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Abstract

An enumeration result for orientably regular hypermaps of a given type with automorphism groups
isomorphic to PSL(2, q) or PGL(2, q) can be extracted from a 1969 paper by Sah. We extend the
investigation to orientable reflexible hypermaps and to nonorientable regular hypermaps, providing many
more details about the associated computations and explicit generating sets for the associated groups.
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1. Introduction

A regular hypermap H is a pair (r, s) of permutations generating a regular permutation
group on a finite set, and provides a generalization of the geometric notion of a
regular map on a surface, by allowing edges to be replaced by ‘hyperedges’. The
cycles of r, s and rs correspond to the hypervertices, hyperedges and hyperfaces of H,
which determine the embedding of the underlying (and connected) hypergraph into the
surface, and their orders give the type of H, say {k, l, m}. The group G generated by r
and s induces a group of automorphisms of this hypergraph, preserving the embedding,
and acting transitively on the flags (incident hypervertex-hyperedge pairs) of H. When
one of the parameters k, l, m is 2, the hypergraph is a graph, and the hypermap is a
regular map.
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The theory of such objects is well developed, and has been thoroughly explained
in [10, 11]. Without going into too much detail, we need to make a few basic
observations. First, the group G has a presentation of the form

G = 〈r, s, t | rk
= sl
= tm

= rst = · · · = 1〉,

and (so) is a finite quotient of the ordinary (k, l, m) triangle group. For simplicity, we
will say that such a group G has type (k, l, m), provided that k, l, m are the true orders
of the corresponding elements r, s, t . There is a bijective correspondence between
isomorphism classes of regular hypermaps of a given type {k, l, m} and torsion-
free normal subgroups of the ordinary (k, l, m) triangle group 1(k, l, m), and the
number of those with a given group G as ‘rotational symmetry group’ (or quotient of
1(k, l, m)) is equal to the number of ways of generating G by a (k, l, m)-triple (r, s, t)
up to equivalence under Aut(G). For further details about representing hypermaps in
the form of cellular decomposition of closed two-dimensional surfaces and visualizing
the rotational symmetries, and also their association with Riemann surfaces and
algebraic number fields (through Grothendieck’s theory of dessins d’enfants), we refer
the reader to [4, 10, 11].

A regular hypermap may admit a symmetry that induces a reversal of some local
orientation of the supporting surface. At the group theory level, this is equivalent
to the existence of an automorphism ϑ of a (k, l, m)-group G presented as above,
such that ϑ inverts two of the three generators. Such regular hypermaps are called
reflexible. If ϑ is actually given by conjugation of some element of order two in G,
then the corresponding (k, l, m)-generating triple for G gives rise to two distinct
reflexible hypermaps: one on a nonorientable surface S , with full automorphism
group G, and another one on an orientable surface that is a double cover of S , with full
automorphism group isomorphic to the direct product of G with the cyclic group of
order two. We will call this kind of generating triple inner reflexible, since the inverting
automorphism is inner. The Euler characteristic χ of the regular hypermap of type
(k, l, m) associated with a rotational symmetry group G of type (k, l, m) is given by
χ = |G|(1/k + 1/ l − 1/m) in the orientable case, and χ = |G|(1/k + 1/ l − 1/m)/2
if the supporting surface of the hypermap is nonorientable.

In 1969, Sah [15] extended some work of Macbeath [14] by enumerating orientably
regular hypermaps of a given type (k, l, m) with automorphism groups isomorphic to
PSL(2, q) or PGL(2, q). Further results in this area were obtained in [12, 13], where
certain necessary and sufficient conditions for the existence of an orientably regular
map of a given type were found, and in work by Downs [6], Breda and Jones [2], and
Glover and Sjerve [7]; see also [1].

The aim of this paper is to extend Sah’s investigation to reflexible hypermaps, on
both orientable and nonorientable surfaces, and provide much more detail about the
associated computations, including explicit generating sets for the associated groups.
In a forthcoming paper [3] we will apply the results of this refined approach to the
classification of all regular maps of Euler characteristic equal to−p2 for some prime p.
For completeness, we mention that, to the best of our knowledge, the only other
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classes of classical groups for which a (partial) classification of regular maps has been
considered are the Suzuki groups and Ree groups (see [8, 9]).

A triple (k, l, m) is called hyperbolic, parabolic, or elliptic, according to whether
1/k + 1/ l + 1/m − 1 is negative, zero, or positive. We will restrict ourselves
to hyperbolic triples. The reason for this restriction is that in the parabolic
case (where 1/k + 1/ l + 1/m = 1), the only case where G is a projective two-
dimensional linear group is G ∼= PSL(2, 3)∼= A4 for the triple (3, 3, 3), and for the
elliptic type (where 1/k + 1/ l + 1/m > 1), there are only four such cases, namely
G ∼= PSL(2, 2)= PGL(2, 2)∼= S3 for the triple (3, 2, 2), G ∼= PSL(2, 3)∼= A4 for the
triple (3, 3, 2), G ∼= PGL(2, 3)∼= S4 for (4, 3, 2), and G ∼= PSL(2, 4)∼= PGL(2, 4)
∼= PSL(2, 5)∼= A5 for (5, 3, 2). Note that in a hyperbolic triple the smallest element
cannot be less than 2; if it is equal to 2, then the remaining entries are at least 3.

In Section 2 we provide a detailed analysis of hyperbolic triples (up to conjugacy)
in projective two-dimensional linear groups, and then in Section 3 we consider what
happens when an inverting automorphism exists, and determine the groups they
generate in Section 4. We re-establish Sah’s enumeration [15] for hyperbolic triples
for such groups in Section 5, and then apply this to the classification of reflexible
hypermaps (on both orientable and nonorientable surfaces) in Section 6, and make
some concluding remarks in Section 7.

2. Conjugacy classes of representative triples

Let (k, l, m) be a fixed hyperbolic triple and let f be an isomorphism taking a finite
(k, l, m)-group G with a partial presentation of the form

G = 〈r, s, t | rk
= sl
= tm

= rst = · · · = 1〉

onto PSL(2, F) or PGL(2, F ′), where F and F ′ are fields of characteristic p. From
the point of view of the associated computations with projective transformations f (r),
f (s) and f (t), it turns out to be of advantage to consider first the situation in the
special linear group SL(2, K )where K is an algebraically closed field of characteristic
p (such as the union of an ascending chain of all fields of order a power of p).
The results will then be carried over to PSL(2, K ) by the natural projection given
by M 7→ M =±M for any 2× 2 matrix M ∈ SL(2, K ), which will also help to
determine the subfields F and F ′. To facilitate the exposition, any of the two matrices
M,−M ∈ SL(2, K ) will be called a representative of M ∈ PSL(2, K ).

The next few observations will address orders and conjugacy classes of elements
in SL(2, K ). If p is odd, then SL(2, K ) contains exactly one involution, namely, −I ,
where I is the 2× 2 identity matrix. All elements of order p and 2p in SL(2, K ) are
known to be conjugate to the transvections U and −U , respectively, where

U =

[
1 1
0 1

]
, (2.1)

and there are no elements of order divisible by p for any other multiple of p.
Equivalently, if p is odd, the order of an element J ∈ SL(2, K ) is p (respectively 2p)
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if and only if J 6= ±I and the trace tr(J ) of J is equal to 2 (respectively −2). If
p = 2, then all elements in SL(2, K ) of order two are conjugate to U , and there are
no elements there of any even order greater than two. For any prime p, an element of
SL(2, K ) of order i , where i ≥ 3 and gcd(i, p)= 1, is known to be conjugate to one
(and hence to both) of the matrices

V (ξ)=

[
ξ 0
0 ξ−1

]
and W (ω)=

[
0 −1
1 ω

]
, (2.2)

where ξ is a primitive i th root of unity over K p = Fp, and ω = ξ + ξ−1. In other
words, an element J ∈ SL(2, K ) has order i , where i is as above, if and only if
tr(J )= ω = ξ + ξ−1 for some primitive i th root of unity ξ over Fp. Note that, if
i ≥ 3, we have ω /∈ {2,−2}.

Returning to the isomorphism f introduced at the beginning, let R, S,
T ∈ PSL(2, K ) be the images of r, s, t under f ; in particular, RST = I where I is the
2× 2 identity matrix. We will refer to the orders (k, l, m) of R, S, T as the projective
orders. Our aim is now to specify which representatives R, S, T ∈ SL(2, K ) of
R, S, T we will be working with. This will depend on the projective orders in the
following way. Suppose, for example, that p is odd and k is even. Since k was
assumed to be the order of R ∈ PSL(2, K ), it is plain that the order of both R and −R
in SL(2, K ) must be 2k. On the other hand, if both p and k are odd, then the orders of
R and −R form the set {k, 2k}. Of course, the same holds for S and T . It follows that
if p is odd and one of the entries k, l, m is even, then by suitably combining signs we
may choose the representatives R, S, T ∈ SL(2, K ) in such a way that the orders of R,
S and T are 2k, 2l and 2m, respectively, and RST = I . If p and all of k, l, m are odd,
then we may choose the representatives R, S, T in such a way that RST = I and their
orders are either (k, l, m) or (2k, 2l, 2m); these two cases are mutually exclusive. If
p = 2 then SL(2, K )∼= PSL(2, K ) and R, S, T simply have orders k, l, m.

Triples of matrices (R, S, T ) in SL(2, K ) with RST = I and with the orders
specified as above will be called representative triples, and the orders of R, S, T
in SL(2, K ) will be called representative orders and denoted by (κ, λ, µ).
Representative orders are therefore related to projective orders as follows. We have:
(κ, λ, µ)= (2k, 2l, 2m) if p is odd and at least one of k, l, m is even; (κ, λ, µ)
= (k, l, m) or (2k, 2l, 2m) if p and all of k, l, m are odd; and (κ, λ, µ)= (k, l, m)
if p = 2. Note that if one of the orders, say k, is a multiple of p, then it
follows from Dickson’s classification [5] of subgroups of PSL(2, K ) that k = p.
We can therefore confine ourselves to triples (k, l, m) with gcd( j, p)= 1 or j = p
whenever j ∈ {k, l, m}; such triples will be called p-restricted. For the corresponding
representative order, we have κ ∈ {p, 2p} if p is odd, and κ = p if p = 2. In
particular, if p divides all of k, l, m, then (k, l, m)= (p, p, p) for all p, and (κ, λ, µ)
= (p, p, p) or (2p, 2p, 2p) if p is odd, while (κ, λ, µ)= (p, p, p) if p = 2.

In general there can be many distinct conjugacy classes of representative triples
(R, S, T ) having the same p-restricted projective orders (k, l, m) and the same

https://doi.org/10.1017/S1446788708000827 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000827


[5] Regular hypermaps over projective linear groups 159

representative orders (κ, λ, µ). Later we will show that it is possible to determine
the number of such conjugacy classes by means of counting the corresponding trace
triples (tr(R), tr(S), tr(T )). Earlier in this section we saw that if p is odd and ν is
the order of an element M ∈ SL(2, K ) with M 6= ±I , then one of the following three
possibilities occurs:

(1) ν ≥ 3 and (ν, p)= 1, which happens if and only if tr(M)= ων = ξν + ξ−1
ν ,

where ξν is a νth primitive root of unity;
(2) ν = p, which happens if and only if tr(M)= 2; or
(3) ν = 2p, which happens if and only if tr(M)=−2.

To capture this in a single formula, we extend the definition of ων also to ν = p and
ν = 2p by stipulating that ων = ξν + ξ−1

ν , where ξν is the (ν/p)th primitive root of
unity exp(2π iν/p); this gives ωp = 2 and ω2p =−2. If p = 2, then we just change 2
to 0 in part (2) of the above, and omit part (3) (where ν = 2p). With this all applied
to ν = κ , λ and µ, the trace triple corresponding to the above representative triple
(R, S, T ) is simply (ωκ , ωλ, ωµ).

In the remaining part of this section we prove the important fact that, up to
a certain small class of exceptions, any two representative triples having both the
same projective and representative orders and the same trace triple are conjugate in
SL(2, K ).

It will be of advantage to consider first the case where at least two of k, l, m are
equal to p. If p = 2, the projective group 〈R, S, T 〉 is dihedral and therefore out of
the scope of our interest. We will therefore assume without loss of generality that
(k, l, m)= (p, p, m) where p is an odd prime.

PROPOSITION 2.1. Let p be an odd prime and let (k, l, m) be a p-restricted
hyperbolic triple such that k = l = p and m ≥ 2. Let (R, S, T ) be a representative
triple corresponding to the representative orders (κ, λ, µ)= (εp, εp, εm) for
suitable ε ∈ {1, 2}. Assume that the group 〈R, S, T 〉 is not abelian. Then,
(κ, λ, µ) 6= (p, p, p), and the triple (R, S, T ) is conjugate in SL(2, K ) to the triple
(R1, S1, T1), where

R1 =±

[
1 1
0 1

]
, S1 =±

[
1 0

ωµ − 2 1

]
and T1 =

[
1 −1

2− ωµ ωµ − 1

]
,

and the signs are taken simultaneously (with + for ε = 1, and − for ε = 2).

PROOF. We know that any element M ∈ SL(2, K ) of order p (2p) is conjugate to the
matrix U (−U ) given in (2.1). Without loss of generality we therefore may assume
that

R =±

[
1 1
0 1

]
and S =±

[
a b
c 2− a

]
,

where (a − 1)2 + bc = 0 (the determinant condition) and the positive (negative) signs
are taken simultaneously if κ = λ= p or 2p, respectively, giving the traces 2 and −2.
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From RST = I we obtain tr(T )= 2+ c. It can be checked that RS = S R if and
only if c = 0. Since the group 〈R, S, T 〉 = 〈R, S〉 is assumed to be nonabelian, we
have c 6= 0. Let M = (mi j ) ∈ SL(2, K ) be the 2× 2 matrix such that m11 = m22 = 1,
m21 = 0 and m12 = (1− a)c−1. It can be checked that M RM−1

= R while also

M SM−1
=±

[
1 0
c 1

]
and MT M−1

=

[
1 −1
−c 1+ c

]
.

Since conjugation preserves traces, tr(T )= 2+ c 6= 2, and therefore (κ, λ, µ) 6=

(p, p, p). In our notation, we have tr(T )= ωµ with ωµ = ξµ + ξ−1
µ , where ξµ is a

primitive µth root of unity over Fp if (µ, p)= 1 and a primitive (µ/p)th root of unity
if µ= 2p. This gives c = ωµ − 2 and leads to the three matrices in our statement. 2

It remains for us to consider the case where at most one of the projective orders
is p. We may assume without loss of generality that both k and l are coprime to p,
and k ≥ 3. At this point our approach will vary from Sah’s [15], leading to a different
form of matrices representing the generators R, S and T .

PROPOSITION 2.2. Let p be a prime and let (k, l, m) be a p-restricted hyperbolic
triple such that k ≥ 3 and k, l 6= p. Let (R, S, T ) be a representative triple
associated with the projective orders (k, l, m) and representative orders (κ, λ, µ).
Let (ωκ , ωλ, ωµ) be the corresponding trace triple, let ξκ be a κth primitive root of
unity such that ωκ = ξκ + ξ−1

κ , and let D = ω2
κ + ω

2
λ + ω

2
µ − ωκωλωµ − 4. Assume

that 〈R, S, T 〉 is not isomorphic to a subgroup of the upper triangular subgroup of
SL(2, K ). Then D 6= 0 and the triple (R, S, T ) is conjugate in SL(2, K ) to the
following triple (R2, S2, T2), with η = (ξκ − ξ−1

κ )−1:

R2 =

[
ξκ 0
0 ξ−1

κ

]
,

S2 = η

[
ωµ − ωλξ

−1
κ −D

1 ωλξκ − ωµ

]
,

T2 = η

[
ωλ − ωµξ

−1
κ ξκD

−ξ−1
κ ωµξκ − ωλ

]
.

REMARK. Later we will show that, whenever D 6= 0, the projective images of the
matrices given in the proposition above generate a group isomorphic to PSL(2, F) or
PGL(2, F) for some finite field F of characteristic p.

PROOF. Since any element M ∈ SL(2, K ) of order κ coprime to p is conjugate to the
matrix V (ξκ) in (2.2) for a suitable primitive κth root of unity ξκ , we may assume that

R =

[
ξκ 0
0 ξ−1

κ

]
, S =

[
a b
c d

]
and T =

[
dξ−1
κ −bξκ

−cξ−1
κ aξκ

]
,

where ad − bc = 1, tr(S)= a + d = ωλ, and tr(T )= aξκ + dξ−1
κ = ωµ; the reader

should be aware of the subtleties in the definition of ωµ in the case where µ ∈ {p, 2p}.
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Since k ≥ 3 and gcd(k, p)= 1, we have ξκ − ξ−1
κ 6= 0. The two equations coming

from the traces have the unique solution a = η(ωµ − ωλξ−1
κ ) and d = η(ωλξκ − ωµ),

where η = (ξκ − ξ−1
κ )−1. A computation shows that the determinant condition turns

into bc =−η2 D, which is the only condition on b and c we have. If D = 0,
then 〈R, S〉 = 〈R, S, T 〉 is clearly isomorphic to a subgroup of the upper triangular
subgroup of SL(2, K ), contrary to our assumptions. Hence we have D 6= 0. It can be
checked that, if M = diag(u, u−1) where 0 6= u ∈ K , then

M RM−1
= R and M SM−1

=

[
a u2b

u−2c d

]
.

We may choose u ∈ K such that u2b =−ηD and u−2c = η. Equivalently, up to
conjugation, we may assume that b =−ηD and c = η. This gives the matrices in
the statement of the proposition. 2

Summing up the two results yields the announced one-to-one correspondence
between conjugacy classes of representative triples and their trace triples. The
formulation is universal and depends only on the values of D = D(ωκ , ωλ, ωµ). Note
that if k = l = p, then ωκ = ωλ and they both are equal to the sum of the (κ/p)th root
of unity and its reciprocal, which is 2 or −2, and the expression for D then simplifies
to D = (ωµ − 2)2.

PROPOSITION 2.3. Let p be a prime and let (k, l, m) be a p-restricted, hyperbolic
triple. Assume that D = D(ωκ , ωλ, ωµ) 6= 0 for any triple (κ, λ, µ) of representative
orders and any trace triple (ωκ , ωλ, ωµ). Then the conjugacy classes of representative
triples (R, S, T ) associated with the projective orders (k, l, m) and the representative
orders (κ, λ, µ) are in a bijective correspondence with the trace triples (ωκ , ωλ, ωµ).

PROOF. What remains to be proved is that, given a trace ω, the pair {ξ, ξ−1
} of

primitive roots such that ω = ξ + ξ−1 is uniquely determined. This follows from the
observation that ξ and ξ−1 are roots of the polynomial x2

− ωx + 1. 2

We now derive a necessary and sufficient condition for D = D(ωκ , ωλ, ωµ) to
be zero. Recall that if ν is any of κ, λ, µ, then ων = ξν + ξ−1

ν where ξν 6= 0 is
the corresponding νth root of unity. Substituting this into the expression for D,
multiplying by ξ2

κ and simplifying, we obtain the factorization

ξ2
κ D = (ξκ − ξλξµ)(ξκ − ξ

−1
λ ξ−1

µ )(ξκ − ξ
−1
λ ξµ)(ξκ − ξλξ

−1
µ ).

Since ξκ 6= 0, this shows that D = 0 if and only if ξκξ ελξ
δ
µ = 1 for some ε, δ ∈ {±1}.

Raising the last equation to the power of [λ, µ] gives ξ [λ,µ]κ = 1, which shows that
κ divides [λ, µ]. Moreover, also λ divides [κ, µ], and µ divides [κ, λ], by the
symmetry of the function D. It is easy to see that these three conditions are satisfied
simultaneously if and only if, for each prime p′, the largest power of p′ dividing one
of κ, λ, µ divides at least two of them. We summarize this in the following lemma.
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LEMMA 2.4. In the above notation, D = 0 if and only if ξκξ ελξ
δ
µ = 1 for some ε, δ ∈

{±1}. In particular, if there exists a prime p′ such that the largest power of p′ dividing
one of k, l, m divides none of the remaining entries, then D 6= 0 for any choice of
representative triples (κ, λ, µ) and primitive roots (ξκ , ξλ, ξµ).

Finally, we note that, for any triple (k, l, m) of projective orders, the number
of all triples of primitive roots (ξκ , ξλ, ξµ) associated with the representative orders
(κ, λ, µ) and such that D = D(ωκ , ωλ, ωµ) 6= 0 has been determined in [1].

3. Adjoining an involution that inverts two generators

Let (k, l, m) be a hyperbolic triple and let H be a group with presentation

H = 〈x, y, z | x2
= y2

= z2
= (yz)k = (zx)l = (xy)m · · · = 1〉.

Keeping the same terminology and notation as introduced before, let H be a subgroup
of PSL(2, K ), where K is an algebraically closed field of characteristic p. Taking
r = yz, s = zx and t = xy, we see that H contains a subgroup G with presentation

G = 〈r, s, t | rk
= sl
= tm

= rst = · · · = 1〉

of index at most two in H . We can therefore use results of the previous section and
study the ways G can be extended by adjoining an involution z such that both r z and
zs are involutions.

We first show that, if such a z exists, then it is unique. Indeed, let z and z′ be
two involutions such that the elements u = r z, v = zs, u′ = r z′ and v′ = z′s are all
involutions. Then, z′z = u′u = v′v; denote this common element by w. A simple
calculation shows that rw = u′z′ · z′z = u′z = u′u · uz = wr , and, similarly, sw = ws.
It follows that w centralises G. But G has trivial centre (since G is isomorphic to
PSL(2, K ) or PGL(2, K )), and thus w = 1, and z′ = z. Hence the extension of G by z
is unique, if it exists.

The existence of such an extension has been known as folklore; however, we need to
derive an explicit form for z suitable for later consideration. Assume that the group G
has been mapped onto a subgroup of PSL(2, F) where F = Fp(ωκ , ωλ, ωµ) < K as
before, via the generating triples R, S, T ∈ SL(2, F) listed in Propositions 2.1 and 2.2.
In SL(2, K ), we are therefore looking for an element Z ∈ SL(2, K ) such that each of
Z , Y = RZ and X = Z S has order four if p is odd, or order two if p = 2. We begin
with the situation where two of the projective orders are equal to p, in which case p
must be odd.

PROPOSITION 3.1. Let p be an odd prime and let (k, l, m) be a p-restricted
hyperbolic triple such that k = l = p and m ≥ 2. Let (R, S, T ) be a representative
triple corresponding to the representative orders (κ, λ, µ)= (εp, εp, εm) for a
suitable ε ∈ {1, 2}. Assume that the group 〈R, S, T 〉 is not abelian. Then
(κ, λ, µ) 6= (p, p, p), and there exists some Z ∈ SL(2, K ) such that each of Z,
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Y = RZ and X = Z S has order four. Moreover, the triple (X, Y, Z) is conjugate
in SL(2, K ) to the triple (X1, Y1, Z1), where

X1 =±α

[
1 0

2− ωµ −1

]
, Y1 =±α

[
1 −1
0 −1

]
and Z1 = α

[
1 0
0 −1

]
,

with α2
=−1 and the signs taken simultaneously (+ for ε = 1, and − for ε = 2).

PROOF. If p is odd, then an element Z ∈ SL(2, K ) has order four if and only if its
trace is equal to zero, that is,

Z =

[
A B
C −A

]
,

where A2
+ BC =−1; this is the determinant-one condition. Let R1 and S1 be the

matrices from Proposition 2.1. Then,

Y = R1 Z =±

[
A + C B − A

C −A

]
,

which shows that Y has order four if and only if C = 0. Using this in evaluating
X = Z S1, we obtain

X = Z S1 =±

[
A + B(ωµ − 2) B

A(2− ωµ) −A

]
,

and therefore X has order four if and only if B(ωµ − 2)= 0. In the proof of
Proposition 2.1 we saw that ωµ 6= 2, and so X has order four if and only if B = 0.
Therefore Z = diag(A,−A) where A2

=−1. Letting Z1 = Z , Y1 = Y , X1 = X and
α = A gives our statement. 2

We now clarify the situation for the remaining hyperbolic triples.

PROPOSITION 3.2. Let p be a prime and let (k, l, m) be a p-restricted hyperbolic
triple such that k ≥ 3 and both k and l are coprime to p. Let (R, S, T ) be a
representative triple associated with the projective orders (k, l, m) and representative
orders (κ, λ, µ). Let (ωκ , ωλ, ωµ) be the corresponding trace triple, let ξκ be a κth
primitive root of unity such that ωκ = ξκ + ξ−1

κ , and let

D = ω2
κ + ω

2
λ + ω

2
µ − ωκωλωµ − 4 6= 0.

Then there exists a Z ∈ SL(2, K ) such that each of Z, Y = RZ and X = Z S has
order four. Moreover, the triple (X, Y, Z) is conjugate in SL(2, K ) to the triple
(X2, Y2, Z2), where
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X2 = ηβ

[
D D(ωλξκ − ωµ)

ωµ − ωλξ
−1
κ −D

]
,

Y2 = β

[
0 ξκD
ξ−1
κ 0

]
,

Z2 = β

[
0 D
1 0

]
,

with β =−1/
√
−D and η = (ξκ − ξ−1

κ )−1.

PROOF. First, let p be odd. Take the same general Z ∈ SL(2, K ) of order four as at the
beginning of the previous proof. Let R2 and S2 be the matrices from Proposition 2.2.
Then

Y = R2 Z =

[
ξκ A ξκ B
ξ−1
κ C −ξ−1

κ A

]
,

which implies that Y has order four if and only if A = 0. We use this in determining
X = Z S1 and obtain

X = Z S1 = η

[
B B(ωλξκ − ωµ)

B−1(ωλξ
−1
κ − ωµ) B−1 D

]
;

note that η 6= 0. It follows that X has order four if and only if B2
=−D. Letting

Z1 = Z , Y1 = Y , X1 = X and β =−B−1, we obtain the matrices as in the statement
of our proposition.

If p = 2, then Z ∈ SL(2, K )= PSL(2, K ) has order two if and only if it has the
same form as used in the previous proof, and hence the above conclusion for X1, Y1
and Z1 is valid also in this case. 2

We note that, in the notation of the previous two propositions, conjugation by Zi
inverts Ri and Si , and, similarly, conjugation by Yi and X i invert Ri , Ti and Si , Ti ,
respectively, for i = 1, 2.

4. Groups generated by representative triples

In order to determine exactly the projective group 〈R, S, T 〉 arising from a
representative triple (R, S, T ) of elements of SL(2, K ), we first determine the smallest
field F < K with the property that 〈R, S, T 〉 is isomorphic to a subgroup of SL(2, F).
Let K have prime characteristic p. If F is any field of characteristic p, we denote by
Fp ∼= G F(p) the prime field of F . For any collection α, β, . . . of elements of K let
Fp(α, β, . . .) denote the smallest subfield of K containing all of α, β, . . . .

PROPOSITION 4.1. Let p be a prime and let (k, l, m) be a p-restricted hyperbolic
triple. Let (R, S, T ) be a representative triple corresponding to projective orders
(k, l, m) and representative orders (κ, λ, µ). Let ωκ , ωλ and ωµ be such that D 6= 0.
Let F0 be the smallest field of characteristic p such that the group 〈R, S, T 〉 is
isomorphic to a subgroup of SL(2, F). Then F0 = Fp(ωκ , ωλ, ωµ).
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PROOF. Let F = Fp(ωκ , ωλ, ωµ). Observe that the traces ωκ , ωλ and ωµ of R, S and
T must be contained in the minimal field F0 of characteristic p such that 〈R, S, T 〉 is
isomorphic to a subgroup of SL(2, F0). This shows that F0 ≥ F . We need to establish
the reverse inclusion.

By Proposition 2.1 we have F0 = F if at least two of the entries k, l, m are equal
to p. Consider therefore the situation where k ≥ 3, and k and l are coprime to p, and
either m = p or gcd(m, p)= 1. Proposition 2.2 now shows that the group 〈R, S, T 〉
is isomorphic to a subgroup of SL(2, F∗) where F∗ = Fp(ξκ , ωλ, ωµ). Since ξκ and
ξ−1
κ are roots of the polynomial x2

− ωκ x + 1, the degree of F∗ over F is at most
two. Assume that ξκ /∈ F (for otherwise there is nothing to prove). Let ρ∗ be the
unique nontrivial (involutory) automorphism of F∗ that fixes F pointwise; it follows
that ρ∗(ξκ)= ξ−1

κ . A direct calculation using the matrices R = R2 and S = S2 from
Proposition 2.2 shows that ρ∗(R)= R−1 and ρ∗(S)= S−1. The same effect on R
and S, however, arises when conjugating by the matrix Z = Z2 from Proposition 3.2;
that is, Z−1 RZ = R−1 and Z−1SZ = S−1. It follows that ρ∗ and conjugation
A 7→ Z−1 AZ induce the same automorphisms of the group 〈R, S〉 = 〈R, S, T 〉.

Consider now the subgroup H∗ of all the elements A ∈ SL(2, F∗) such that
ρ∗(A)= A. It is well known that H∗ ' SL(2, F). Let H∗Z be the subgroup of
all the matrices B ∈ SL(2, F∗) such that ρ∗(B)= Z−1 B Z . From what we saw
above we may deduce that 〈R, S, T 〉 is a subgroup of H∗Z . Our strategy now will
be to prove that H∗ ∼= H∗Z . Having established this, it is sufficient to observe that
SL(2, F)≤ 〈R, S, T 〉 ≤ H∗Z

∼= H∗ ∼= SL(2, F), which implies that F0 = F .

We prove that H∗ ∼= H∗Z by exhibiting a matrix V ∈ GL(2, F̂), where either F̂ =
F∗ or [F̂ : F∗] = 2, such that V Z = ρ∗(V ). Then it is easy to see that V−1 H∗V =
H∗Z . Let β be the element we have from Proposition 3.2. If β /∈ F , then β ∈ F∗ and
ρ∗(β)=−β. In this case we may set

V =

[
1 β−1

β −1

]
and check that

V Z =

[
1 −β−1

−β −1

]
= ρ∗(V ).

On the other hand, if β ∈ F , that is, if ρ∗(β)= β, then we need to go beyond F∗.
Let F̂ be an extension of F∗ of degree two, let θ be a primitive element of F̂ , and let
a = θ (q

2
−1)/2, where q = |F |. Then the automorphism ρ̂ of F̂ given by x 7→ xq has

the property that ρ̂�F∗ = ρ
∗ and ρ̂2(a)=−a. Now for the matrix V we may take

V =

[
a β−1ρ̂(a)

βρ̂(a) −a

]
.

We leave the remaining details of the calculation to the reader. 2
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We will now show that the degree of Fp(ωκ , ωλ, ωµ) depends only on p, κ , λ
and µ, and is independent of the particular choice of primitive roots of unity. As we
know, representative orders κ , λ and µ have the property that, if an entry is a multiple
of p, then it is equal to p or 2p (with the second possibility out of consideration
when p = 2).

LEMMA 4.2. Let i be a positive integer coprime to p, let ξ be a primitive i th root of
unity, and let ω = ξ + ξ−1. Then the degree of Fp(ω) over Fp is the smallest positive
integer j such that i divides p j

− 1 or p j
+ 1.

PROOF. Let δ = [Fp(ω) : Fp], and note that the degree d = [Fp(ξ) : Fp] is the
smallest positive integer j for which i divides p j

− 1. Observe that ξ is a root of the
quadratic polynomial x2

− ωx + 1 over Fp(ω), and so the degree [Fp(ξ) : Fp(ω)] is
either one or two. If d is odd, then [Fp(ξ) : Fp(ω)] = 1, which implies that δ = d . Let
now d be even. Then [Fp(ξ) : Fp(ω)] = 2 if and only if the unique nontrivial Galois
automorphism of Fp(ξ) over Fp(ω) of order two fixes the element ω. We know that
this Galois automorphism is given by z 7→ zq where q = pd/2. It is readily verified that
(ξ + ξ−1)q = ξ + ξ−1 if and only if (ξq+1

− 1)(ξq−1
− 1)= 0, which is equivalent to

the condition that i divides q + 1 or q − 1. In both cases, δ is the smallest j such that
i divides p j

+ 1 or p j
− 1. 2

For a p-restricted hyperbolic triple (k, l, m), let e(k, l, m) be the smallest positive
integer e such that each n ∈ {k, l, m} \ {p} divides (pe

+ 1)/2ε or (pe
− 1)/2ε , where

ε is 0 or 1 depending on whether p is even or odd, respectively.

PROPOSITION 4.3. In the above notation, the degree of Fp(ωκ , ωλ, ωµ) over Fp is
equal to e(k, l, m). In particular, Fp(ωκ , ωλ, ωµ) depends only on the projective
orders (k, l, m) and not on the choice of representative orders (κ, λ, µ).

PROOF. Since ων is ±2 ∈ Fp if p divides ν, by Lemma 4.2 it suffices to show
that the statement of the proposition is equivalent to the claim that the degree of
Fp(ωκ , ωλ, ωµ) over Fp is the smallest e such that each ν ∈ {κ, λ, µ} \ {p, 2p}
divides either pe

− 1 or pe
+ 1.

This is clearly true whenever p = 2, or p is odd and one of κ, λ, µ is divisible by
4, since in these two cases (κ, λ, µ)= (2k, 2l, 2m) or (k, l, m), respectively.

We may thus assume that p is odd and none of κ, λ, µ is divisible by 4. Then k, l, m
are all odd, and (κ, λ, µ)= (2k, 2l, 2m) or (k, l, m). For an odd integer n, however,
the conditions that 2n divides pe

± 1 and that n divides pe
± 1 are equivalent, and the

statement of the proposition is again equivalent to the above claim. 2

For brevity, in the remaining part of this section we set F = Fp(ωκ , ωλ, ωµ). From
the analysis done up to this point we conclude that, under the assumptions of either
Proposition 2.1 or 2.2, the subgroup 〈R, S, T 〉 of PSL(2, K ) is actually a subgroup
of PSL(2, F), not contained in any PSL(2, F ′), where F ′ is a proper subfield of F .
We then have only two possibilities: either we may have 〈R, S, T 〉 ∼= PSL(2, F), or,
if p is odd and [F : Fp] is even, we may have 〈R, S, T 〉 ∼= PGL(2, F ′), where F ′ is
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the unique subfield of F such that [F : F ′] = 2. In what follows we will identify the
conditions under which the second case occurs. We will assume henceforth that p is
an odd prime.

Assume that the order of |F | is q2 where q is a power of p. Let F ′ be the subfield of
F such that [F : F ′] = 2, that is, |F ′| = q, and let ρ : x 7→ xq be the unique nontrivial
Galois automorphism of F that fixes F ′ pointwise. Clearly, ρ extends to elements of
SL(2, F) and PSL(2, F) in the obvious way, and we will use the same symbol ρ for
these extensions. Soon we will need the following observation regarding changing
signs by ρ.

For convenience, we will write c |2 (2d) if c divides 2d but not d . Then, referring
to the above notation, we have the following result.

LEMMA 4.4. Let ω = ξ + ξ−1 where ξ is an i th primitive root of unity in some field
containing F. Then, ρ(ω)=−ω if and only if ρ(ξ)=−ξ or ρ(ξ)=−ξ−1, which is
equivalent to i |2 (2q − 2) or i |2 (2q + 2), respectively. In particular, if ρ(ξ)=−ξ
for some ith primitive root of unity, then this holds for all the i th primitive roots of
unity; the same applies to the relation ρ(ξ)=−ξ−1.

PROOF. Since ρ(x)= xq , we have ρ(ω)=−ω if and only if ξq
+ ξ−q

=−ξ − ξ−1,
which is equivalent to (ξq−1

+ 1)(ξq+1
+ 1)= 0, and this is easily seen to be the same

as stating that ρ(ξ)=−ξ or ρ(ξ)=−ξ−1. The factorization, together with the fact
that the order of ξ is i , shows that the above occurs if and only if i |2 (2q − 2) or
i |2 (2q + 2), respectively. The last statement in the lemma follows from the fact that
the conditions on i are arithmetic and do not refer to a particular i th primitive root. 2

We return to our discussion about a possible isomorphism of 〈R, S, T 〉 with the
group PGL(2, F ′). There is a ‘canonical’ copy H of PGL(2, F ′) in PSL(2, F) given
by H = {A ∈ PSL(2, F) | ρ(A)= A}. Let HZ = {A ∈ PSL(2, F) | ρ(A)= Z AZ}.
The fact that H ∼= HZ can be derived in exactly the same way as shown at the end of
the proof of Proposition 4.1. With the help of this we prove the following convenient
criterion for deciding if 〈R, S, T 〉 is isomorphic to PGL(2, F ′).

PROPOSITION 4.5. In the notation of the preceding paragraph, we have 〈R, S, T 〉
∼= PGL(2, F ′) if and only if the set {R, S, T } has a two-element subset A such that
ρ(tr(A))=−tr(A) for A ∈A and ρ(tr(A))= tr(A) for A ∈ {R, S, T } \A.

REMARK. Note that if an element A ∈ {R, S, T } is an involution, then the
corresponding trace is zero, and is thus both preserved and taken to its negative by ρ.
Hence if one of the projective orders is two, then we may have more than one choice
for the set A.

PROOF. Let (R, S, T ) be a representative triple with 〈R, S, T 〉 ∼= PGL(2, F ′). We
know that the group 〈R, S, T 〉 is conjugate in PGL(2, F) to H . Let (R′, S′, T ′)
be a representative triple such that R

′
, S
′
, T
′

are images of R, S, T under such a
conjugation. Then by the definition of H we have ρ(R′) ∈ {R′,−R′}, and for traces
we then obtain ρ(tr(R))= ρ(tr(R′))=±tr(R′)=±tr(R); the same holds when R is
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replaced with S and T . Since R′S′T ′ = I and ρ maps each of R′, S′, T ′ either to itself
or to its negative, it follows that either ρ preserves the traces of all of R′, S′, T ′, or
it changes the trace signs on two of them while preserving the third; by the above
equalities, the same applies to R, S, T . But ρ cannot preserve all three traces, since
then we would have F ′ = F , a contradiction.

For the sufficiency, let R, S, T and F, F ′ be as before; in particular, the group
〈R, S, T 〉 properly contains PSL(2, F ′). Also, we may assume that R, S and T
have the form as in Propositions 2.1 and 2.2. Suppose now that ρ changes the sign
of the traces of two of R, S, T and preserves the sign of the third, as specified
by the subset A. This immediately rules out the case of (R, S, T ) described in
Proposition 2.1, since there the (nonzero) traces of R and S belong to F ′, the field
pointwise fixed by ρ, and hence at most one of k, l, m can be equal to p. If k, l, m 6= p,
then without loss of generality we may assume that A= {R, S}. If precisely one of
k, l, m is equal to p, then (as argued before Proposition 2.2) we may assume that
m = p. But then, since p is odd, we have 0 6= ωµ ∈ F ′, and therefore ρ has to change
the sign of the traces of R and S. We conclude that in all cases, we may assume that
A= {R, S}.

Accordingly, suppose that ρ(ωκ)=−ωκ and ρ(ωλ)=−ωλ while ρ(ωµ)= ωµ.
From Lemma 4.4 we know that ρ(ξκ) ∈ {−ξκ ,−ξ−1

κ }. By inspection of the matrices
R and S in the statement of Proposition 2.2 one may check that, if ρ(ξκ)=−ξκ ,
then ρ(R)=−R and ρ(S)=−S, and if ρ(ξκ)=−ξ−1

κ , then ρ(R)=−R−1 and
ρ(S)=−S−1. Recall now the canonical copy H of PGL(2, F ′) in PSL(2, F) and
its isomorphic copy HZ . If ρ changes the signs of R and S, then R, S ∈ H . In the
second case, where ρ inverts R and S and changes signs, we have R, S ∈ HZ since
conjugation by Z inverts both R and S. Since R and S generate 〈R, S, T 〉, we conclude
that 〈R, S, T 〉 ∼= PGL(2, F ′). 2

We are now in position to show that deciding whether 〈R, S, T 〉 ∼= PGL(2, F ′)
can be reduced to checking certain divisibility conditions. For brevity, we will write
a |2 (2b ± 2) if either a |2 (2b + 2) or a |2 (2b − 2); and we will let c | (d ± 1) have
the analogous meaning.

In Proposition 4.3 we saw that e(k, l, m) is equal to the degree of the field
Fp(ωκ , ωλ, ωµ) over Fp, which is the smallest positive integer e such that each κ, λ, µ
coprime to p divides pe

± 1.

PROPOSITION 4.6. Let p be an odd prime, let (k, l, m) be a p-restricted hyperbolic
triple, and let (R, S, T ) be a representative triple with projective orders (k, l, m) and
representative orders (κ, λ, µ). Let (ωκ , ωλ, ωµ) be the corresponding trace triple,
and let

D = ω2
κ + ω

2
λ + ω

2
µ − ωκωλωµ − 4.

Then 〈R, S, T 〉 ∼= PGL(2, p f ) for some f ≥ 1 if and only if D 6= 0 and the condition
(C) below is fulfilled:
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(C) either the condition n |2 (p f
± 1) holds for exactly two of the three orders

k, l, m, while the third order is p or divides 1
2 (p

f
± 1); or otherwise

2 ∈ {k, l, m} and the condition n |2 (p f
± 1) holds for all n ∈ {k, l, m}.

REMARK. Note that the condition (C) above implies that at least two of k, l, m are
even, and that e(k, l, m)= 2 f .

PROOF. Suppose that 〈R, S, T 〉 ∼= PGL(2, F ′) for some field of order p f . Note first
that, by Proposition 2.2, D 6= 0. Let K be the algebraic closure of F ′, and let F be the
smallest subfield of K such that 〈R, S, T 〉 ≤ PSL(2, F). By Propositions 4.1 and 4.3,
the order of F is pe(k,l,m). Since [F : F ′] = 2, we have e(k, l, m)= 2 f .

By Proposition 4.5, the Galois automorphism ρ ∈ Gal(F : F ′) takes two of the
traces {tr(R), tr(S), tr(T )} to their negatives and preserves the third. Note that the
trace of any element of order p is ±2 and is thus preserved by ρ, and that the trace of
an element of order two is zero, and is thus both preserved and taken to its negative
by ρ. In particular, at most one of the orders k, l, m can be equal to p. If we now
apply Lemma 4.4, we see that the condition ν |2 (2p f

± 2) must hold for at least two
of the entries κ, λ, µ. Note that any integer ν satisfying ν |2 (2p f

± 2) is divisible by
4, showing that (κ, λ, µ)= (2k, 2l, 2m) and that at least two of the entries k, l, m are
even. Hence the condition n |2 (p f

± 1) holds for at least two of the entries k, l, m.
Moreover, if the third entry is not p, then by Lemma 4.2, we see that it must divide
1
2 (p

f
± 1). Note also that, if n |2 (p f

± 1) holds for all three of k, l, m, then ρ takes
the traces of all three elements R, T, S to their negatives, implying that one of k, l, m
is 2. This proves (C).

Conversely, assume that all the conditions on D, k, l, m, e (where e = e(k, l, m))
listed in the statement of our proposition are fulfilled. Then the generating triple
(R, S, T ) is conjugate to the triple (R2, S2, T2) as in Proposition 2.2. If the condition
n |2 (p f

± 1) holds for exactly two of the three orders k, l, m and the third order is
p or divides 1

2 (p
f
± 1), then, by Lemma 4.4, ρ takes the traces of two of R, S, T to

their negatives and fixes the third. The same holds if one of k, l, m is 2 and the other
two satisfy the condition n |2 (p f

± 1). Proposition 4.5 now shows that the group
〈R, S, T 〉 ∼= 〈R2, S2, T 2〉 is isomorphic to PGL(2, F ′) where [F : F ′] = 2. 2

5. Enumeration

In this section we re-establish the enumeration result of Sah [15, Theorem 1.6] for
regular hypermaps over projective linear groups. Let p be a prime and let (k, l, m)
be a p-restricted hyperbolic triple. We know that if exactly one or exactly two of
k, l, m are equal to p, then we may assume that m = p or m = l = p, respectively. We
need to recall briefly some of the facts we proved in Section 2. Let (k, l, m)∗ be the
set of all representative orders (κ, λ, µ) associated with (k, l, m), so that (k, l, m)∗ is
either {(k, l, m)}, or {(2k, 2l, 2m)}, or {(k, l, m), (2k, 2l, 2m)}, depending on whether
p = 2, or p ≥ 3 and at least one of k, l, m is even, or all of p, k, l, m are odd,
respectively. We will say that the triple (k, l, m) is proper if D = D(ωκ , ωλ, ωµ) 6= 0
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for any (κ, λ, µ) ∈ (k, l, m)∗ and for any choice of ωκ , ωλ and ωµ. Finally, for a
hyperbolic, p-restricted, proper triple (k, l, m), let T (k, l, m) be the set of all possible
trace triples (ωκ , ωλ, ωµ) where (κ, λ, µ) ∈ (κ, λ, µ)∗. Proposition 2.3 can now be
restated in a form that refers just to the projective orders as follows.

PROPOSITION 5.1. Let p be a prime and let (k, l, m) be a hyperbolic, p-restricted,
proper triple. Then there is a bijection between the set T (k, l, m) and the set of
conjugacy classes of representative triples (R, S, T ) associated with the projective
orders (k, l, m).

New representative triples (R, S, T ) with RST = I in SL(2, K ) associated with
the same projective orders (k, l, m) can sometimes be obtained from old ones simply
by changing signs. To see this, suppose, for instance, that both k and l are even.
Then, the orders of both R and −R and of both S and −S are 2k and 2l, respectively,
and both (R, S, T ) and (−R,−S, T ) are representative triples. It is clear that the
converse holds as well, that is, if both (R, S, T ) and (−R,−S, T ) are representative
triples, then both k and l are even. Thus, if all k, l, m are even, we may define
an equivalence relation on the set of representative triples with equivalence classes
of size four formed by the four triples (R, S, T ), (−R,−S, T ), (−R, S,−T ) and
(R,−S,−T ). If exactly two of the k, l, m are even, then the representative triples
come in pairs as we saw above and we again regard the pairs as equivalence classes.
Another way to say this is that, when all of k, l, m are even, the quadruples are just
orbits of a free action of Z2 × Z2 on the set of representative triples; if exactly one of
k, l, m is odd then we have a free action of Z2 representing the sign change. We will
refer to this action of Z2 × Z2 or of Z2 as the sign change action.

Obviously, the sign change action carries over from the set of representative
triples (R, S, T ) associated with the projective orders (k, l, m) to the set of the
corresponding trace triples T (k, l, m) in a natural way; we will use the symbol ∼S
to denote the corresponding equivalence relation on T (k, l, m). Another natural
equivalence relation to be considered on T (k, l, m) is the relation ∼G induced by
the Galois action arising from application of the Galois automorphisms of the fields
F = Fp(ωκ , ωλ, ωµ) over Fp for (κ, λ, µ) ∈ (k, l, m)∗. Indeed, the computations
made in the previous section show that the classes of ∼G are in a one-to-one
correspondence with orbits of the Galois action extended to the conjugacy classes
of generating triples (R, S, T ). Let ∼ denote the join of ∼S and ∼G on T (k, l, m).
Since the automorphism group of both PSL(2, q) and PGL(2, q) is isomorphic to a
semi-direct product of PGL(2, q) by the Galois group of F over its prime field, we
have the following result.

PROPOSITION 5.2. The number of nonisomorphic regular hypermaps of a proper,
hyperbolic, p-restricted type (k, l, m) with automorphism group isomorphic to a
subgroup of PSL(2, F) is equal to the number of equivalence classes of the relation∼
on T (k, l, m). 2
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For any j such that j = p or j = 2p or otherwise gcd( j, p)= 1, define a
modification ϕp of the Euler totient function ϕ by letting ϕp( j)= 1 in the first two
cases and ϕp( j)= ϕ( j) otherwise. The number of distinct elements ω j (as defined
prior to Proposition 2.1) is then equal to ϕp( j) or ϕp( j)/2 according to whether j is
a multiple of p or not. Let u be the number of entries k, l, m coprime to p. If at least
one of k, l, m is even, then it is easy to see that

|T (k, l, m)| = ϕp(2k)ϕp(2l)ϕp(2m)/2u .

In the case where all of k, l, m are odd,

|T (k, l, m)| = ϕp(k)ϕp(l)ϕp(m)/2u
+ ϕp(2k)ϕp(2l)ϕp(2m)/2u

= 2ϕp(2k)ϕp(2l)ϕp(2m)/2u .

Observe that the equivalence classes of the sign change equivalence ∼S have
size one, two or four, depending on whether u = 1, 2 or 3. Hence the number
of equivalence classes of ∼S on T (k, l, m) is ϕp(2k)ϕp(2l)ϕp(2m)/2u+v−1. As
regards the equivalence ∼G on T (k, l, m) induced by the Galois action, the number
of the corresponding classes is equal to |T (k, l, m)|/e, where e = e(k, l, m) is
the degree of the field Fp(ωκ , ωλ, ωµ) over Fp. It remains for us to determine
when two trace triples are equivalent under both ∼S and ∼G. By the analysis in
the previous section, this can happen if and only if both the sign change action
as well as the Galois action changes signs on precisely two of the entries in a
trace triple. But by Lemma 4.5 and in the associated notation, this occurs if and
only if 〈R, S, T 〉 ' PGL(2, F ′). Thus, the number of equivalence classes of ∼
on T (k, l, m) is equal to ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e) if 〈R, S, T 〉 ' PSL(2, F),
and to 2ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e) in the case where 〈R, S, T 〉 ' PGL(2, F ′).
Combining this with Proposition 4.6 yields the enumeration result of Sah (see [15,
Theorem 1.6]).

THEOREM 5.3. Let p be a prime and let (k, l, m) be a p-restricted, hyperbolic,
proper triple. Let e = e(k, l, m), and let u and v be the number of entries coprime
to p and the number of even entries among k, l, m, respectively.

(1) If p is odd and condition (C) of Proposition 4.6 is fulfilled, then all the
corresponding groups 〈R, S, T 〉 are isomorphic to PGL(2, F ′) where F ′ is
the index-two subfield of Fp(ωκ , ωλ, ωµ)' Fp(pe), and the number of all the
corresponding pairwise nonisomorphic hypermaps of type (k, l, m) is equal to

2ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e).

(2) In all other cases we have 〈R, S, T 〉 ' PSL(2, F) where F = Fp(ωκ , ωλ, ωµ)

' Fp(pe), and then the number of all such nonisomorphic hypermaps of type
(k, l, m) is equal to

ϕp(2k)ϕp(2l)ϕp(2m)/(2u+v−1e).
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6. Nonorientable and reflexible regular hypermaps

We now discuss applications of the preceding results to regular hypermaps on non-
orientable surfaces and regular reflexible hypermaps on orientable surfaces. Keeping
to the notation introduced in the previous sections, this amounts to comparing the
group 〈R, S, T 〉 with the group 〈X , Y , Z〉 where Z is given by Proposition 3.1 or 3.2.
The existence of Z in all cases shows that such hypermaps are all reflexible. Also,
from the outline in the introduction it is clear that a reflexible hypermap with rotational
symmetry group 〈R, S, T 〉 is nonorientable if and only if 〈R, S, T 〉 = 〈X , Y , Z〉. We
now identify exactly when this happens.

PROPOSITION 6.1. Let p be a prime and let (k, l, m) be a p-restricted hyperbolic
triple. Suppose that ωκ , ωλ and ωµ are such that D 6= 0. Let F and F ′ be as in
Theorem 5.3. Then all of the corresponding regular hypermaps of type (k, l, m)
with rotation group 〈R, S, T 〉 isomorphic to PSL(2, F) or PGL(2, F ′) are reflexible.
Moreover, the following cases hold.

(1) If 〈R, S, T 〉 ∼= PGL(2, F ′), then the triple (R, S, T ) is inner reflexible so always
gives rise to a nonorientable regular hypermap.

(2) If 〈R, S, T 〉 ∼= PSL(2, F) and if two of k, l, m are equal to p, then the triple
(R, S, T ) gives rise to a nonorientable regular hypermap if and only if |F | ≡ 1
(mod 4).

(3) If 〈R, S, T 〉 ∼= PSL(2, F) and if at most one of k, l, m is equal to p, then the
triple (R, S, T ) gives rise to a nonorientable regular hypermap if and only if
−D is a square in F.

PROOF. Let us begin with the case where the rotational symmetry group 〈R, S, T 〉
of a hypermap of type (k, l, m) is isomorphic to PGL(2, F ′), where [F : F ′] = 2
and F = Fp(ωκ , ωλ, ωµ) for some prime p 6= 2. Generators R, S, T as elements
of SL(2, F) are now given by Proposition 2.2, and the inverting involution Z = Z2
is as in Proposition 3.2. Then, 〈X , Y , Z〉 = 〈R, S, T , Z〉 is a proper subgroup of
PSL(2, F) of order at least |PGL(2, F ′)|. By Dickson’s classification of subgroups of
PSL(2, F) we have 〈R, S, T 〉 = 〈X , Y , Z〉. We conclude that in this case 〈R, S, T 〉
is the automorphism group of a nonorientable regular hypermap of type (k, l, m).
Note that the same can be obtained by the following more intrinsic argument. By
the proof of Proposition 4.5 we know that we may assume that the elements R and S
given by Proposition 2.2 lie either in the canonical copy H ' PGL(2, F ′) contained
in PSL(2, F) or in its isomorphic copy HZ . For the nontrivial Galois automorphism
ρ of the extension F over F ′ applied to the explicit form of the matrix Z2 we have
ρ(D)= D, and ρ(β)= β or ρ(β)=−β according to whether −D is a square in F ′

or not. At any rate, we have ρ(Z)= Z and hence Z lies in both H, HZ ' PGL(2, F ′),
that is, 〈R, S, T 〉 = 〈X , Y , Z〉.

Suppose now that the group 〈R, S, T 〉 is isomorphic to PSL(2, F). If k = m = p,
then p is odd and F = Fp(ωµ). Proposition 3.1 implies that for Z = Z1 we have
Z ∈ PSL(2, F) if and only if −1 is a square in F , which occurs if and only if
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|F | ≡ 1 (mod 4). If k, m 6= p, then F = Fp(ωκ , ωλ, ωµ) and the inverting involution
is Z = Z2, given by Proposition 3.2. An inspection of the form of Z and of the groups
H∗ and H∗Z (for odd p) that appear in the second part of the proof of Proposition 4.1
shows that Z ∈ PSL(2, F) if and only if −D is a square in F . 2

A regular hypermap of type (k, l, m) is said to be a regular map if one of the
parameters k, l, m is equal to 2. For specific applications we will be particularly
interested in regular maps with the groups 〈X , Y , Z〉 isomorphic to general projective
linear two-dimensional groups. Proposition 6.1 lists necessary and sufficient
conditions for a regular hypermap (and hence also for a regular map) to have such
a group. In the case of maps, however, we will need for our applications a much more
detailed knowledge about the membership of the involutory generators X , Y , Z in the
unique subgroup of index two in 〈X , Y , Z〉. The result we need for regular maps
can actually be formulated for hypermaps, which we will do (with pointing out the
situation for maps in appropriate places).

We begin with the easy case where the group 〈X , Y , Z〉 ∼= PGL(2, F) contains
〈R, S, T 〉 as a proper subgroup of index two (isomorphic to the unique copy K of
PSL(2, F) in PGL(2, F)). We obviously have Z /∈ K , and since R, S ∈ K , we must
also have X , Y /∈ K .

It remains for us to consider the case where the group satisfies 〈R, S, T 〉
∼= 〈X , Y , Z〉 ∼= PGL(2, F ′). Recall that the group 〈X , Y , Z〉 and the corresponding
rotation group 〈R, S, T 〉 are related by R = Y Z , S = Z X and T = XY . We know
that now p is odd, and among the orders k, l, m of R, S, T we cannot have both k
and l equal to p. Hence we may assume that either k, l, m 6= p, with m = 2 in the
category of maps, or else k, l 6= p and m = p, with l = 2 in the case of maps. Our goal
is to clarify which of X , Y , Z are contained in the unique subgroup of PGL(2, F ′)
isomorphic to PSL(2, F ′). To this end it is sufficient to assume that we are in the
situation described in Proposition 4.5, where R, S, T are as listed in Proposition 2.2
and X, Y, Z are as given by Proposition 3.2.

PROPOSITION 6.2. Let 〈X , Y , Z〉 = 〈R, S, T 〉 ∼= PGL(2, F ′) and let K be the
(unique) subgroup of 〈X , Y , Z〉 isomorphic to PSL(2, F ′). Let sq(F ′) be the set
of nonzero squares of F ′. Also let A be a two-element subset of {R, S, T } such
that ρ(tr(A))=−tr(A) for A ∈A and ρ(tr(A))= tr(A) for A ∈ {R, S, T } \A. For
k, l, m 6= p, we have the following cases.

(1) If A= {R, S}, then Z ∈ K and X, Y /∈ K if −D ∈ sq(F ′), while Z /∈ K and
X, Y ∈ K if −D /∈ sq(F ′).

(2) If A= {S, T }, then X ∈ K and Y, Z /∈ K if −D ∈ sq(F ′), while X /∈ K and
Y, Z ∈ K if −D /∈ sq(F ′).

(3) If A= {T, R}, then Y ∈ K and Z , X /∈ K if −D ∈ sq(F ′), while Y /∈ K and
Z , X ∈ K if −D /∈ sq(F ′).

In all these cases, if m = 2, then the elements X and Y commute. On the other hand,
if k, l 6= p and m = p, we have the following case.
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(4) A= {R, S}, and Z ∈ K and X, Y /∈ K if −D ∈ sq(F ′), while Z /∈ K and X,
Y ∈ K if −D /∈ sq(F ′).

Moreover, if l = 2, then X and Z commute.

PROOF. Suppose first that A= {R, S}, that is, ρ(tr(R))=−tr(R) and ρ(tr(S))
=−tr(S). By the arguments developed in the proofs of Propositions 4.1, 4.5 and 6.1,
we conclude that Z ∈ K if and only if −D ∈ sq(F ′); by the same token we have
R, S /∈ K . It follows that X, Y /∈ K if and only if Z ∈ K . Bearing in mind the
conditions for k, l, m, this proves cases (1) and (4). Now, let k, l 6= p and m = 2; then,
k, l ≥ 3. If A= {S, T }, then we set R′ = S, S′ = T , T ′ = R, X ′ = Y , Y ′ = Z and
Z ′ = X . Since the order of R′ is at least three, we may apply the above to the dashed
symbols and conclude a dashed version of case (1), which gives case (2). Finally,
if A= {S, T }, we set R′ = R−1, S′ = T−1, T ′ = S−1, X ′ = X , Y ′ = Z and Z ′ = Y .
Again, we may apply case (1) to the dashed symbols, which translates to case (3). The
claims about commuting elements are obvious. 2

7. Concluding remarks

The explicit form of generating matrices given in Propositions 2.1, 2.2, 3.1 and 3.2
make it possible to perform computations with the associated groups using software
packages such as gap or MAGMA. Also, our approach clarifies a large number of
details not covered in [15] and furnishes a different proof of identification of the
minimal field (Proposition 4.1).

It is not clear whether an enumeration result such as the one in Theorem 5.3
could be proved for regular hypermaps on nonorientable surfaces. While the regular
hypermaps with rotational symmetry group isomorphic to PGL(2, F ′) all come from
inner reflexible triples (and so are either nonorientable hypermaps or their orientable
double covers) and are enumerated by part (1) of Theorem 5.3, the hypermaps with
rotation group isomorphic to PSL(2, F) seem to present difficulties. By part (3)
of Proposition 6.1, a nonorientable regular hypermap of type (k, l, m) can occur
for a particular choice of ωκ , ωλ, ωµ with D 6= 0 if and only if −D is a square
in F . The problem here is that, for a fixed type (k, l, m), different choices of values
of ωκ , ωλ, ωµ can give all kinds of different values of D: squares, nonsquares,
and even zero. To see this, let F = G F(17) and let (k, l, m)= (4, 8, 8), so that
(κ, λ, µ)= (8, 16, 16). It can be checked that 2 is a primitive eighth root of unity
in F , while 3 and 5 are primitive 16th roots of unity in F . In all our examples we set
ωκ = 2+ 2−1

= 2− 8=−6. If ωλ = ωµ = 3+ 3−1
= 3+ 6=−8, then we obtain

D = 0. Choosing ωλ = ωµ = 5+ 5−1
= 5+ 7=−5 gives −D = 6, a nonsquare

in F . Finally, letting ωλ =−8 and ωµ =−5 leads to −D =−4, which is a square
in F .
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