reasoning about problems

These two categories, of solution specificity and frame specificity, are independent of
one another.Given that these categories are orthogonal, a space canbe created,which
we propose is a useful ontology for how people reason about design problems using
design thinking or computational thinking (see Figure 3). It is an ontology in that it
specifies representational terms or categories – the two axes – that are useful for
specifying a domain of the ways in which humans reason about problems.

Figure 2. The specificity of the framing in relation to the problem as an ontological
category with values ranging from specific to general.

Figure 3. Space created by graphing the two orthogonal ontological categories, with
design thinking and computational thinking located in the space.

9/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


In the space created by these two axes, the upper left-hand quadrant is a good
matchwith the characterization of design thinking that is provided in the literature.
Here, the thinker is aiming for a very specific solution and is getting there by trying
to gain a broad understanding of the problem and the context within which it is
situated. The lower right-hand quadrant is a good fit with the characterization of
computational thinking. The thinker is producing general solutions that can be
applied inmany places. They are getting there by honing a precise understanding of
the problem in a form that has the most helpful abstraction possible.

5. Discussion and conclusions

5.1. Utility of the ontology

The utility of the ontology can be demonstrated by discussion of specific phenom-
ena observed in problem-solving. We return to the example of a web designer
addressing a client’s brief as illustrative of the notion that in addressing any
problem a thinker might move to different locations within the space shown in
Figure 3.

Consider that the web designer in our example commences in addressing the
problem of designing a website for a client by spending a few hours with the client
to understand their needs, and then undertakes further user experience research by
investigating similar websites. All of this activity sits very much within the upper-
left, design thinking quadrant. It is about expanding the frame for the problem by
learningmore about the client, the context for the problem and the cultural domain
within which a solution will need to fit, and it is geared towards the creation of a
one-off solution to meet the needs of the client.

Yet suppose that, at some point during the creation of an early mock-up of the
website, this same designer realizes that they can save time by, say, using a
spreadsheet to generate some code. Without knowing the specifics of this activity,
we can know that this same spreadsheet could be used in other similar situations
and that in producing it the designer needed to create an abstraction of the problem.
This activity, as a part of addressing the same problem, is computational thinking,
and sits in the lower-right quadrant of Figure 3.

Consider an analogous example in the use of parametric design methodswithin
engineering design (Woodbury 2010). An engineer, during their design activity
and after attempting to expand the frame by understanding the problem, takes the
time to set up a parametric model to generate potential solutions to the problem.
The creation of the parametricmodel requires computational thinking to create the
right abstraction for an algorithm that can generate usable designs. Yet the results
from this parametric modelling feed back into design thinking about the needs of
the users, and so on. In a similar way, a designer – even in the scope of one
‘overarching’ design problem –may develop a shape grammar (Stiny & Gips 1971;
computational thinking focussed) and then apply that shape grammar as a part of
finding a solution (design thinking focussed).

These examples illustrate the way that, within the scope of a single problem, a
thinker might move between design thinking and computational thinking – and
may likely do so many times over. This can be described as what Markauskaite &
Goodyear (2017) refer to as epistemic fluency, the ability to be ‘flexible and adept
with respect to different ways of knowing about the world’ (Markauskaite &

10/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


Goodyear 2017, p. 1). This introduces the idea that fluency between design thinking
and computational thinking might be a desirable trait in many professions; a
notion that has not been adequately explored.

The two constructs, of design thinking and computational thinking, have both
beenwidely taken upwithin formal secondary education, yet they are largely taught
and discussed in isolation fromone another. It may be appropriate to consider that,
given that these two forms of thinking are complementary ways of approaching
problems, they might be taught in a way that emphasizes this relationship.

5.2. Are design patterns design thinking or computational
thinking?

Design patterns are ways of capturing the essence of a design solution at a level of
abstraction that allows the thinking behind it to be reused (Alexander 1977). The
idea of design patterns has become popular inmany domains (such as architecture,
experience design, teaching and software engineering), because ‘each pattern
describes a problem that occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice’
(Alexander 1977, p. x). Given that design patterns are about creating a useful
abstraction from a problem, do they constitute design thinking (having design in
their name) or computational thinking according to this ontology? The response is
that they are typically used during design thinking, but they are created using
computational thinking.

Designers tend to use design patterns during design activity, where they are
available, to help them in their design thinking. They are employed as a part of
expanding the frame of the problem, to help the designer shift their frame for the
problem in the direction of useful solutions. As such, this sits in the upper-left
quadrant of Figure 3.

In contrast to this, if we consider a thinker trying to address the problem of
creating a design pattern, then this activity fits within the lower-right quadrant as
computational thinking. The thinker is trying to create a solution that can be
generally applied ‘amillion times over’. This can only be done by finding the level of
abstraction that is appropriate – which necessarily involves, at some stage in the
thinking, a narrowing of the frame.

5.3. What is in the upper-right and lower-left quadrants?

The ontological space portrayed in Figure 3 has a lower-left quadrant and an
upper-right quadrant that have not yet been discussed. We propose that these
spaces are not utilized by thinkers in addressing design problems. If this is true, it
follows that all thinking in addressing a design problem fits into either design
thinking or computational thinking.

The upper-right quadrant is characterized by an orientation towards a solution
that can be generally used, together with an orientation towards expanding the
frame for the problem. This is analogous to a doctoral student attempting to create
a model of a phenomenon, who is continually reading additional research and
introducing new variables. Such thinkingmight be labelled ineffective in addressing
a problem, as it seems unlikely (perhaps impossible) that such thinking will lead to

11/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


a solution. This quadrant seems unusable in attempts to address design problems
based on its lack of convergence.

There are some forms of thinking that do fit into the upper-right quadrant. For
example, the development of theory (e.g., Einstein’s theory of relativity or Kuhn’s
structure of scientific revolutions) may involve both a general solution and general
framing. Yet such thinking does not relate to addressing design problems.

The lower-left quadrant is characterized by an orientation towards a specific
solution with an orientation towards narrowing of the frame. This is analogous to a
designer who, upon being given a set of requirements, moves towards a single
solution by removing any part of the problem that may bring complications,
ending up with a solution that does not meet the requirements. This seems to be
a paradoxical thinking strategy – if the problem requires a singular, specific
solution, how can moves to narrow the frame produce a solution?

Similarly, there are forms of thinking that do fit into the lower-left quadrant.
For example, solving a mathematical equation for given boundary conditions has a
(very) specific solution, and occurs within a very specific frame. Yet again, this kind
of thinking does not relate to addressing design problems.

5.4. A dual process model of design thinking and computational
thinking?

In the ontological space for reasoning in addressing problems proposed in Figure 3,
there seems to be little use for the upper-right and lower-left quadrants. This
suggests that design thinking (upper-left) and computational thinking (lower-
right) are two different ways in which people reason when addressing problems.
This is a dual process model in which two different processes – design thinking and
computational thinking – together give rise to the phenomenon of humans
addressing problems (see Table 1).

The use of the term dual process model to describe reasoning dates back to the
work of Wason & Evans (1974), who were attempting to explain how participants
were reasoning during an experiment. They proposed that their results might not
be attributable to a single kind of reasoning – either a heuristic process or an
analytical process – but rather that both kinds of reasoning were perhaps being
used. Kahneman (2011) and others built on such work to propose a dual process
model for the way that people use ‘fast’ (System 1) and ‘slow’ (System 2) thinking in
responding to the world. In both cases, the experience of reasoning does not ‘feel’ to
subjects as being bifurcated into two different systems – it is just experienced as
reasoning – yet empirical evidence supports the presence of distinct processes
(Kannengiesser & Gero 2019).

Thismodel is useful for addressing some issues within the literature. The lack of
clear definitions for either design thinking or computational thinking is under-
standable given that they are currently discussed in isolation from each other. It is
only through understanding – and experimenting with – how thinkers move
fluently from one type of reasoning to the other and back again, when addressing
a problem that such definitions may grow in clarity. Design thinking and compu-
tational thinking are separate and ontologically distinct, and problem-solving
appears to, in general, require both of them – just not at the same time.

Oneway that this dual processmodelmight be used is to understand historical –
and perhaps future – tools that support designers. In different fields of design, there

12/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


have been development of a range of computational tools that aim to support both
design thinking and computational thinking and fluidmovement between them. In
architecture, for example, Frank Gehry has been an advocate of technologies that
allow for a Master Model of a building that the whole team can use, and that looks
towards fluid movement between these two processes (Gehry et al. 2020). Similar
support for both processes can be seen in the current generation of tools used by
UX/UI designers that explicitly support movement from conceptual designing
(e.g., freehand sketching) through to deployment at scale (e.g., automated gener-
ation of code; Bexiga et al. 2020). Tools of the future may further support the fluid
movement between design thinking and computational thinking.

6. Conclusions
This paper has positioned design thinking in relation to computational thinking
and, in doing so, contributed to the theoretical foundations of design thinking. The
proposed ontology places design thinking and computational thinking in relation
to each other as regions within an ontological space of approaches for addressing
problems, with axes of specificity of framing and specificity of solutions.

The paper raises new questions about the ways in which people move with
fluency between design thinking and computational thinking when addressing
problems. For example: What are the expectations of how different professionals
(e.g., designers and computer scientists) might move within this space when
addressing problems? What are the implications for how design thinking and
computational thinking are taught within formal education, at all levels?

We suggest that design thinking and computational thinking are not mutually
exclusive – as might be implied by the lack of literature addressing the relationship
between them – but rather are mirror images of each other in relation to the two
ontological categories of solutions and framing.

Acknowledgment
Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Financial support
This work is supported in part by a grant from theUSNational Science Foundation
to the second author (grant number CMMI-1762415).

Table 1. A dual process model of design thinking and computational thinking

Design thinking Computational thinking

Thinker is trying to expand the frame of the
problem to capture its complexity.

Thinker is trying to narrow the frame of the problem to
abstract away unnecessary complexity.

Thinker is aiming to create a specific solution
to the problem.

Thinker is aiming to create a general solution to the
problem.

13/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.7


References
Alexander, C. 1977 A Pattern Language: Towns, Buildings, Construction. Oxford Uni-

versity Press.

Barsalou, L. W. 2008 Grounded cognition. Annual Review of Psychology 59, 617–645.

Beckman, S. L. 2020 To frame or reframe: where might design thinking research go next?
California Management Review 62 (2), 144–162.

Bexiga, M., Garbatov, S. & Seco, J. C. 2020 Closing the gap between designers and
developers in a low code ecosystem. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, Association for Computing Machinery pp. 1–10.

Brennan, K. & Resnick, M. 2012 New frameworks for studying and assessing the devel-
opment of computational thinking. In Proceedings of the 2012 Annual Meeting of the
American Educational Research Association, Vol. 1, Vancouver, Canada. American
Educational Research Association (AERA).

Brown, T. 2008 Design thinking. Harvard Business Review 86 (6), 84–92.

Brown, J. S., Collins, A. &Duguid, P. 1989 Situated cognition and the culture of learning.
Educational Researcher 18 (1), 32–42.

Clancey, W. J. 1997 Situated Cognition: On Human Knowledge and Computer Represen-
tations. Cambridge University Press.

Cross, N. 2001 Designerly ways of knowing: design discipline versus design science. Design
Issues 17 (3), 49–55. http://www.jstor.org/stable/1511801.

Cross, N. 2011 Design Thinking: Understanding How Designers Think and Work. Berg.

DeBono, E. 1995 Serious creativity.The Journal for Quality and Participation 18 (5), 12–18.

Dorst, K. 2011 The core of ‘design thinking’ and its application. Design Studies 32 (6),
521–532.

Dorst, K. & Cross, N. 2001 Creativity in the design process: co-evolution of problem–
solution. Design Studies 22 (5), 425–437.

Dorst, K. 2015. Frame innovation: Create new thinking by design. MIT press.

Ennis, R. H. 1993 Critical thinking assessment. Theory into Practice 32 (3), 179–186.

Gehry, F., Lloyd, M. & Shelden, D. 2020 Empowering design: Gehry partners, Gehry
technologies and architect‐led industry change. Architectural Design 90 (2), 14–23.

Gero, J. S. 1990 Design prototypes: a knowledge representation schema for design. AI
Magazine 11 (4), 26.

Gero, J. S. 1998 Conceptual designing as a sequence of situated acts. InArtificial Intelligence
in Structural Engineering (ed. I. Smith), pp. 165–177. Springer.

Goffman, E. 1974 Frame Analysis: An Essay on the Organization of Experience. Harvard
University Press.

Goldman, S.,Carroll, M. P.,Kabayadondo, Z.,Cavagnaro, L. B.,Royalty, A.W.,Roth, B.,
Kwek, S. H. & Kim, J. 2012 Assessing d.learning: capturing the journey of becoming a
design thinker. In Design Thinking Research: Measuring Performance in Context (Eds.
H. Plattner, C. Meinel, & L. Leifer), pp. 13–33. Springer.

Grover, S.& Pea, R. 2013 Computational thinking in K–12: a review of the state of the field.
Educational Researcher 42 (1), 38–43.

Gruber, T. R. 1993 A translation approach to portable ontology specifications. Knowledge
Acquisition 5 (2), 199–220; doi:10.1006/knac.1993.1008.

Johansson‐Sköldberg, U., Woodilla, J. & Çetinkaya, M. 2013 Design thinking: past,
present and possible futures. Creativity and Innovation Management 22 (2), 121–146.

14/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

http://www.jstor.org/stable/1511801
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1017/dsj.2021.7


Kahneman, D. 2011 Thinking, Fast and Slow. Macmillan.

Kannengiesser, U. &Gero, J. S. 2019 Design thinking, fast and slow. Design Science 5, e10;
doi:10.1017/dsj.2019.9.

Kelly, N.&Gero, J. S. 2015 Situated interpretation in computational creativity. Knowledge-
Based Systems 80, 48–57.

Kimbell, L. 2011 Rethinking design thinking: Part I. Design and Culture 3 (3), 285–306.

Kimbell, L. 2012 Rethinking design thinking: Part II. Design and Culture 4 (2), 129–148.

Koh, J. H. L., Chai, C. S., Wong, B. & Hong, H.-Y. 2015 Design Thinking for Education:
Conceptions and Applications in Teaching and Learning. Springer.

Lawson, B. 2006 How Designers Think: The Design Process Demystified (4th ed.). Elsevier.

!Markauskaite, L. & Goodyear, P. 2017 Epistemic Fluency and Professional Education.
Springer.

Minsky, M. 1974 A framework for representing knowledge. MIT-AI Laboratory Memo
306, June 1974.

National Research Council 2010 Report of a Workshop on the Scope and Nature of
Computational Thinking. National Academies Press.

Nelson, H. G.& Stolterman, E. 2003 The DesignWay: Intentional Change in anUnpredictable
World: Foundations and Fundamentals of Design Competence. Educational Technology.

Poon, J. &Maher, M. L. 1997 Co-evolution and emergence in design. Artificial Intelligence
in Engineering 11 (3), 319–327.

Rittel, H. W. & Webber, M. M. 1973 Dilemmas in a general theory of planning. Policy
Sciences 4 (2), 155–169.

Schön, D. A. 1983/2017 The Reflective Practitioner: How Professionals Think in Action.
Routledge.

Shute, V. J., Sun, C. & Asbell-Clarke, J. 2017 Demystifying computational thinking.
Educational Research Review 22, 142–158.

Simon, H. A. 1969/2019 The Sciences of the Artificial. MIT Press.

Stiny, G. & Gips, J. 1971 Shape grammars and the generative specification of painting and
sculpture. In Information Processing ’71 (IFIP) (ed. C. V. Freiman), pp. 1460–1465.
North-Holland.

Suwa, M., Gero, J. & Purcell, T. 2000 Unexpected discoveries and S-invention of design
requirements: important vehicles for a design process. Design Studies 21 (6), 539–567.

Voogt, J., Fisser, P., Good, J., Mishra, P. & Yadav, A. 2015 Computational thinking in
compulsory education: towards an agenda for research and practice. Education and
Information Technologies 20 (4), 715–728.

Wason, P. C. & Evans, J. S. B. T. 1974 Dual processes in reasoning? Cognition 3 (2),
141–154; doi:10.1016/0010-0277(74)90017-1.

Wing, J. M. 2006 Computational thinking. Communications of the ACM 49 (3), 33–35.

Wing, J. M. 2008 Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
366 (1881), 3717–3725.

Wing, J. M. 2011 Research notebook: computational thinking – what and why. The Link
Magazine 6, 20–23.

Wing, J. M. 2019 A conversation about computational thinking, Educational Future
Frontiers, 1–10, https://education.nsw.gov.au/our-priorities/innovate-for-the-future/
education-for-a-changing-world/media/documents/future-frontiers-education-for-
an-ai-world/Computational-Conversation_1_A.pdf.

Woodbury, R. 2010 Elements of Parametric Design. Routledge.

15/15

https://doi.org/10.1017/dsj.2021.7 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2019.9
https://doi.org/10.1016/0010-0277(74)90017-1
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/media/documents/future-frontiers-education-for-an-ai-world/Computational-Conversation_1_A.pdf
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/media/documents/future-frontiers-education-for-an-ai-world/Computational-Conversation_1_A.pdf
https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/media/documents/future-frontiers-education-for-an-ai-world/Computational-Conversation_1_A.pdf
https://doi.org/10.1017/dsj.2021.7

	Design thinking and computational thinking: a dual process model for addressing design problems
	1. Introduction
	2. Design thinking
	3. Computational thinking
	4. Design thinking and computational thinking
	4.1. Specificity of solutions
	4.2. Specificity of framing
	4.3. An ontology for reasoning about problems

	5. Discussion and conclusions
	5.1. Utility of the ontology
	5.2. Are design patterns design thinking or computational thinking?
	5.3. What is in the upper-right and lower-left quadrants?
	5.4. A dual process model of design thinking and computational thinking?

	6. Conclusions
	Acknowledgment
	Financial support
	References


