
MODULI OF ENDOMORPHISMS OF SEMISTABLE VECTOR
BUNDLES OVER A COMPACT RIEMANN SURFACE

by L. BRAMBILA PAZ

(Received 6 November, 1985; revised 26 October, 1987 and 24 February, 1989)

Introduction. Mumford and Suominen in [8] and Newstead in [11] have considered
the moduli problem of classifying the endomorphisms of finite-dimensional vector spaces.
Using similar ideas we consider the moduli problem for endomorphisms of indecom-
posable semistable vector bundles over a compact connected Riemann surface of genus

In this paper we develop the 3-dimensional case, which gives an idea of how to solve
the moduli problem in general. First we give the algebras which can occur as algebras of
endomorphisms of vector bundles of rank 3. Then we give necessary and sufficient
conditions for a vector bundle to have a particular algebra of endomorphisms. Such
conditions show that for any non-zero nilpotent endomorphism, there are extensions of
vector bundles from which it can be reconstructed. Thus the problem of parametrizing
endomorphisms is largely reduced to one of parametrizing extensions. We construct the
corresponding universal families of extensions; unfortunately, this is not quite sufficient
for us to obtain moduli spaces for endomorphisms themselves. However, in some cases
we can obtain local universal families of endomorphisms. The algebra of endomorphisms
depends on how the extensions are related.

In Section 1 we state the moduli problem for endomorphisms of vector bundles. In
Section 2 we recall from [3] the relations between the extensions and the algebras of
endomorphisms. Section 3 contains the constructions of the universal families of
extensions which partially solve the moduli problem.

1. Moduli of endomorphisms. Throughout this paper X will denote a compact
connected Riemann surface of genus greater than 1, and S(n, d) the set of (isomorphism
classes of) indecomposable semistable non-simple vector bundles of rank n and slope d
over X.

Let P(n, d) be the set of pairs (E, (j>) where E is in S(n, d) and (t>:E—*E is an
endomorphism of vector bundles. We say that two pairs (E, <f>) and (F, V) are equivalent,
written (£, <f>)~(F, xp), if there exists an isomorphism a\E—*Fsuch that ip°a = a°<p.

By a family of endomorphisms parametrized by a variety S we shall mean a pair
(E, 3>), where £ is a vector bundle over X xS and 3> an endomorphism of E, such that
for each s eS the restriction (E, <fr)Xxs is in P(n, d). Two families (E, <£) and (F, V)
parametrized by 5 are equivalent if and only if the restrictions (E, <f>)xxs and (F, 1/)A-XJ

are equivalent for each s e S. Given a family of endomorphisms (E, <&) parametrized by S
and a morphism h'.T^S, the family h*(E, ®) = (h*E, h*4>), where h = idxxh', is
called the induced family of endomorphisms.

DEFINITION 1. A fine moduli space for P(n, d) is a variety M and a family of
endomorphisms (U, G>) parametrized by M, such that for any family of endomorphisms
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2 L. BRAMBILA PAZ

(W, V) parametrized by a variety 5 there exists a unique morphism /i':S—»Af such that
the induced family is equivalent to the family (W, W).

For any indecomposable vector bundle E over X the algebra of endomorphisms is a
special algebra i.e. END(£) s (1) © Nil(£) (see [1]). Since any endomorphism is the sum
of a scalar multiple of the identity and a nilpotent endomorphism we shall concentrate on
the study of non-zero nilpotent endomorphisms.

2. Algebras of endomorphisms. Let £ be a vector bundle over X of rank n. If £ is
semistable then for any xeX the map ex:End(E)^>End(Ex) defined as tf)1-*^ is
injective.

If £ is also indecomposable the image e^(END(£)) = G(E) is a special algebra in
MnXn(C). Denote by N(E) the subalgebra eJ.(Nil(£)). Let H be the set of all non-zero
subspaces W a Ex which are invariant under G(E), i.e. <t>(W) c W for all <j> in G{E). Let
V be a minimal subspace of H. For any v e V, define N(v) c V as the vector space
{w € Ex | 4>(v) = w for some <f> in N(E)}. From the minimal property of V we see that
N(v) = 0 or N(v) = V. If N(v) = V then there is a nilpotent element \p e N(E) such that
xp(v) = v, which is a contradiction. Hence N(v) = 0 and so v is a common eigenvector for
G(E). By inductive procedure we can see that Ex has a flag invariant under G(E). The
existence of such flag implies that one can choose a basis of Ex such that, for all <px in
G(E), (px is an upper triangular matrix with all its diagonal entries equal.

Hence we have the following proposition.

PROPOSITION 1. If E is in S(n, d) then dim END(£) < 1 + \n{n - 1).

One question is: which special algebras, i.e. local rings, with fixed dimension can
occur as algebras of endomorphisms of vector bundles in S(n, d)l In [3] we prove that for
£ in 5(3, d), dim END(£) + 4. Actually, END(£) is isomorphic to one of the algebras
C[t]/{t2), Cfl/(f3) or C[r, s]/(r, s)2.

If £ is in S(3, d) and non-simple then there is a nilpotent endomorphism <p;E—>E
such that <f>2 = 0 and <\> i= 0. Denote by £2 the kernel of tf> and by L the image. Since £ is
semistable and (f>2 = 0, E2 and L are vector bundles over X and define the exact
sequences

%:0->E2-UE^L^>0 and p:0->ZA£2-^L'->-0

where j°i°n~ (f>.
The type of algebra of endomorphisms depends on the relation between the

extensions £ and p and on whether L' is isomorphic to L or not.

REMARK 1. In [3] we proved the following results.
(i) If L sjfs L' then END(£) = C[t]/(t2).
(ii) If L a L' and p = 0 then END(£) a G[r, s]/(r, s)2.
(iii) If L = L' and p # 0 then from the surjective homomorphism p*:Ext(L, £2)-»

Ext(L, L) we see that:
(1) if p,(f) = 0 then END(E) a C[r, s]/(r, s)2;
(2) if />*(£) = Ap for some A e C* then END(£) a C[t]/(t3);
(3) if p , ( | ) # Ap for A e C then END(£) s C[t]/(t2).
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ENDOMORPHISMS OF SEMISTABLE VECTOR BUNDLES 3

Denote by Ql, Q2 and Q3 the subsets of 5(3, 0) of those vector bundles satisfying
conditions (1), (2) and (3) respectively.

If p*{%) = A/O for some A e C* then we have the following diagram

E 2 £ U L

' I - I , II

which can be completed as follows.

I
0

0

I
L

i

I
0

0

I
= L

"1
(A) 0 ^ £ 2 - ^ £ - ^ L - + 0 .

"I "I I
I 1
0 0

In this case, the composition j°a is a nilpotent endomorphism r/; such that V3 = 0
and ip2 is equivalent to k~l<j>.

Now let L, V be two line bundles with the same slope, and p:0—^L-^F-^L'—»0
an extension of L' by L. If £: 0—»F-i* E -^ L-* 0 is an extension of L by F then

(i) E is semistable;
(ii) the pair of extensions (£, p) defines a nilpotent endomorphism (j°i°ji;) = <p of

index 2, i.e. (j> # 0 but <p2 = 0;
(iii) if § and p are non-trivial then E is indecomposable;
(iv) if p is trivial then E is indecomposable if and only if either

(a) L^L' and § is not in either of the subspaces Ext(L, L) or Ext(L, L') of
Ext(L, F) = Ext(L, L 0 L'), or

(b) L = L' and § is not in the image of /*: Ext(L, L) -> Ext(L, F) =
Ext(L, L © L ) for any of the inclusions i:L^>L®L.

If L = L' denote by S(L) the image of such inclusions.
With a pair (£, p) of extensions as above we obtain a pair (E, <p) in P(3, d).
Denote by E(3, d) the set of pairs of extensions (If, p) as above.

REMARK 2. (i) Note the pairs (§, p) and (§, Ap) define the same nilpotent
endomorphism of index 2. Moreover, if L = L' and or = 1 + nip is an automorphism of F
then, in general, the extension <*§:0—>F -12-^* E^L—^0 is not equivalent to §, but the
corresponding endomorphisms jin and /awr are identical.
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(ii) If a extends to an automorphism of E, the extension at; is equivalent to %, so
this problem does not arise. In particular, there is no problem when all automorphisms of
F extend to E, which happens

(a) when F is simple, i.e. L ^ L', and p non-trivial,
(b) in the case L = L', p non-trivial, precisely when E belongs to Q1 or Q2.

To study the moduli problem for endomorphisms we split P(3, d) as follows:

P° = {(£, <(>) e P(3, d):<p3 = 0 but <f>2 + 0},
P1 = {(£, <t>) e P(3, d): L = L' and E2 $ L © L'},
P2 = {(£, 0) e P(3, d): L $ L' and £2 ^ L 0 L'},
P3 = {(£, 0) e P(3, d): L ^ L' and E2 a L 0 L'},
P4 = {(£, 0) e P(3, d):L = V and £2 = L © L'},

where as before, £2 denotes the kernel of <p, L is the image of <j> and L' = £2/L.
Without loss of generality we assume that d = 0.
For each set P' we assign a set P, of equivalence classes of pairs of extensions in

£(3, d). The equivalence relation on the pairs of extensions depends on each of the sets
P1, so we shall treat them differently.

3. Moduli spaces. We split this section into five parts. In each one we construct a
universal family of extensions and show how these provide a partial solution to the moduli
problem for endomorphisms.

Let E and F be two families of vector bundles over X parametrized by a variety S
such that dim H'{X, Hom(£s, Fs)) is independent of s € 5 for i = 0, 1. Let p : X x 5 -» 5 be
the projection and let us denote the vector bundle Rl

p(Hom(E, F)) by V. Hence, we have
the commutative diagram

XxV±>V

•\ I'
XxS -fS

Lange in [7], using Grothendieck's universal properties of vector bundles, proved
that if

H'(S, R°p Hom(£, F) ® R], Hom(£, F)*) = 0

for i = 1, 2 then H\X x 5, Hom(£, F) <g>p*^(Hom(E, F))*) = END(^) and the iden-
tity in END(K) induces a universal family of extensions

of E by F parametrized by V such that Qv is the extension represented by v, for each
v e V. Moreover, if P(V) is the projective bundle associated to V then (see Corollary 4.5
in [7]) there exists a universal family

of extensions over X x P(V) which parametrizes all the classes of non-splitting extensions
of Es by Fs over X modulo the equivalence relation of identifying extensions which differ
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by a non-zero constant. From the universal properties of Q and PQ and the canonical
map n: V - {0}-» P(V) we see that {tdx x ^)*P(V) is equivalent to £V-{o>-

We shall prove that for some cases such universal extensions exist.

I. Let Px be the set of equivalence classes of pairs (§, p), where p # 0 and L = L'.
Two pairs (§, p) and (£', p ') are equivalent if and only if § = §' and p = Ap' for some A
in C*. We shall construct a moduli space for Px.

Let T be the vector space ExtA-(l, 1) = Hl(X, 1) and denote by P(T) the projective
space of T. If H is the hyperplane bundle over P(T) then there exists a universal
extension

P/5:0-»/?*H->W-»l-*0 (1)

over X x P(T) that parametrizes all classes of non-splitting extensions of 1 by 1, modulo
the equivalence relation of identifying extensions which differ by a non-zero constant,
(see [9, Lemma 2.3]).

Let us consider the families of vector bundles p*H and W over X x P(T). We recall
from [4] the proof that

H'(P(T), R°p Hom(p*H, W) <8> Rl
p Hom(p*H, W)*) = 0

for i = 1, 2. Basically we need the following lemmas.

LEMMA 1. R°P(W) = M.

Proof. From the exact sequence (1) we have the exact sequence

of vector bundles over X x P(T), which induces the following exact sequence

^Hl(X, 1) <8)P(7-) G-^RP(W) <g>H*

* ^ 0 (2)

over P(T). Since dimH°(X, W,) = l for all t eP(T), we see that p*W®U* is a line
bundle and hence the inclusion / :1—*p*W <8> H* is an isomorphism, so that p*W is
isomorphic to H, which proves the Lemma.

Since the map/:l-»/)*W ®H* is an isomorphism we have from the exact sequence
(2) the following exact sequence

0 ^ M*•?> H\X, 1) ®P(T) O-S* Rp{W) ® H* ̂  H\X, 1) <8»P(r) 0® H*-+ 0,

which we split in two, namely

0-> HI* A / / • ( * , 1) <8)P(r) ( ? ^ / g ^ 0
and

0 ^ /,-* Rp(W) <8> H* -»• H'(Jf, l)®p(r) 0 <8> H*-> 0,

where /g is the image vector bundle. Since g is a homomorphism of vector bundles of
constant rank, Ig is a vector bundle over P(T). We take the dual sequences

g H^0 (3)
and

<g>[H]^>/;->0. (4)
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6 L. BRAMBILA PAZ

From the exact sequence (4) we see that:

LEMMA 2. H'(P(T), RP{W)* ® H) = Hl(P{T), I*) for i > 1.

Proof. The lemma follows from the equality H'(P(T), H) ® H\X, 1)* = 0 for all
/ > 1 and the cohomology sequence associated to the exact sequence (4).

LEMMA 3. If d: Hl{X, l)*<8>ip(r) 0—* D-D is the surjective homomorphism in (3) then the
induced map d*:H°{P(T), 0)®Hl(X, l)*^Hl(P(T), H) is an isomorphism.

Proof. The map 3 coincides with the tautological surjection T* x P(T)—»H. It is a
standard fact (following easily from the definition of H) that this induces an isomorphism
of spaces of sections.

LEMMA 4. // '(P(7), I*) = 0 for i > 0.

Proof. Part of the cohomology sequence of (3) is

^#'(P(r), H)->Hi+\P(T), I*)^Hi+\P(T), 6)®H\X, 1)*^.
Now H'(P(T), H) = 0 = f/ '(P(r), C) for i > 1, so H'(P(T), /*) = 0 for i > 2. Thus we

have the exact sequence

0^>H°(P(T), I*)-*H°(P(T), O)0H1(X, l)*^H°(P{T), H)->//1(P(r), / ; ) ^ 0 .

But from Lemma 3 we know that 3 is an isomorphism, hence H'(P(T), I*) = 0 for
i = 0, 1.

PROPOSITION 2. H'(P(T), R°pHom(p*H, W)®Rl
pHom(p*U, W)*) = 0 for i = 1,2.

Proof. From Lemma 1, Rp(W) = M; hence the Proposition follows from Lemmas 2
and 4.

THEOREM 1. There exists a fine moduli space for Px.

Proof. From Lange's results there is a universal extension

Q:0^g*W-i*Z-^g*p*{M)-*0 (5)

of vector bundles over XxV, where V is Rl
pHom(p*H, W), which parametrizes all

extensions of 1 by Wt, for all t e P(T). Let V be the complement, in V, of the zero section
so:P(T)-+Rl

pHom(p*H, W).
From the restrictions of the exact sequence Q and the induced extension Pj8, we have

over XxV, the following exact sequences

and (6)

Let Mx be V x PicopQ. From the universal properties of the extensions Pj3 and Q we
see that the pair of extensions (Q,g*P/3) induces o n ! x M , a pair of extensions which,
after tensoring by the pull-back of the Poincare bundle L, define the moduli space for P,.

Let (Z, O) be the family of endomorphisms over XxV given by <b=j°i°n. The
restriction ZXxv is in 5(3, 0), for each v e V. However we know, from Section 2, that not
all the vector bundles ZXxV have the same algebra of endomorphisms.
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If V and P(T) are as above then the monomorphism / : H*2-» H\X, l )® P ( r ) 6® H*
induces the commutative diagram

0->Kn-» S »H*2 *0

II I' i'
0-* Kn^> V ^ H\X, 1) ®P{T) 0® H*^0

where i is an inclusion. Hence Kn is a subbundle of 5 and Tl(S) = H*2. This means that
for each s e (S),, Il,(s) = A/3,, where A e C* and /3, € [t]. Denote by S1 the kernel Kn, by
52 the space 5 - 51 and by S3 the space V - S.

THEOREM 2. Let Z be the family of vector bundles parametrized by V given in
Theorem 1. Then (i) ZmeQl iff m e S\ (ii) ZmeQ2iffme S2, (iii) ZmeQ3 iffme S3.

Proof. The Theorem follows from the definition of Q' and 5'.

Now let (Z,, 3>) denote the family of endomorphisms over X x M, induced by
(Z, O). For i = 1, 2, 3 let P1' denote the set of the pairs (£, *) € P1 such that £ 6 Q1, let
Af,, = (V OS') x PicoCX) and let (Z,,, 4>) denote the restriction of (Z1; 4>) to X x M1;.
We deduce at once from Theorem 2 and Remark 2(b) the following result.

COROLLARY. For i = 1, 2, the family of endomorphisms (Z1(, $ ) iy a universal family
for Pu.

When i = 3, the situation is more complicated (see Remark 2 again).

II. Denote by P° the set of (equivalence classes of) pairs (E, #) in P(3, d) such that
03 = 0 but #2 =£ 0. For each pair (E, (j>) in P° we have the following commutative diagram
of vector bundles

0 0

II
I I-
0 0

where F and L are the image and kernel of <f> respectively. We consider the problem of
parametrizing such diagrams up to equivalence of the extensions /3 and Q. Denote by Po

the set of equivalence classes of the diagrams.
A diagram as above defines a pair (E, i°a) in P°. Two pairs (E, <j>) and (E, $') in P°

define the same element in Po iff 0 = (1 + ty)<p' with xp nilpotent. Again we solve the
moduli problem for Po.

Let To be the space T - {0}, where T = H\X, 1) and let

be the extension over X xT0 that parametrizes all the non-trivial extensions of 1 by 1 (see
[10]). Actually, if h': To-» P(T) is the natural map then h* = (idx x h')*(PP) = 0, where
Pp is the extension (1). Moreover, h*(W) = Wo.
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Let n:X x To—* To be the projection and denote by Vo the vector bundle associated
to Rl

n(W0). From the following commutative diagram

H\X x P(T), W ®p*Rl
p(W)*)^ END(V)

H\X x To, Wo® n*Rl
n(WZ)) ^ END(V0)

we have that the identity in END(V) defines an element /30 in H\Xx To> Wo® n* R
such that 6(Po) = idVo. If g:X X Vo-* X x To is the induced homomorphism then the
element /Jo defines under the following natural maps

H\X X r0) Wo® n*Ri(W)*)^H\X x To> Wo®g*OXxVo)

a universal extension

over X xV0 which parametrizes all the extensions of the trivial line bundle 1 by W,, where
IV, is a non-trivial extension of 1 by 1. We shall prove that there is a variety So c Vo which
parametrizes the diagrams for which /3 ® L* corresponds to a point of To.

The image of the extension /3 under the homomorphism tf(Zxr0)l)^
H°(T0, /?pHom(l, 1)) given in the Leray spectral sequence defines a nowhere-vanishing
section s = 3(/3). This has the property that for each t e To, s(t) e HX{X, 1) is precisely the
extension represented by t. The surjective homomorphism p: Wo—* 1 over X x To induces
a surjective homomorphism i?pHom(l, Wo) -* R^ Hom(l, 1) of vector bundles over To.
Let us denote by So the subspace p~1(s(T0)) c Vo. We now have two extensions
Pi:0-*li*g*Wo£*l->0 and Q l : 0 ^ g * W o ^ - Z - * 1 ^ 0 which are the restrictions of 0
and Q t o A ' x ^ .

Let *! and s2 be the images of Q, and /3, respectively under the homomorphisms
H\XxSo,g*Wo)^Ho(SO)R

1
p(g*Wo)) and H\X x So, 1)^H°(SO, Rp(l)) given in the

Leray spectral sequences. The surjective homomorphism p:g*W0—*l induces homorph-
isms p* and p* such that the diagram

H\X x So, g*W0) U //'(5o( Rp(g*Wa))

I P i * | P 2 *

H\XxS0,l) -

commutes.
From the definition of 50, we see that P2*(si) = s2, and so />2*(/(&i)) = P2*(*i) = *2 =

hifa). Hence, A(pu(Q,)) = st = A(/5,). If g a 3, H\T0,1) = 0, so H\So, 1) = 0, the map h
is injective and hence Pi*(£2|) and /?, define the same family of extensions. The equality

= /3| implies that there is a unique homomorphism a:Z^*g*(W) such that the
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diagram
Q , : 0 - > g * H ^ Z - » l - > 0p'i i I
Pl:0-+l-i*g*Wo

£*1^0

of vector bundles over X x 50 commutes. Such diagram can be completed as follows:
0 0

1 I
1 = 1

1 . I
1 -1

0 -» 1 — g*ty,
[
0

Let M° be So x Pico(A
r) and consider the family of diagrams given by

(jrf2Q| ® nt3L, Jt\*2P\ ® tt*3L) over X x Mo. This proves:

THEOREM 3. / / g > 3 , f/iere crate a fine moduli space for the diagrams in PQ which lie
over So X Pico(AT).

III. Let P2 be the set of equivalence classes of pairs (§, p) where p #=0 and
Two pairs are equivalent iff p = Ap' for some k e C* and § = §'.

Denote by Ac the variety PiCoCA') x Pico(A
r) — A, where A is the diagonal subvariety.

If plk:X x Ac-»X x Pico(A
r) are the projections for k = 2, 3 then let Lk^ bep*kL. Take

the vector bundle Hom(L2) Lx) over X x Ac. Since i?°2(Hom(L2, Lx)) = 0 we see from
Lange's results that there is an extension

Q : 0 - > ^ H ( 8 ) g * L 1 ^ W ^ g * L 2 ^ 0 (7)

over X x P(V), where V is fl^Hom^, Lx), g:Xx V-+X x Ac, P(V) is the projective
bundle of V and H the hyperplane bundle over P(V). Such an extension parametrizes all
the classes of non-splitting extensions of two non-isomorphic line bundles with zero
degree.

Let us take the vector bundle Hom^jH <8>g*Lu W) over X x P(V) and let Z be the
vector bundle R]l2Hom(g*Ll, W)®M* over P(V). To use Lange's result we need to
prove that

R°n2(g*Lt ®W)<8> Ri2(g*L? <g> W)*) = 0 (8)

for i = 1, 2 or that there exists a unique element in

H\X x P(V), g*L\ ®W® jitRi2(g*Lt <8> W)*)

which maps to the identity in END(Z).
To compute the cohomology groups we see that the exact sequence (7) induces the
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10 L. BRAMBILA PAZ

following exact sequence

t)^0. (9)

Since fl°2(g*L2<8>g*Lf) = 0, we have that K°2(W<8>g*Lf)sH. Hence
R%(g*Lf®W)®Rl

Jl2(g*Lt®W)* = M<8>R]t2(W®g*L*)*. From the exact sequence
(9) we obtain the exact sequence

f)'®IHI->/?i1(l)*-»-0. (10)

Part of the cohomology sequence of (10) is

), /?i2(W ®g*Ll)* <8» H)

), 0)®H\X, G)*->.

Since P(V) is a projective bundle over Ac we have that

//'(P(V), <?) = tf'(Ac, 0) (11)

and from the commutative diagram

I
P(V)

we see that

r ) '®H)*a/ / / (A e
J a*V*<g> V*), (12)

where a is the canonical involution on Ac.
In this case we arrive at the problem that we do not know if the cohomology groups

(11) and (12) are zero or not, nor even if there exists a unique element which maps to the
identity in END(Z).

Lange in [7] distinguishes between global families of extensions (the concept that we
have been using) and families of extensions over a variety M (see [7, page 105]). He
defines "family of extensions" using an open cover of M. Over each open set there is a
collection of extensions "glued" together to define an extension over the open set. If the
covering may be taken to be M itself, then the family is said to be "globally defined".

Using similar ideas we could introduce a more general definition of families of
endomorphisms.

DEFINITION. A family of endomorphisms "parametrized by M is a collection of pairs
{(£, 0)m} such that there exist

(i) an open cover {Ua} of M,
(ii) a vector bundle Wa and

(iii) an endomorphism <f>a of Wa in each open set Ua,
such that for each pair (E, <f>)m with m e Ua, (Wa, <j>a)m is equivalent to (£, 4>)m. The
family is said to be global if the open cover is M itself.
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The global families of endomorphisms correspond to the concept of families of
endomorphisms that we have been using (see Definition 1). If we use this new concept of
family of endomorphisms (not global) then we can solve the moduli problem for P2 as
follows:

Recall from above, that Z is a vector bundle over P{V) and V is a vector bundle over
Ac. Hence we can cover P(V) by affine open sets {(/„} which induce a cover {V^} over Z.
The cohomology groups

H\Ua, R°p(Hom(g*Lu W))® Rp(Hom(g*Ll, W)*))

are zero for i = l,2, since Ua is affine.
Now we can apply Lange's results to prove that there is a universal extension of (the

restrictions of) g*(Lx) by W over X x Va. Such an extension parametrizes all the
extensions of a line bundle L, by Wn where W, is in Ua. Hence we have the following
Theorem.

THEOREM 4. There exists a {local) universal extension for P2.

In this case W, is simple, so by Remark 2(a) the extensions are determined by the
endomorphisms. Hence

COROLLARY. There exists a (local) universal family of endomorphisms for P2.

IV. Let P3 be the set of all extensions §:0-> L © L'->E-> L-»0 with L^L' and
fi(L) = fi(L') = 0. As in the previous case take Ac and the line bundles JL, and L2 over
J x A c . If p: X x Ac-» Ac is the projection then the points in

^(Hom(g*(L,), g*(Lx © L2))) = V

represent extensions in P3.
To construct the (global) universal extension we must prove that the cohomology

group H'(6.c, V) is zero, for / = 1, 2.
As in the previous case, we only obtain a local universal extension, using a Stein

cover of Ac.

THEOREM 5. There exists a (local) universal family of extensions for P3.

V. Let P4 be the set of extensions £:0—>L®L—>E—>L—*0 such that E is
indecomposable.

If R is the space Ext^l, 1 © 1) then there exists a universal extension

0^1©l^Y^l-^0 (13)

over X x R that parametrizes all the extensions of 1 by 1 © 1 (see [10]). Take 5(1) c R as
in Section 2 and denote R - 5(1) by 50. If M4 is 50 x Pico(JO then the extension (13)
induces over I x M 4 the universal extension

o->Yo®Lo->Lo->0, (14)
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where Lo and Yo are the corresponding pull back of the Poincar6 bundle and the
restriction of the vector bundle Y to X x So.

Thus, from the universal properties of the exact sequence (14) we have the following
Theorem.

THEOREM 6. There is a fine moduli space for P4.
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