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Abstract The cusp density of a hyperbolic 3-manifold is the ratio of the largest possible volume in a
set of cusps with disjoint interiors to the volume in the manifold. It is known that all cusp densities fall
in the interval [0, 0.853 . . . ]. It is shown that the cusp densities of finite-volume orientable hyperbolic
3-manifolds are dense in this interval.
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1. Introduction

By a hyperbolic 3-manifold, we will always mean an orientable 3-manifold M together
with a covering map p from hyperbolic 3-space H3 to M such that all of the covering
translations are isometries. A finite-volume non-compact orientable hyperbolic 3-manifold
is known to decompose along disjoint tori into a compact piece and a finite set of cusps.
A cusp C in M has preimage p−1(C) consisting of a set of horoballs in H3 with disjoint
interiors. Topologically, a cusp is homeomorphic to T 2 × [0,∞), possibly with some pairs
of points identified on the boundary torus. A maximal cusp is a cusp contained in no
other cusp. We think of obtaining a maximal cusp by expanding a given cusp until it
touches itself on the boundary. Such a cusp will lift to a horoball packing in H3, where
some horoballs are tangent to one another.

If a manifold has more than one cusp, the maximal disjoint cusp volume, denoted
cv(M), is the volume contained within a set of cusps in the manifold with disjoint interi-
ors and with as large a volume as possible. The cusp density of a 3-manifold M , denoted
cd(M), is the maximal disjoint cusp volume divided by the volume of the manifold. By
horoball packing results of Böröczky, as applied by Meyerhoff (cf. [4]), it is known that
the cusp density for any non-compact finite-volume hyperbolic 3-manifold or 3-orbifold
must lie in the interval (0, 0.853 . . . ], where 0.853 · · · =

√
3/(2(1.01494 . . . )). The value

1.014 94 . . . is the Gieseking constant, which is the volume of a regular ideal hyperbolic
tetrahedron. The upper bound on cusp density is realized by the figure-eight knot com-
plement, which has maximal cusp volume

√
3 and volume 2.029 88 . . . . The main result
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of this paper is to show that the set of cusp densities for hyperbolic 3-manifolds is dense
in the interval [0, 0.853 . . . ].

If we take a set of hyperbolic manifolds with bounded volumes, the corresponding cusp
densities cannot be dense. In fact, they are bounded away from 0, since in any n-cusped
hyperbolic 3-manifold, there always exists a set of cusps with disjoint interiors that has
volume at least n(

√
3/2) (see [2]). So the cusp density of a manifold with n cusps and

volume at most V is at least n
√

3/2V .
It remains to determine if the cusp densities of hyperbolic knot complements are dense

in the interval. If not, perhaps one-cusped hyperbolic 3-manifolds have dense cusp den-
sities. Or perhaps n-cusped hyperbolic 3-manifolds for some fixed n have dense cusp
densities.

2. Results

We begin with a discussion of two manifolds that will be useful to us. As mentioned
in the introduction, it is known that the maximum possible cusp density for a hyper-
bolic 3-manifold is 0.853 . . . . The link complement L appearing in Figure 1a has density
0.853 . . . and is known as the minimally twisted 5-chain. It has recently appeared in a
variety of contexts (for instance [3] and [5]). It is obtained by gluing together the faces
of two regular ideal hyperbolic cubes as in Figure 1b, each of dihedral angle π/3.

Each cube can in turn be constructed by gluing a regular ideal tetrahedron to each
face of a regular ideal tetrahedron. The five cusps appear at the ideal vertices as C1,
C2, C3, C4, C5. Any one of the five can be maximized to a cusp volume of 4

√
3. The

remaining four cusps, when maximized relative to it, each has volume
√

3/4. For the
decomposition shown here, we can take C1 to be maximized, meaning that in each cube
there is a horoball centred at each of the four vertices labelled with C1, and those four
horoballs are mutually tangent in pairs. Horoballs centred at the remaining vertices are
then expanded until they touch the three horoballs corresponding to C1 at the adjacent
vertices.

Although it appears that C1 is playing a special role here, we could retriangulate the
whole picture so any one of the other cusps appears eight times at the ideal vertices of
the resulting pair of cubes.

Each component in L bounds an obvious twice-punctured disk (which can be considered
as a thrice-punctured sphere). Incompressible boundary-incompressible thrice-punctured
spheres such as these are known to be totally geodesic in the 3-manifold (see, for example,
[1]).

There are an additional five thrice-punctured spheres in the link complement, each
bounded by two adjacent link components and the component opposite to where they
cross one another. The total of 10 thrice-punctured spheres appear in the cubical decom-
position as the six faces of either cube together with four additional thrice-punctured
spheres. Each of the last four is obtained by taking two ideal triangles, one inside each
cube, such that the three vertices of the triangle are the three vertices of the cube that
are adjacent on the cube to a vertex with three different edge labels.
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Figure 1. The minimally twisted 5-chain and the hyperbolic structure on its complement.

Choosing the twice-punctured disk D bounded by C1, we see that it can be realized as
a face which appears on each cube. When any one of the five cusps is maximized, it will
intersect this face. The maximal cusp corresponding to C1 is tangent to itself within the
disk D. Therefore it restricts to a maximal cusp on the thrice-punctured sphere, which
must have length exactly 4. So the longitude of any of the five maximal cusps must
have length exactly 4. The two maximal cusps corresponding to the two components
that puncture D intersect D only at the punctures. The remaining two cusps, when
maximized, intersect D by poking through it away from its boundary, but each pokes
through only a finite distance.

The second manifold that will be useful is the complement of the alternating daisy
chain with n components, as appears in Figure 2a, denoted Dn. We will assume n even
for convenience. The hyperbolic structure of the complement of Dn is realized by two
drums as in Figure 2b, and was first discussed in [6, Chapter 6]. The dihedral angles α

and β on the drums can be computed to be α = arccos(cos(π/n)/
√

2) and β = π − 2α.
Note that as n approaches infinity, the volume in a single maximal cusp approaches

the volume in a single cusp in the Borromean rings, which is 4. We can see this from the
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Figure 2. The daisy chain Dn (D10 depicted) and the hyperbolic structure on its complement.

symmetry δ that is rotation by 2π/n about an axis perpendicular to the plane of the page.
If we take the quotient of the manifold by the subgroup of isometries generated by δ2,
the resulting orbifolds will have geometric structure approaching the geometric structure
on the Borromean rings. As n increases, the single maximal cusp in Dn approaches the
structure of a maximal cusp in the Borromean rings. It is necessary to use δ2 rather than
δ, as under the quotient by δ, the cusp is clasped with itself, unlike what happens in Dn.
This causes the maximal cusp volume in the quotient, which is the Whitehead link, to
be lower than the maximal cusp volume that the cusps in Dn are approaching.

The volume of the complements is approaching ∞ as n increases, by the fact that an
n-cusped manifold has volume at least n(1.014 94 . . . ) (see [2]). So the ratio of the volume
in any one cusp to the total volume approaches 0.

We will use these two manifolds to prove that cusp densities are dense in the interval
[0, 0.853 . . . ]. The basic idea is to do high surgery on most of the cusps of Dn in order to
obtain manifolds with arbitrarily low cusp density. A set of m of the resulting manifolds
will be conjoined along twice-punctured spheres with a set of k manifolds with density
0.853 . . . coming from the twisted 5-chains. By appropriate choice of m and k, we will
be able to approach in cusp density any real value in the interval [0, 0.853 . . . ]. However,
we must also account for the effect on cusp density of the surgery coefficients and for
the interaction of the cusps from each side when the manifolds are glued together. This
is achieved by replacing the two manifolds with appropriate covers, and choosing the
parameters appropriately.

Theorem 2.1. The set of all cusp densities for finite-volume orientable hyperbolic
3-manifolds is dense in the interval [0, 0.853 . . . ].
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Figure 3. A double cover L′ of L and a double cover L′′ of L′.

Proof. Let L′ be the 2-fold cyclic cover of L, as we unwind the meridian of the
component C1. The corresponding link complement appears in Figure 3a. Components
are labelled with their individual maximal cusp volume, with unlabelled components
having maximal cusp volume 4

√
3. Let L′′ be the link complement that results from

taking the 2-fold cyclic cover of L′ as we unwind the meridian of the component labelled
C ′, as in Figure 3b.

Note that the twice-punctured disk D′ bounded by the component E is not touched by
any of the maximal cusps corresponding to the components adjacent to the component
C ′′. Let L′′

k be the link complement obtained by taking the k-fold cyclic cover of L′′,
unwinding a meridian of the component labelled C ′′. The resulting link complement has
cusp density cd0 =

√
3/(2(1.014 94 . . . )) = 0.853 . . . and volume 4k(10.194 . . . ). The lifts

of the component E border twice-punctured disks which are intersected by exactly five
maximal cusps, none of which have a volume greater than 16

√
3.

For n > 4, let C be a set of four cusps in Dn, where C1, C2 and C3 are three con-
secutive cusps in Dn and C4 is the cusp that is opposite C2 in Dn (see, for example,
Figure 2a). Note that the cusp density of the set of cusps C in Dn goes to 0 as n goes to
infinity. Also, the maximal cusp corresponding to C4 does not intersect any of the three
maximal cusps corresponding to C1, C2 and C3. Let D′

n,m be the link complement that
is obtained by taking an m-fold cyclic cover of Dn, unwinding the meridian of C4, as in
Figure 4.

Let C′ be the set of cusps that cover C. The cusp density of C′ in D′
n,m is the same

as the cusp density of C in Dn. This is because the sets of three maximal cusps that
are adjacent to one another and that cover C1, C2 and C3 do not touch the other sets
of three maximal cusps covering C1, C2 and C3, and they do not intersect the maximal
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Figure 4. The m-fold cyclic cover of Dn.

cusp corresponding to the cover of C4. So one cannot increase the cusp density of C′ in
D′

n,m by adjusting these cusps.
Both of the link complements L′′

k and D′
n,m contain incompressible boundary-incom-

pressible twice-punctured disks. Choose one in L′′
k bounded by one of the components

that covers E and one in D′
n,m bounded by a cusp covering C2. By [1], these mani-

folds can be cut open along these twice-punctured disks and then glued together along
the copies of the resulting twice-punctured disks to obtain a manifold that has vol-
ume the sum of their volumes. Call this manifold Fk,n,m. Define Fk,n,m,p to be the
manifold obtained by doing (1, p) surgery on all cusps of the manifold that come from
D′

n,m other than the ones in C′. For large enough p, the resulting link complement will
have cusp density arbitrarily close to the cusp density of the subset of cusps in Fk,n,m

on which no surgery was performed. So it is enough to show that the cusp density
of those cusps in Fk,n,m are dense in the interval. Define the restricted cusp density
of Fk,n,m, denoted cdR(Fk,n,m), to be the cusp density restricted to these particular
cusps, which is to say the cusps coming from L′′

k together with the cusps coming from
C′.

First note that by taking a sequence of values with k and m fixed and n approach-
ing ∞, we obtain a set of manifolds with restricted cusp density approaching 0. This
occurs because the volume of the manifolds is approaching infinity but the number of
cusps in the restricted set is bounded by 8k + 3m − 2 and all cusps have bounded vol-
ume.

Now let x be a value in (0, 0.853 . . . ]. We will find manifolds with restricted cusp den-
sities arbitrarily close to x. Choose n large enough that the cusp density of C in Dn is
less than x, and that the maximal cusp volume in each cusp is within 0.1 of 4. We will
fix n at this value. When we form Fk,n,m, other than the five cusps in L′′

k that touch the
twice-punctured disk we are gluing along, the other cusps of L′′

k need not be shrunk out
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of the way. Since these other cusps correspond to a density of 0.853 . . . , one could not
increase the overall cusp density of the resulting manifold by allowing some to grow and
others to shrink.

Then for some p such that 0 � p < 81.6,

cdR(Fk,n,m)

=
k cv(L′′) + m cvR(Dn) − p

k vol(L′′) + m vol(Dn)

=
k cv(L′′)

k vol(L′′) + m vol(Dn)
+

m cvR(Dn)
k vol(L′′) + m vol(Dn)

− p

k vol(L′′) + m vol(Dn)
.

The decrease in cusp volume due to having to match up the cusp sizes when glu-
ing the two manifolds together is the negative contribution of p. Because of the way
we have set the manifolds up, at most five cusps from L′′

k might need to be shrunk,
two of maximal cusp volume 4

√
3, two of maximal cusp volume 8

√
3 and one of max-

imal cusp volume 16
√

3. At most three cusps from the restricted set in D′
n,m might

need to be shrunk, all of which have maximal cusp volume within 0.1 of 4. Hence,
we may assume that p < 81.6. By making sure that our choice of k + m is large
enough, we can assume that the last term is arbitrarily small, so we will represent it
by ε:

cdR(Fk,n,m) =
(k/m) cv(L′′)

(k/m) vol(L′′) + vol(Dn)
+

cvR(Dn)
(k/m) vol(L′′) + vol(Dn)

− ε.

Replacing k/m by t, we can write this expression as

f(t) =
t cv(L′′)

t vol(L′′) + vol(Dn)
+

cvR(Dn)
t vol(L′′) + vol(Dn)

− ε.

Note that as m gets large relative to k, t approaches 0, so f(t) approaches cdR(Dn),
which is less than x. As k gets large relative to m, t goes to ∞, so f(t) approaches
cd(L′′) = 0.853 . . . .

Since f(t) is a continuous function taking values from cdR(Dn) to cd(L′′), there
exists a t value such that f(t) = x. We can choose positive integers a and b such
that a/b is arbitrarily close to t. Letting k = ca and m = cb, where c is a large
enough positive integer, will ensure that k + m is large enough and that k/m is close
enough to t to cause the density of the resulting manifold to be arbitrarily close to
x. �
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