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ABSTRACT. Numerical m ethods based on quadrilatera l finite elem ents h ave been developed for calculating 
distributions of velocity and temperature in polar ice sheets in which h ori zontal gradients transverse to the 
flow d irect ion are negligible. The calculat ion of the velocity field is based on a variational principle equi
valent to th e differential equations governing incompress ible creeping fl ow. Glen's flow law relating effective 
strain-rate i a nd shear stress T b y i = (TIB)" is assumed , with the fl ow law parameter B varying from element 
to element depending on tempera ture and structure. As boundary conditions, stress may b e specified on 
part of the boundary, in practice usually the upper free surface, and velocity on the rest. For calculation of 
the stead y-state temperature d istribution we use Galerkin 's method to d evelop an integral condition from 
the differential equat ions. The calculation includes a ll contributions fro m vert ical and horizontal conduction 
and advection a nd from interna l heat generation. Imposed boundary conditions are the temperature distribu
tion on the upper surface a nd the h eat flux elsewh ere. 

For certa in simple geometries, the flow calculatio n has been tested against the analytical solution of Nye 
(1957), and the temperature calcula tion against anal ytical solutions of R obin (1955) and Budd (1969), with 
excellent results. 

T he programs have been u sed to calculate velocity and temperature distributions in parts of the Barnes 
Ice Cap wh ere extensive surface and bore-hole surveys provide informa tion on actual values. The predicted 
velocities a re in good agreement w ith measured velocit ies if the flow-la w p a rameter B is assumed to decrease 
down-glacier from the divide to a point about 2 km above the equilibrium line, and then remain constant 
nearl y to the margin. These variations are cons istent with observed and inferred cha nges in fa bric from fine 
ice with random c-axis orienta tions to coarser ice w ith single- or multiple-maximum fabrics. In the wedge of 
fine-gra ined deformed superimposed ice at the margin, B increases aga in . 

Calcula ted a nd measured temperature distr ibutions do not agree well if measured veloci ties and surface 
tem peratures a re used in the model. The measured tempera ture profil es a pparently re flect a recent climatic 
warming which is not incorpora ted into the finite-elem ent model. These profiles a lso a ppear to be adjusted 
to a vertical velocity distribut ion which is more consistent with tha t required for a steady-state profile than 
the present vertical velocity distribution. . 

R EsuME. Calculs de la vitesse et de la temperature d'1lI1 glacier polaire par la mithode des iliments finis. D es methodes 
numeriques, basees sur les e lem ents fini s a qua rtre cotes ont ete developp ees pour le calcul d es distributions 
de la vitesse et de la temperature da ns des calottes g lacia ires polaires dans lesquell es les gradients horizontaux 
tra nsversaux par rapport a la direct ion de l'ecoulement sont negligeables. Le calcul du champ des vitesses 
est base sur une loi de variation equivalente a ux d ifferen tes equations differentielles qui regissent les ecoule
ments pa r g lissement d 'un materiel incompress ibl e. La loi d'ecoulement d e Glen reli a nt la vitesse effective 
de deformation i et l'effort d e c isaillement T pa r la loi i = (TIB)" est p osee en hypothese avec le parametre 
B de la lo i d'ecoulement varia nt d' un element a l'autre selon sa tempera ture et sa structure. Comme 
conditions a ux limites, les efforts p euvent et re precises sur une parti e d e ces limites en pratique ordinairement 
sur la surface superieure libre, e t la vi tesse sur le reste. Pour le calcul de l'etat d'equilibre d e la distribution 
des tempera tures, nous utilisons la methode de Galerkin pour deve\opper une condition integrale a partir 
des eq ua tions differentielles. Le calcul prend en compte tous les apports par conduction et advection 
verticales e t horizontales et p a r genera tion interne de chaleur. Les conditions aux limites imposees sont la 
distribut ion des temperatures a la surface super ieure et le flux de ch a le ur a illeurs. 

Pour certaines geometries simples, les calculs d e flux ont ete confrontes a ux solutions analytiques de Nye 
(1957) et les calculs de temperature aux solutions a nalytiques de R obin (1955) et de Budd (1969) avec 
d 'excellents resultats. 
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Les programmes ont ete utilises pour calculer les distributions des vitesses et des temperatures dans des 
parties de la calotte glacia ire de Barnes oll d es m esures de surface etend ues et des forages donnent des informa
tions sur les valeurs reelles. Les vitesses prevues sont en bon accord avec les vitesses m esurees si le parametre 
de la loi d 'ecoulement B, est cense decroltre d 'amont en aval d epuis la crete jusqu'a un point a environ 
2 km au dessus de la ligne d 'equilibre puis rester a peu pres constant jusqu'aupres du front. Ces variations 
sont coherentes avec les cha ngements observes et supposes da ns la structure cristalline de la glace a grains 
fins avec des orienta tions a leatoires des axes-c, passant a de la glace a plus gros grains avec une seule ou 
plusieurs directions privilegiees des axes-c. Dans les coins de glace a grains fins deformes ct sur imposes pres 
du front, B croit de nouveau. 

Les distributions calculees et mesurees de la temperature ne concordent pas tres bien si I'on introduit dans 
le modele les vitesses m esurees et les tempera tures a la surface. L es profils de temperature mesures refletent 
semble-t-il un recent rech auffement climatique qui n'est pas incorpore dans le m od ele aux elements finis . 
Ces profils apparaissent a ussi comme adaptes a une distribution verticale des vitesses qui concordent mieux 
avec celles correspondant a des profils dans un etat d 'equilibre qu'a la distribution contemporaine reelle des 
vitesses. 

ZUSAMMENFASSUNG. B ereclmung von Ce5chwindigkeit und T emperatur ill eillem polaren Clet5cher mit Hiife der 
Methode deT finiten Elemente. Zur Berechnung d er Verteilung von Geschwindigkeit und T emperatur in polaren 
Eisschilden, in denen horizontale Gradienten senkrecht zur Fliessrichtung vernachlassigbar sind, wurden 
numerische Methoden auf der Basis viereckiger fin iter Elemente entwickelt. Die Berechnung des 
Geschwindigkeitsfeldes beruht auf einem Varia tionsprinzip, d as aquivalent zu den Differentialgleichungen 
fur KriechAiessen ohne K ompression ist. Es wird das Fliessgesetz von Glen, das die effektive Verformungs
geschwindigkeit i mit d em Scherdruck uber i = (T /B)n in Beziehung setzt, a ngenommen, wobei der 
Parameter B sich in Abha ngigkeit von T emperatur und Struktur von Element zu Element andett. Als 
Randbedingungen konnen der Druck auf d er Seite der Begrenzung, in der Praxis gewohnlich die freie 
Oberflache, und im ubrigen die Geschwindigkeit herangezogen werden. Zur Berechnung der stationaren 
Temperaturverteilung wird Galerkin's M ethode der Entwicklung einer Integralbedingung aus den 
Differentialgleichungen h erangezogen. Die Berechnung schliesst alle Beitrage aus vertikaler und horizontal er 
Leitung und Advektion sowie aus inneren W a rmequellen ein . Als R andbedingungen dienen die T empera
turverteiluI?g an der Oberflache und der W a rmeAuss an bel iebiger Stelle. 

Fur gewisse einfach e Falle wurde die Flussberechnung mit d er analytischen L osung von Nye (1957), die 
Temperaturberechnung mit denen von Robin (1955) und Budd (1969) verglich en ; die Ergebnisse sind 
hervorragend. 

Die Programme wurden zur Berechnung der Geschwindigkeits- und Temperaturverteilung in T eilen des 
Barnes Ice Cap benutzt , wo ausgedehnte Beobachtungen der ta tsachlichen Werte a n der OberAache und in 
Bohrlochern vorliegen . Die berechneten G eschwindigkeiten stimmen gut mit d en gemessenen uberein, 
wenn man annimmt, dass der Parameter B gletscherabwarts von der Eisscheide bis zu einem Punkt etwa 
2 km uber der Gleichgewichtslinie abnimmt und dann fast bis zum Rand konstant bleibt. Dieser Verlauf 
stimmt mit beobachteten und abgeleiteten Schwankungen in Gefiigen von feinem Eis mit Zufalls
orientierung der c-Ach sen bis zu groberem Eis mit einzelnen od er mehrfachen Orientierungsmaximen 
uberein. J n dem K eil feinkornigen, deformierten Aufeises a m R a nd nimmt B wied er zu. 

Berechnete und gemessene T empera turverteilungen stimmen schlecht iiberein, wenn gem essene 
Geschwindigkeiten und OberAachentemper a turen in das M odell eingefiihrt werden. Die gemessenen 
Temperaturprofile spiegeln offensichtlich eine rezente Klimaverbesserung wider, d.er das Modell der finiten 
Elemente nicht gerecht werden kann. Diese Profile scheinen ausserdem einer vertikalen Geschwindigkeits
verteilung angepasst zu sein, die mehr zu der eines stationaren Profiles passt als zur derzeit vorhandenen. 

INTRODUCTION 

Calculations of flow-rates and temperatures in glaciers and ice sheets can be done analyti
cally only in the simplest of circumstances where simplifying assumptions about the geometry 
of the ice, the pattern of strain, the distribution of internal heat sources from straining, and the 
mechanical and thermal properties of the ice can be m ad e . In real ice masses of complicated 
geometry and boundary conditions, numerical methods are necessary. In this paper we 
present a method, based on finite elements (Zienciewicz, 1971; Huebner, 1975), which 
represents a step toward treatment of the complexity of real ice masses . The two main 
restrictions are that the flow be planar, and the ice isotropic and quasi-viscous. Even with 
these restrictions, this is the most rigorous and practical m ethod available for testing hypo
theses about the flow behavior of glaciers in which complex geometries and spatial variations 
in rheological properties result in longitudinal variations in velocity and stress. Because of a 
lack of firm knowledge of the creep behavior of ice, no numerical model can give a priori 
accurate predictions of flow-rates and associated temperature distributions. However if, by 
judicious choice of flow-law parameters, a model such a s the present one can be "tuned" to 
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match field data, the data can then be extended to give realistic predictions of unmeasured 
quantities, and the sensitivity to changes in boundary conditions can be assessed. 

In the present paper, our primary purpose is to give a brief introduction to the finite
element methods we use to calculate velocity and steady-state temperature distributions. 
As an example, we illustrate the method by applying it to parts of the Barnes Ice Cap where 
there is substantia l geometrical and structural complexity (Figs I and 2). 
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Fig. I . Gross-section of margin of Barnes Ice Cap along pole line B showing quadrilateral net used for finite-element calculations 
within this domain. Shading represents white ice. Large dots are nodes where velocity is known. Heavy vertical lines are 
bore holes. Variation in B_s (value of Bat - 5°G) used in finite -element calculation is shown at bottom. 
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Fig. 2. Cross-section along the trilateration net flow line, Barnes Ice Gap. See Figure I for explanation_ 

CALCULATION OF FLOW 

The numt;rical method for the boundary conditions considered here is based on a functional 

Jv = I (r - pg-u - pV ·u) dA, ( I) 
cl 

where A is the area of the longitudinal section in which planar deformation is to be determined, 
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p is density, g is gravitational acceleration, u is the velocity vector, p is the mean compressive 
stress (pressure), and r is a function of the deformation-rate components 

dij = t( OUt jOXj+ OUj j OXt) 

such that the components of deviatoric stress 'Tij are given by 

'Tij = or jodij . 

Equation (I) is appropriate to problems with stress-free conditions on part of the boundary 
(here the upper surface) and specified velocity on the remainder of the boundary (here no slip 
on the bed and specified velocity on any vertical edge) ; the solution is given by that velocity 
and pressure distribution which minimizes Jv, and this is found by requiring SJv = o. This 
variational principle has been shown to be .equivalent to the usual differential equations 
governing slow, incompressible, creeping flow (J ohnson, 1960; Herrmann, 1965). 

For the present application r is defined as 

where 

2Be(I+I/nl 
r = -;--.,----;-:-

(1+ l jn) , 

is the effective strain-rate and Band n are flow-law parameters. Summation over repeated 
subscripts is understood. Substitution of Equation (3) into Equation (2) gives 

(5) 
where 

B 
7J (i ) = - e- (I-I / nl 

2 ' 
(6) 

which is equivalent to Glen's law in the form 

where 

(8) 
is the effective shear stress. 

The temperature dependence of B is incorporated using a relation of the form 
e = E-s exp [k (8+ 5)] (Lliboutry, 1968) where E-s = ('T jB _s)n. In these relations, e-s is the 
strain-rate at a temperature of - 5°C , B- s is the flow-law parameter appropriate for that 
temperature, 8 is the temperature in degrees Celsius (a negative number), and k is a constant 
with the values 0.34 for 8 ~ -5°C and 0.15 for 8 ~ -5°C. These values ofk are chosen to 
approximate the non-linear increase in In e with decrease in reciprocal absolute temperature 
(I j T) observed by Mellor and Testa (1969, p. 135). A still lower value of k should be used if 
much of the glacier is colder than - 15°C. 

Quadrilateral finite elements are used to express the variational equations in a form which 
is practical for numerical solution. Within each quadrilateral element the distributions of 
velocity and pressure are defined in terms of the pressure parameters and in terms of the 
velocity components at the four corner nodes, using specific interpolating rules. The set of 
nodal velocity components and pressure parameters represent the discretized unknowns of the 
problem. These are chosen to minimize Jv in Equation (I); setting the derivative of Jv with 
respect to each unknown to zero gives a set of equations which can be cast in matrix form. 

In the method used here, p is assumed constant in each quadrilateral. For evaluation of e 
(and rand 'Y/ which are functions of e) quadrilaterals are partitioned into two standard 
constant-strain-rate triangles along one diagonal allowing easy evaluation of the integral 
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over the area of the element. Results for the two alternative partitionings are averaged. For 
eval uation of p V . u and its in tegral over the a rea of an elemen t, V · u was taken to be equal 
to the average on the element. Although the evaluation of E a nd V· u by different interpola
tion schemes lacks internal consistency and complete rigor, it has been found to give results 
essentially identical to a more rigorous treatmen t of a quadrilateral element implemented in 
later program s in which the elem ent is partitioned into four distinct constant strain-rate sub
triangles a long the two diagon a ls, and the velocity at the diagonal intersection is chosen to 
give uniform dilata tion rate, using a scheme developed by Nagtegaal and others (1974). 

The program has three Fortran-coded modules: inpu t, iteration, and graphical output, 
which communicate data through a random-access fil e. The input section does some internal 
reorganizing of node and element structure to minimize band-width of the matrix equations. 
The iteration section uses the strain-rate distribution associated with a trial solution to 
determine the effective viscosity distribution a nd then uses this viscosity distribution to 
generate an improved solu tion either by direct successive approximation or by Newton's 
method. A modified Cholesky method is used to solve the matrix equations in any iteration 
step. The graphical section crea tes plots which show input d a ta and calculated velocities 
and pressures throughout the longitudinal section of the glacier under consideration. 

The input required for the program includes coordinates of nodes, oil,;[ sequences of four
node numbers defining AI qua drila teral elem ents filling the solution region, the temperature 
at each node, the specified velocity or stress at appropriate bounda ry nodes, and the flow-law 
parameters B - s and n. An initial velocity solu tion at interior n od es can a lso be given, and 
this can reduce the number of iterations required for satisfactory convergence. The program 
calculates u and v velocities at each node (u horizontal) and pressures in each element. 

On the University of Minnesota Cyber 74 the Barnes I ce Cap Trilateration Net model 
(Fig. 2) with 250 nodes, 201 elements, and 5 ' fixed-velocity bo undary nodes, takes 5.5 s per 
iteration. Convergence is usually satisfactory after six iterations, even if starting with zero 
initial values for the velocities. The program uses a total of a pproximately 121 000 octal 
(= 41 472 decimal) storage words (program, data, and temporary storage) for the model. 

TESTS OF FLOW PROGRAM 

The flow program was tested in several ways. The behavior under various sets of simple 
boundary conditions and body force which theoretically give simple shear strain-rate, pure 
shear strain-rate, and hydrosta tic stress, were a ll accura tely reproduced by the calculated 
results. "Laminar flow" in a n isothermal pa ra llel-sided slab on a slope was also tested . 
Specific boundary conditions were a stress-free upper surface, no slip on the base, and periodic 
boundary conditions requiring the velocity to be the same at equivalent depths at the up
and down-stream faces of the sla b. For n = 3, the solu tion accuracy depended on the number 
of nodes used over the depth , with five nodes b eing adequate for accuracy to two significant 
figures. 

The most complex known analytical solution for planar fl ow of a power-law material is 
that for an isothermal, uniformly extending (or compressing), p arallel-sided slab on a slope 
(Nye, 1957) . The program was checked against this analytical solution for several combina
tions of slope, longitudinal strain-rate, and length-to-depth ratio of the solution region. In 
these tests, the boundary conditions were a stress-free upper surface and a specified velocity 
distribution on the ends and bo ttom of the sla b . The boundary velocity values were deter
mined from the analytic solution using the assumed longitudinal strain-rate. For n = 3, 
the calculated velocities were accurate to two or three significant figures when six or seven 
nodes were spaced over the d epth of the slab . 
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ApPLICATION OF FLOW PROGRAM 

TWO additional tests of the program were made using data from studies on the Barnes Ice 
Cap. 

In the first of these we modeled the flow at the distal end of pole line B (Hooke, 
I973[a], [b], 1976[bJ) from bore hole B2 (Fig. I) to the margin, a distance of 239 m. An 
interesting complication in the structure of this wedge-shaped domain is the presence of a 
band of white ice which owes its color to a high concentration of air bubbles. These bubbles 
reduce the density of the ice to 870 kg/m 3, compared with 920 kg/m3 for the surrounding blue 
ice, and this results in a substantial reduction in the effective viscosity. Fabric studies have 
shown that this white ice has a strong single-maximum fabric. In contrast, the surrounding 
blue ice may have either a single- or a multiple-maximum fabric, except near the distal end of 
the wedge where the ice is much finer-grained and has a random fabric (Hooke, 1973 [ a], [b]). 

This domain was divided into 96 elements with 116 nodes in such a way that the white ice 
(Fig. I, stippled band) was distinct from the blue. Eighteen of the nodes within the domain 
and five nodes on its up-glacier boundary were placed to coincide with points where the 
velocity is known from triangulation and bore-hole deformation data (Hooke, 1973[b]) (see 
Table I, column (2), and Fig. I). Temperature measurements in the bore holes established 
the temperature distribution in the domain (Hooke, 1973[a], fig. 5). A stress-free boundary 
condition was used on the upper surface and a no-slip boundary condition on the frozen bed. 

Analysis of the bore-hole deformation measurements and of deforma,tion data from a 
series of 67 strain nets in the wall of a 125 m tunnel yielded estimates of the values of the flow 
law parameters nand B (Hooke, 1973[b] ). n was estimated to be 1.6S±0.12. The most 
reliable values of B were thought to be those resulting from the analysis of bore holes B I and 
B2. The resulting values, adjusted to a temperature of -5°C, are 3.2 bar a 1/ n (0.32 
MN m-2 a 1/ n) for the blue ice and 1.8 bar a 1/n (0.18 MN m-2 a 1/ n) for the white. * Use of 
these values in the finite-element program did not give good agreement between measured 
and calculated velocities, however (Table I, column (3)) ; calculated velocities near the margin 
were too high. This suggested that some higher values of B obtained from analysis of bore holes 
Bo and BlX might, in fact, be real. It was therefore assumed that the value of B- s obtained 
for ice beneath the white ice band, 3.0 bar a 1/ n (0.30 MN m- 2 a 1 / n) , should apply midway 
between bore holes B I and B2, and that the value obtained for ice near the bottoms of bore 
holes Bo and BIX, 4.4 bar a 1/ n (0.44 MN m - 2 a 1/ n), should apply midway between these two 
holes. The increase in B-s was assumed to be linear as shown in Figure I. This down-glacier 
increase in B is plausible in view of the distribution of fabric discussed above. As can be seen 
from Table I (c;olumn (4)), use of these values of B in the finite element program resulted 
in somewhat better agreement between calculated and observed velocities. In many cases the 
difference is within the limits of uncertainty in the measurements. The largest discrepancies 
are near the down-glacier limit of the white ice band (nodes P3 and BI : 0.0) where complica
tions resulting from the viscosity contrast may be significant. 

For our second test we modeled the Trilateration Net flow line from the divide to the 
margin. Bed topography along this 10 km flow line has been determined by radio depth
sounding (jones, 1972), and surface velocities and strain-rates are known from repeated 
surveys ofa series of 13 overlapping strain nets (Holdsworth, 1975). In addition, temperature 
measurements (unpublished data of R. LeB. Hooke) have been made in a series of six 25 to 
30 m bore holes approximately evenly spaced along the flow line and in four deeper holes, 

* A bore hole, B22, drilled in 1974, after publication of the results of the original work in this area, established 
that the ice was only 31.3 m thick at the upper end of this section, rather than 35.5 m as originally assumed. 
The bore-hole deformation measurements have been re-analyzed for the present study, taking this new datum 
into consideration. 
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TABLE I. COMPARISON OF MEASURED AND CALCULATED VELOCITIES 

Pole line B 

Measured minus calculated 

( I ) (2 ) (3) (4) 
n = 1.65 

Measured Constant B Variable B 

Location* u D.u D.v D.u D.v 
ma- l m a- I m a- I ma- I m a-I ma- I 

PI - 0.02 0 0.01 0 - 0.01 0 
Pi t -0.03 0.0 13 0.04 - 0.001 0 0.006 
T2 5 - 0.06 0.008 0.06 0 0 0.002 
P 2 - o.og 0.01 3 0.05 0.004 - 0.01 -0.001 
Bo : 6.4 - 0 .04 0.002 0.05 0.006 0.01 0.004 
Bo: 3.3 - 0.06 0.005 0.07 0.008 0.01 0.005 
Bo: 0.8 - o.og 0.008 0.06 0 .007 - 0.01 0.005 
T 50 - o.og 0.004 0.07 0.002 0.01 0 
T75 -0.12 0.008 0.06 0 .011 0 0.007 
P3 - 0.3 1 0.042 -0.02 0.040 - 0.10 0.01 4 
Blx : 3.8 - 0 .08 - 0.001 0.02 0.003 -0.01 0 
Blx : 0.8 - 0 .12 0.002 0.04 0.007 0 0.002 
BI: 11.6 -0.22 0.0'7 0.03 0.020 - 0.04 0.011 
BI: 7.0 - 0.27 0.03 1 0.02 0.028 -0.06 0.016 
BI : 0 .0 - 0 ·35 0.052 - 0.04 0.053 -0. 11 0.021 
TlOo -0.14 o.oog 0.04 0.0'7 0 0.0 13 
TI25 -0.17 0.008 0.02 0.018 - 0.04 0.016 
P4 - 0.60 0.094 - 0.03 o.oBI -0.07 0,028 

Trilateration net 

Measured minus calculated 

(5) (6 ) (8) 
n = 2.59 

Measured Constant B Variable B 

Locationt u D.u D.v flu D.v 
ma- I ma- I ma- I ma- I ma- I ma- I 

og75 - 4.26 0.61 -2·45 0-43 - 1.78 0.21 
ogl - 6·55 0.20 - 0.g2 -0.17 - 1.05 -0.08 
oB40 - 6.B3 0.11 0. 10 0.1 I - 0.20 0.15 
0785 - 6.82 0.07 0.41 o.og 0 0.13 
0725 - 6 .61 0.07 0.63 0.05 0.04 0.12 
065 - 6 ·43 0.12 0.69 0.25 -0.24 0·33 
055 - 5·97 - 0.01 1.67 0.06 -0.01 0.25 
045 -5.41 0 2.40 -0. 17 -0. 13 0.07 
035 - 4.40 - 0.15 3. 13 o.og -0.07 0.23 
030 - 3.7 1 - 0.15 3. 23 o.IB -0. 11 -0.04 
020 - 2.56 - 0.23 3·33 0.01 0.03 -0.01 
010 - 1.27 - 0.28 2.40 0·75 0.15 0.16 
005 - 0· 72 - 0.30 1.25 1.77 0.02 0.40 

* Prefix P indicates pole on glacier surface. Prefix T indicates pole in tunnel floor . Prefix B 
indicates bore hole. Bore-hole locations are followed by number indicating depth in meters 
below hole top (e.g. Bo: 6.4 = 6,4 m below top of hole Bo). See Figure I. 

t N umbers give distance from divide. See text and Figure 2. 
Numbers in columns (3), (4), (7), and (8) are delta values obtained by subtracting the 

calculated velocity from the known velocity. Negative u velocities are in the down-glacier 
direction and negative v velocities are downward. 
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T06I, T081, TogI, and T0975, which penetrated well into the white ice at the base of the 
glacier (Fig. 2). (Hole numbers and numbers of labeled nodes in Figure 2 give the approxi
mate distance from the divide-061 being 6.1 km; 0975, 9.75 km; and so forth ) . Finally, 
study of cores from holes T061, T081, and Tog75 indicates that the basal white ice with a 
single maximum fabric is overlain by a 40 to 60 m thick layer of ice with a multiple (2 to 4) 
maximum fabric, which in turn is overlain by a 75 m thick layer of ice with a broad single 
maximum fabric. Still higher in the glacier, crystals are smaller and c-axes are randomly 
oriented. * 

This domain was divided into 201 elements with 251 nodes (Fig. 2). Velocities are known 
at 14 of the surface nodes (Table I, column (6)) from Holdsworth's (1975) surveys. Nodal 
temperatures were estimated from the measured temperature distribution in the down-glacier 
half of the domain, and from a temperature distribution calculated using Budd and others' 
(1971) column model in the up-glacier half. A velocity boundary condition was used at the 
up-glacier end of the flow line with u = 0 everywhere, and with v = 0.29 m a-I at the 
surface (Holdsworth, 1975) and decreasing linearly with depth. A no-slip boundary condition 
was used at the frozen base and a zero-stress boundary condition along the surface. 

Because ice fabrics in bore holes T061 and T081 are comparable to those between holes 
BI and B2 on pole line B, the initial finite-element calculation for this problem was done with 
the values ofn (1.65) and B- s (3.2 in the blue ice and 1.8 in the white) obtained from analysis 
of deformation of these latter holes, as described above. This resulted in horizontal velocities 
which were substantially too high. A higher value of n would be consistent with the higher 
stresses in this part of the glacier (Budd, 1969, p. 2 I ) , so a value of 2.6 was tried. This reduced 
the velocities, but the differences between observed and calculated velocities were not uni
formly distributed (Table I, column (7)). Because the largest discrepancies were in the up
glacier half of the domain, it was concluded that the ice here might not have recrystallized as 
extensively as that farther down glacier, and that B - s might thus be higher. After a few trials, 
the distribution of B-s shown in Figure 2 was found to give good agreement between calculated 
and observed horizontal velocities (Table I, column (8), and Fig. 3) . 

Calculated and observed vertical velocities still did not agree well, however (Fig. 4), and 
several factors may contribute to these discrepancies. Relatively small longitudinal variations 
in horizontal velocity, and hence in longitudinal strain-rate, possibly arising from small 
calculation errors associated with the descretized finite element network, or possibly caused 
by imperfect adjustment of the assumed surface profile to the assumed bed profile, may lead 
to substantial variations in vertical velocity. This leads to an artificial high-frequency noise, 
which could be eliminated by rather small adjustments of the upper surface topography. 
Small transverse compressive strain-rates also exist (Holdsworth, 1975) and are probably 
responsible for the observed velocities being systematically higher than the calculated results 
(Fig. 4). 

A further comparison of calculated and measured velocity is possible in hole T06 I (Fig. 5). 
The vertical variation of horizontal velocity shows a tendency to be less concave near the ice 
divide than distant from it. At distances more than 3 km from the divide, the profiles are fairly 
consistent, but are still less concave than observed at 6. I km. This is suggestive of either a 
higher value of n or of a decrease in B with depth in the blue ice. This latter possibility is 
suggested by the depth variation of fabric described above. No attempts were made to 
adjust n or B to produce a better fit to this vertical profile. 

• Paper entitled "Changes in ice fabric and texture with depth and with distance along a flow line", by 
R. L. Hooke and P. J. Hudleston, is in preparation. 

https://doi.org/10.3189/S0022143000014696 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000014696


VELOC I TY AND TEMPERATU R E CALCULAT I ONS 139 

7 

I 
c 
E 

>-
I-

U 
0 
...J 
W 
> 
...J 
<! 
I-
z 
0 
N 

Cl:: 
0 
J: 

DISTAN CE FROM MARG IN (km) 

Fig. 3. H orizontal velocity calculatedfromfinite-element program using n = 2.6 and variation of B shown in Figure 2, compared 
with measured horizontal velocity. Small dots are results calculated at nodes on surface. Open circles show values measured 
on modeled flow line. xs show average of values measured on flow lines approximately 0.5 km east and west of modeled 
flow line. Measured values from H oldsworth ( [975). 

I 
C 

E 

>
I-

u 
o 
...J 
W 
> 
...J 

0 . 6 0 

<! - 0 . 2 
u 

I-

5-0.4 
> 

-0. 6 

o 
DJS TANCE FROM MAR GIN 

Fig. 4. Comparison of calculated and observed vertical velocity. Symbols are the same as in Figure 3 . 

https://doi.org/10.3189/S0022143000014696 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000014696


140 JOURNAL OF GLACIOLOGY 

1. 0 * 
" 0 10 ~ 0.9 

020 0 

0 030 ." 0.8 
x 040 ~ t::. 061 

0.7 10 
+ 081 d~ 
0 091 'Xl 

0 . 6 ,j 
y - y ~ 
__ b 0.5 , 

" Ys - Yb 1l 
0.4 I~ I 

0.3 
c~9 
I .pt 

/ / 
0.2 /1 

/ 

/ +/ 
0. 1 0(/ Jj " \ 

",'" /' .: T06 1 
-~ ---

00 0 .2 0.4 0 .6 0.8 1. 0 
u I us 

Fig. 5. Dimensionless velocity profiles along trilateration net flow line. Points labeled ala are from profile I kmfrom divide 
and soforth (see text ). M easuredprofile in hole T 061 is givenfor comparison. Yb andys are the heights of the glacier bed 
and surface, respectively, above an arbitrary datum, and u and Us are the horizontal velocities at heights y and Ys . 

D ISCUSSION OF FLOW CALCULATIONS 

The main uncertainty in the flow calculations lies in the discretization error associated with 
the relatively small number of elements and their specific arrangement in the models. A 
larger number of elements, or possibly a more nearly optimal arrangement for the number 
used, is possible; the main limitations are only the effort in setting up input, which is done 
manually because of the complicated structure, and computer time, the expense of which 
climbs dramatically with increasing number of nodes. Based on the tests against simple 
analytic solutions, we believe the results of the fairly coarse grid we used should be accurate 
to better than 10% except possibly very near the margin where the number of grid points over 
depth drops. This is adequate to draw some conclusions. 

We can conclude with some certainty that the flow-law parameters deduced for the blue 
and white ices by analysis of bore-hole and tunnel deformation data (Hooke, 1973[b]) do not 
apply homogeneously and uniformly to these ice types over the whole ice-sheet section. 
Based on a number of trials with various assumed constant values of Band n, we conclude 
with somewhat less certainty that no homogeneous and uniform power-type flow law can 
adequately explain the observed motion. Therefore, we are led further to conclude that, in 
addition to the already documented differences between blue and white ice, the known 
structural heterogeneity and non-uniformity of the blue ice is also reflected in flow behavior 
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which varies from place to place. The values of n a nd B assumed in the models seem reason-. 
able in view of wha t is known about the structure of the ice, * but we do not suggest that these 
values represent a unique or bes t interpretation. A depth variation also seems likely, and 
further effort is needed to include this in the calculations. In this regard, it is important to 
recognize a certain inconsistency in the effor ts d escribed herein; spatial variation of B is 
attributed to variation of c-axis fabric, which implies a plastic anisotropy not taken into account 
by the calcula tion procedure. 

In addition to these specific r esults regarding the behavior of sections of the Barnes Ice 
Cap, the calculations suggest som e possibly more general charac teristics of the behavior of ice 
caps spreading from a ridge. The tendency for depth profiles of horizontal velocity to be less 
concave near the divide than on the flanks is proba bly rela ted to the symmetry condition at the 
divide ra ther tha n to any specific details of the geometry or flow-law assumptions. The 
irregular varia tion of vertical velocity along the surface suggests a strong sensitivity of vertical 
velocity to small per turbations on the upper surface. If this is true, prediction of vertical 
strain-rate a nd the rela tion between age and depth by numerical methods must be done 
cautiously. These features of fl ow near a divide have been found in calcula tions using the 
geometry and temperature distribution of the D evon Island ice-cap divide, and also in 
calcula tions using a n idealized divide geometry, a nd a re probably quite general (unpublished 
calcula tions a nd m anuscript in preparation by C. F. R aymond). 

A disturbing result of the fini te-element calcula tions is tha t pressures in the elemen~s 
oscilla te longitudinally. In the trila tera tion net sec tion longitudina l oscilla tions of about 20 % 

were calcula ted locally in a series of elements along the bed. An overa ll down-glacier decrease 
in pressure is consistent with the d ecreasing ice thickness, bu t the oscillation is an artifact of 
the calcula tion . Similar but smaller oscilla tions occurred in a few places in the solution for 
pole line B. In the solution for the sla b on a slope they were almos t n on-existent, being present 
only in the basal layer of elements, a nd then with a rela tive amplitude of less tha n 1%. 

M E THOD FOR TEMPER AT URE CALCULAT IONS 

The finite-elem ent equations for descrip tion of the temperature distribution within the 
glacier are developed from the steady-state fie ld equation with combined advection and 
diffusion: . 

V ·kV 8- pcvu · V8+ d-r = 0 , 

where 8 is the tempera ture, k the thermal conductivi ty, Cv the heat cap acity, and u the velocity. 
This assumes no heat production from chemical or phase-change effects. . 

Galerkin's technique (Huebner , 1975, chapter 4 ) is used to d evelop the finite-element 
expressions for this governing differen tial equa tion . The Galerkin d evelopment introduces the 
natural boundary conditions to a llow specification of temperatures or temperature gradients 
on any boundary. Inclusion of the advective terms causes matrices to be non-symmetric, but 
they remain ba nded . The fronta l solutiGn technique as developed for finite-element a pplica
tions by Hood (1976) is used to solve the equations. 

The heat genera tion dr in each element was calcula ted from the effective strain-rate. 
The components of the strain-rate tensor were calculated from. their d efinition in terms of the 
velocity deriva tives, which in turn are given by the specified nodal velocities. From Equations ' 
(4) , (5), (6), a nd (8) dr = 2Bi.( I+ I /n) . Because B is temperature d ependent, an iterative 
solu tion method is required, bu t convergence is ra pid. 

* Since completion of this paper, fa bric data were obtained from a 300 m hole a t 020 (Fig. 2 ). A random 
fa bric on the upper pa rt of this hole gives way directly to a m ultiple-maximum ( 2 - 3 maxima) fabric at a depth 
of a bout 130 m. This is not consistent with the variation in B _s assumed in the calculations. 
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Most of the input for the temperature program is· virtually identical to that for the flow 
program. The main differences are that: ( I) nodal velocities must be specified; (2) the 
boundary conditions are now either a temperature or a temperature gradient; and (3) two 
additional material properties, the thermal conductivity and the heat capacity of the ice, must 
be specified. 

It has been recognized that numerical solution of the heat-flow equation can present 
serious difficulties when the advective term is important (Heinrich and others, 1976). These 
difficulties stem from the combination of the essentially elliptic and parabolic nature of the 
two terms, and result in oscillation in the solution whenever the mesh size exceeds a certain 
critical value. Such oscillations with amplitudes up to 0.5 deg in the longitudinal direction, 
occurred initially in the trilateration net model. To reduce this oscillation to a more accept
able level, up-winding was incorporated into the program (Heinrich and others, 1976). 

On the University of Minnesota Cyber 74 the trilateration net model required 7.4 s per 
iteration. Convergence is usually satisfactory after three iterations. The program uses 
approximately 50 000 octal (= 20 480 decimal) storage words for this application. 

TESTS OF TEMPERATURE PROGRAM 

The temperature program was tested against analytical solutions of Robin (1955) and 
Budd (1969, p. 67, equation (26)) . These tests were done on a slab 1000 m thick with a 
basal temperature gradient of 0.02 deg m - I. In one test, the horizontal velocity u was set to 
zero and v varied linearly from 0 at the bottom to 0.3 m a- I downward at the surface, giving a 
temperature difference across the slab of 8.9 deg. The calculated profile was within 0.05 deg 
of Robin's analytical solution. Slightly warmer temperatures were calculated by the finite
element program owing to mechanical generation of heat which is not taken into account by 
Robin's solution. In a second test, u was set equal to 5 m a- Ion the surface and decreased to 
zero at the bed in accord with Glen's law, and v was set to zero everywhere, giving a tempera
ture difference across the slab of 25.0 deg. The resulting profile was within 0.04 deg of 
Budd's analytical solution. 

ApPLICATION TO BARNES I CE CAP 

The temperature distribution along the trilateration net flow line (Fig. 2) was initially 
calculated using input velocities deduced from Holdsworth's (1975) surface measurements. 
The variation ofu with depth was determined from Glen's law with n = 3 and with B adjusted 
to give u = 0 on the bed; v was assumed to decrease linearly with depth. The temperature on 
the upper boundary was measured in shallow bore holes, and the temperature gradient at 
the bed was allowed to vary from 0.015 deg m- I at the distal edge to 0.0 19 deg m - I at the 
divide in accord with measurements in holes T061 and T09!. 

The finite-element model gave a temperature distribution in the up-glacier half of this 
domain which was in reasonable agreement with Budd and others' (197 I) column model. 
Differences between the two models were generally less than 0.5 deg, and can be acC')Unted 
for by slight differences in the vertical . velocities assumed for the two models and by the 
approximations used in the column model to deal with horizontal advection. In the down
glacier part of the domain, however, good agreement between measured and calculated 
temperatures was not obtained. In T061 the calculated temperature profile was systematically 
about 1.4 deg warmer than the measured profile over the bottom 75 % of the glacier, and in 
TogI the discrepancy was even greater (Fig. 6, long-dashed curves). The magnitude of the 
discrepancies suggested that the measured profiles were adjusted to either lower (i.e. more 
negative or downward, or less positive) vertical velocities, than used in the finite-element 
calculation, or to lower horizontal advection (lower u or dOjdx). 
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Fig. 6. Measured and calculated temperature profiles in bore holes To61 and T 09 I. Long-dashed curve was calculated using 
measured vertical ve/ocities, whereas short-dashed curve was calculated using vertical velocities required for a balanced mass 
balance with present accumulation pattern, horizontal velocities, and suiface profile (see text ) . 

Modeling with the use of a one-dimensional finite-difference program * using observed 
values of u and d8 /dx, and consideration of the sensitivity of the vertical velocity to small 
changes in longitudinal strain-rate suggested that uncertainties in the vertical velocity were 
most likely. If the accumulation-rate (negative for ablation) d is assumed to be given by 
d = f (x) + c, where x is the longitudinal coordinate andf(x) is obtained from recent measure
ments (Holdsworth, 1975; and unpublished measurements of R . L. Hooke), the constant 
c can be adjusted to give a balanced budget. Then v = d+ u tan ex, where IX is the surface 
slope, yields a new vertical velocity distribution. Use of this velocity distribution considerably 
improved the agreement between calculation and measurement (Fig. 6, short-dashed curves) . 
Discrepancies still exist, however, and further modeling will be necessary to identify possible 
causes of these discrepancies. 

One factor not taken into consideration in the finite-element model is surface warming 
in response to climatic warming, p·ossibly accentuated by the effects of percolating melt water 
(Hooke, 1976[bJ ) . The reverse curvature near the top of the To61 profile (Fig. 6) implies 
such warming, and finite-difference modeling suggests that this reversal could have been 
caused by a warming of slightly less than a degree about a decade ago. 

A tentative conclusion based on work done to date is that vertical velocities at the surface 
at present are higher than those to which the temperature distribution and surface profile of 
the ice cap are adjusted. This contrasts with Holdsworth 's (1975, p. 17) conclusion that 
"dynamically the ice cap seems to be reacting to a lower accumulation-rate and higher 
ablation rate than are currently recorded". The temperature modeling suggests instead that 
dynamically the ice cap is in fact responding to a higher-than-average accumulation-rate 
sometime in the recent past. 

* Paper entitled "Temperature profiles in the Barnes Ice Cap, Baffin Island, Canada, and heat flux from the 
subglacial terrain", by R. L. Hooke, R . J . Gustafson, and E. C. Alexander, Jr. 
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PERSPECTIVE ON METHODS 

It is worthwhile contrasting the methods described here with other models of glaciers and 
ice sheets (Nye, 1960; Rasmussen and Campbell, 1973; Budd and Jenssen, [1975]; Budd, 
1975; Jenssen, 1977). These latter models are time-dependent; they calculate the redistribu
tion of mass with time as their principal goal, and as such are concerned more with ice 
discharge and less with details of the velocity distribution. With this goal it is appropriate to 
introduce averages over depth in cross-sections of a glacier and assumptions about vertical 
variation of velocity in order to arrive at a practical computational scheme which can be 
stepped through long intervals of time. 

Except for the restrictions to planar deformation and isotropic quasi-viscous flow, the 
model we present avoids such simplifications and is limited in accuracy only by the density of 
grid points and knowledge of the correct flow law. It gives the velocity distribution in detail. 
Conceivably, it could be used for time-dependent models and the actual computer program
ming is not difficult, but this is not very practical because of the large amount of computer 
time required for each time step. The utility of the method lies more as a means to test specific 
hypotheses against measurements. For example, the methods we describe could be used to test 
the simplified time-dependent models mentioned above at any given time step. 

CONCLUDING STATEMENT 

An obvious conclusion that can be drawn from the modeling we have done so far is that 
in the absence of measurements which can be used to "tune" the models, the calculated 
velocities and temperatures must be used with considerable caution. Also, tuning such models 
by adjusting temperature gradients or spatial variation of flow-law parameters, for example, 
to better match field data, is a somewhat uncertain process. We have successfully improved 
the agreement between calculation and measurement in the flow models for the Barnes Ice 
Cap through several trials of Band n, and have arrived at plausible values of these constants 
with spatial variations which are reasonably compatible with observation and intuition. 
Better agreement could undoubtedly be obtained with further trials, but until experimental 
data on the variations of Band n with fabric and grain size are available, the range of possible 
values for these parameters is too large to make such an exercise productive. Better agreement 
between calculated and measured temperatures probably could also be obtained by varying 
the boundary conditions and the vertical velocities. In either case, however, the uniqueness 
of the solutions is questionable in the absence of field and laboratory support for any assump
tions that are made. 

One of the most important results of the modeling we have done so far is that attention 
has been sharply focused on the need for a more comprehensive constitutive relation between 
stress and strain-rate. This relation must include not only the effects of fabric and grain size 
on the "flow-rate under a given stress, but must also address the problem of the progressive 
development of fabrics with increasing total strain. 
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DISCUSSION 

L. W . MORLAND: I t is possible to prescribe accumulation/ablation-rates to conform with 
smooth velocities observed on the surface, and then determine the free surface, but this is a 
much more difficult computation. 

C. F . RAYMOND: A smooth distribution of emergence velocity along the surface could be 
obtained by letting the surface adjust in time to come into balance with a prescribed, smoothly 
varying distribution of net balance. This could be done with our method, but it would involve 
stepping in time and would probably take too many time steps. 
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MORLAND: Zero velocity at the base is incompatible with finite ablation at the margin, so 
there is a singularity in the solution which is not described by the numerical method. Or, as in 
this case, the solution must imply zero ablation at the margin which is inconsistent with 
observation. 

RAYMOND: We do not prescribe net balance. The free upper surface moves up and down 
according to the velocity determined by the geometry, assumed ice properties, and the ideali
zation by finite elements. Right at the edge, the velocity is zero, and of course this geometry 
could not be maintained against ablation. Since we seek the velocity at a given time under a 
given geometry I do not think this is a serious problem. Ifwe were to time iterate as envisaged 
in my answer to your first question, this would be a definite problem. 

R. BREPSON: I suppose that you compute the plastic deformation with the deviatoric stress 
at each step. Thus you are right to use high isoparametric elements. How many iterations 
are necessary to achieve convergence? 

RAYMOND: Our actual iteration procedure involves computation of effective viscosity from 
effective strain-rate associated with a trial velocity distribution. This effective viscosity 
distribution is used to recalculate an improved velocity distribution. Once the trial solution 
is close enough to the real one ( I to 10%) , then the Newton- Raphson method we use converges 
very rapidly. Only several iterations are required to achieve 10-6 to 10- 8 fractional change 
from iteration to iteration. 

BREPSON: What is the coupling between the temperature solution and the deformation 
solution? Is it the dependence of viscosity on temperature? 

RAYMOND: The coupling comes through the effect of temperature on effective viscosity, which 
affects the mass flow and velocity which causes advective transfer of heat. 

O. ORHEIM : Your two measured temperature profiles seem remarkably similar to the depth 
measured of about 100 m, even though one was in the ablation area and one in the accumula
tion area, and we tend to think that the heat input into the latter area must be much greater 
because of refreezing of melt water. 

N . W. YOUNG : If you consider the full equation you are using, the inclusion of the second 
derivative in the horizontal 02(}/OX2 of the temperature admits oscillating solutions in the· 
horizontal because of the relative proportions of the dimensions. Removal of that term, as is 
possible in finite-difference techniques, would give a more reasonable solution without that 
problem. 

RAYMOND: The steady-state heat-flow equation with both diffusion and advection terms has a 
combined elliptic-hyperbolic character which is apparently the source of the problem. 
Intuitively I would expect that the term 02 (} /OX2 would tend to even out oscillations by 
diffusion and therefore help the situation. Hit is advantageous to leave it out (without loss of 
accuracy in the glacier calculations where horizontal conduction is negligible) , this is more 
difficult to accomplish in the finite-element method than the finite-difference method. 

D. A. YUEN: What is the maximum effective viscosity encountered in your calculations? Was 
any cut-off effective viscosity used to stabilize the Newton-Raphson scheme used in the set of 
non-linear algebraic equations? What is the maximum difference in effective viscosity among 
all sets of nodal points? 

RAYMOND: No effective viscosity cut-off was used to stabilize the Newton-Raphson scheme. 
Off-hand I do not know the maximum viscosity contrast in the Barnes Ice Cap solutions. 
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