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Toric Degenerations, Tropical Curve, and
Gromov–Witten Invariants of Fano
Manifolds

Takeo Nishinou

Abstract. In this paper, we give a tropical method for computing Gromov–Witten type invariants
of Fano manifolds of special type. This method applies to those Fano manifolds that admit toric
degenerations to toric Fano varieties with singularities allowing small resolutions. Examples include
(generalized) flag manifolds of type A and some moduli space of rank two bundles on a genus two
curve.

1 Introduction

Since the appearance of tropical geometry, there are various kinds of applications of
its ideas to problems in classical geometry. But in many cases the ambient spaces are
toric varieties, and the number of applications of tropical geometry to problems in
non-toric varieties is not large. In this paper, we try to extend the applicability of
tropical geometry in the direction of the enumerative problems. More precisely, we
give a method for computing Gromov–Witten type invariants of Fano manifolds of
special type in terms of counting of tropical curves.

Our calculation is based on toric degenerations of Fano manifolds. Given such
degenerations, we can compare holomorphic curves between Fano manifolds and
(singular) toric varieties. On the other hand, the correspondence between curves in
toric varieties and tropical curves is shown in [8, 12, 14]. Thus, we can count curves
in Fano manifolds by counting appropriate tropical curves.

The content of this paper is as follows. After a short review of toric degenerations
in Section 2, we try to define Gromov–Witten type invariants via tropical method
in Section 3. In fact, we will define two types of invariants. The first one (The-
orem 3.39) is directly related to Gromov–Witten invariants and defined when the
incidence conditions (Subsection 3.2) satisfy suitable assumptions (Assumption 3.6
and the transversality assumption in Proposition 3.23). In particular, this invariant
depends on the incidence conditions only through their homology classes. The sec-
ond (Theorem 3.42) is the analogue of the one considered in [14] and is regarded
as the “relative part” of the Gromov–Witten invariants. A priori, it might not be
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a homological invariant, but it gives a lower bound to the corresponding Gromov–
Witten invariants (see Remark 3.43). This second invariant is defined only under
Assumption 3.6 and contains the first invariant as a special case.

In the last section, we give two examples of the calculation of these invariants for
varieties of particular interest (these are both the first type invariants, so we calcu-
late actual Gromov–Witten invariants). In these cases, in principle, we can calculate
all genus zero Gromov–Witten invariants by tropical method. In particular, we can
calculate Gromov–Witten invariants including odd cohomology classes. Also, by the
homological invariance of Gromov–Witten invariants, an interesting combinatorial
invariance of the counting number of tropical curves is observed, which cannot be
deduced purely by tropical method (Remark 4.8).

2 Toric Degeneration

Let us first recall the definition of toric degenerations of projective manifolds.

Definition 2.1 Let (X, ω) be a projective manifold X with a Kähler form ω. A toric
degeneration (X, ω̃) of (X, ω) is a flat family f : X → B of complex varieties over a
connected complex variety B with two distinguished points p0, p1, and a Kähler form
ω̃ on X (defined on the smooth locus), such that (X1, ω1) is isomorphic to (X, ω)
as a Kähler manifold, and (X0, ω0) is a toric variety with a torus invariant Kähler
form. Here (X0, ω0), (X1, ω1) are the restrictions of (X, ω̃) to the fibers over p0, p1,
respectively. Note that in general, the toric variety X0 has singular points. So, as in
the case of (X, ω̃), the form ω0 is defined on the smooth locus of X0.

If (X0, ω0) is a toric Fano variety, then we call (X, ω̃) a toric Fano degeneration of
(X, ω).

We note that, given such a family, if there is a holomorphic disk η : D(2) =
{z ∈ C | |z| < 2} → B in the base space B with η(0) = p0 and η(1) = p1, then
there is a natural map, the gradient Hamiltonian flow ([15], see also [13])

φgrH,t : Xt → X0, t ∈ [0, 1],

which is a diffeomorphism away from the singular locus of X0 and keeps the Kähler
forms (also away from the singular points). Here Xt is the fiber over η(t). We write
φgrH,1 : X1 → X0 by φgrH .

Definition 2.2 Let X be a (singular) toric variety defined by a fan Σ in Rn. We say
that X allows a small resolution when there is a refinement Σ′ of Σ without adding a
new ray such that the toric variety associated with Σ′ is nonsingular.

An example of a class of Fano varieties having degenerations to toric Fano varieties
allowing small resolutions is provided by flag manifolds of type A (including partial
flag manifolds); see [13].

Remark 2.3 In [13], we developed the notion of toric degeneration of integrable
systems. Using this notion and the methods in [11], the results in this paper can be
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extended to the counting of holomorphic disks with Lagrangian boundary condi-
tions. Note that flag manifolds of type A allow degenerations of integrable systems.

Also, using the method of [12], we can partially extend the results of this paper to
higher genus tropical curves. In fact, combining the methods of [11] and [12], we
can even deal with curves of any genus and any number of boundary components.

3 Computing Gromov–Witten Type Invariants of Fano Manifolds by
the Tropical Method

In this section, we explain that when we have a Fano manifold that has a degeneration
to toric a Fano variety allowing a small resolution in the sense of Definition 2.1, we
can count the number of appropriate holomorphic curves in the Fano manifold. This
will be performed with the help of the tropical method developed in the case of toric
varieties ([8, 12, 14]). Namely, in [8, 12, 14], equalities between suitable counts of
tropical curves in affine spaces and those of holomorphic curves in toric varieties are
shown. The latter are an analogue of Gromov–Witten invariants.

When there is a toric degeneration of a Fano manifold, we can compare the curves
in the Fano manifold and those in its degeneration, that is, the toric variety. When
this comparison is effective, we can compute the number of holomorphic curves in
the Fano manifold by counting appropriate tropical curves. We will show that this
can be performed when the toric variety has a small resolution.

3.1 Tropical Curves

First we recall some definitions about tropical curves; see [8, 12, 14] for more infor-
mation. Let Γ be a weighted, connected, finite graph. Its sets of vertices and edges are

denoted Γ
[0]
,Γ

[1]
. Then we denote the weight function by wΓ : Γ

[1] → N \ {0}. An

edge E ∈ Γ
[1]

has adjacent vertices ∂E = {V1,V2}. Let Γ
[0]
∞ ⊂ Γ

[0]
be the set of one-

valent vertices. We set Γ = Γ \ Γ
[0]
∞ . Non-compact edges of Γ are called unbounded

edges. Let Γ[1]
∞ be the set of unbounded edges. Let Γ[0],Γ[1],wΓ be the sets of vertices

and edges of Γ and the weight function of Γ (induced from wΓ in an obvious way),
respectively. Let N be a free abelian group of rank n ≥ 2 and NR = N ⊗Z R.

Definition 3.1 A parameterized trivalent tropical curve in NR is a proper map
h : Γ→ NR satisfying the following conditions.

(i) Γ is a trivalent graph.
(ii) For every edge E ⊂ Γ the restriction h

∣∣
E

is an embedding with the image h(E)
contained in an affine line with rational slope.

(iii) For every vertex V ∈ Γ[0], the following balancing condition holds. Let
E1, . . . , Em ∈ Γ[1] be the edges adjacent to V and let ui ∈ N be the primitive
integral vector emanating from h(V ) in the direction of h(Ei). Then

m∑
j=1

w(E j)u j = 0.

https://doi.org/10.4153/CJM-2014-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-006-3


670 T. Nishinou

• In this paper, we always assume that the graph Γ is trivalent, so hereafter a (param-
eterized) tropical curve means a (parameterized) trivalent tropical curve.

An isomorphism of parameterized tropical curves h : Γ→ NR and h′ : Γ′ → NR is
a homeomorphism Φ : Γ→ Γ′ respecting the weights and h = h′◦Φ. A tropical curve
is an isomorphism class of parameterized tropical curves. The genus of a tropical
curve is the first Betti number of Γ. A rational tropical curve is a tropical curve of
genus zero.

The set of flags of Γ is

F Γ = {(V, E)
∣∣ V ∈ ∂E}.

By (i) of the definition we have a map u : F Γ → N sending a flag (V, E) to the
primitive integral vector u(V,E) ∈ N emanating from V in the direction of h(E).

An l-marked tropical curve is a tropical curve h : Γ→ NR together with a choice of
l not necessarily distinct edges

E = (E1, . . . , El) ∈ (Γ[1])l.

The combinatorial type of an l-marked tropical curve (Γ,E, h) is the marked graph
(Γ,E) together with the map u : F Γ→ N.

The degree of a type (Γ,E, u) is a function ∆ : N \ {0} → N with finite support
defined by

∆(Γ, u)(v) := ]
{

(V, E) ∈ F Γ | E ∈ Γ[1]
∞ ,w(E)u(V,E) = v

}
Let

e = |∆| =
∑

v∈N\{0}

∆(v).

This is the same as the number of unbounded edges of the graph Γ. It is known that
the space T(Γ,E,u) of marked tropical curves of given type (Γ,E, u), if nonempty, is
a manifold with boundary (in fact, a convex polytope) of dimension larger than or
equal to

e + (n− 3)(1− g)− ov(Γ).

Here ov(Γ) is the overvalence of Γ defined by

ov(Γ) =
∑

V∈Γ[0]

(
]{E ∈ Γ[1] | (V, E) ∈ F Γ} − 3

)
.

It is also known that if Γ is rational, the equality

dim T(Γ,E,u) = e + (n− 3)(1− g)− ov(Γ)

holds.

3.2 Incidence Conditions

To fix the counting problem, we have to define incidence conditions for tropical curves
and holomorphic curves. We recall some terminologies concerning incidence condi-
tions from [14]. See [14] for more details. We formulate them for any genus in view
of Remark 2.3, although in this paper we almost always treat the genus zero case.
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3.2.1 Incidence Conditions for Tropical Curves

We begin with the case of tropical curves.

Definition 3.2 For d = (d1, . . . , dl) ∈ Nl, an affine constraint of codimension d
is an l-tuple A = (A1, . . . ,Al) of affine subspaces Ai ⊂ NR, defined over rational
numbers, with

dim Ai = n− di − 1.

An l-marked tropical curve (Γ,E, h) matches the affine constraint A if

h(Ei) ∩ Ai 6= ∅, i = 1, . . . , l.

Let us fix a degree ∆ : N \ {0} → N. Now let L = (L1, . . . , Ll) be a set of linear
subspaces of NQ , with codim Li = di + 1. Then the elements

A = (A1, . . . ,Al), Ai ∈ NQ/Li

define affine constraints.

Definition 3.3 ([14, Definition 2.4]) Fix the genus g and a degree ∆ ∈ Map(N \
{0},N) and write |∆| = e as before. An affine constraint A = (A1, . . . ,Al) of codi-
mension d = (d1, . . . , dl) is general for ∆ and g if

l∑
i=1

di = e + (n− 3)(1− g),

and if any l-marked tropical curve (Γ,E, h) of genus g and degree ∆ matching A
satisfies the following:

(i) h(Γ[0]) ∩
⋃

i Ai = ∅.
(ii) h is an embedding for n > 2. For n = 2, h is injective on the subset of vertices,

and for any x ∈ h(Γ), the inverse image is at most two points, and such x ∈
h(Γ) with ]{h−1(x)} = 2 is finite.

Proposition 3.4 ([14, Proposition 2.4]) Fix the genus g and a degree ∆ as above. Let

A :=
∏l

i=1 NQ/L(Ai) be the space of affine constraints of codimension d = (d1, . . . , dl)

such that
∑l

i=1 di = e + (n− 3)(1− g). Then the subset

Z := {A′ ∈ A | A′ is non-general for ∆ and g}

is nowhere dense in A.

This is proved for g = 0 in [14]. The argument extends to any genus with very
little change, and we omit it.

For a marked tropical curve (Γ,E, h) matching the constraints A, we have other
important numbers: weight and index. The weight is defined by local data of the
abstract graph Γ (weights and markings of the edges) as

w(Γ,E) =
∏

E∈Γ[1]\Γ[1]
∞

wΓ(E) ·
l∏

i=1
wΓ(Ei).
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There are two kinds of (lattice) indices, written as D(Γ,E, h,A) and δi(Γ,E, h,A),
respectively (see [14, Section 8]). The index D(Γ,E, h,A) is defined as the index of
the inclusion of the lattices ([14], Proposition 5.7):

Map(Γ[0],N)→
∏

E∈Γ[1]\Γ[1]
∞

N/Zu(∂−E,E) ×
l∏

i=1
N/(Qu(∂−Ei ,Ei ) + L(Ai)) ∩ N,

h 7→
(

(h(∂+E)− h(∂−E))E, (h(∂−Ei))i

)
.

Here ∂± : Γ[1] \Γ[1]
∞ → Γ[0] is an arbitrary chosen orientation of the bounded edges,

that is, ∂E = {∂−E, ∂+E}. For E ∈ Γ[1]
∞ , ∂−E denotes the unique vertex adjacent

to E.
The index δi(Γ,E, h,A), for each marked edge Ei , is given by the product

δi(Γ,E, h,A) = wΓ(Ei) ·
[

Zu(∂−Ei ,Ei ) + L(Ai) ∩ N :
(

Qu(∂−Ei ,Ei ) + L(Ai)
)
∩ N

]
.

3.2.2 Incidence Conditions for Holomorphic Curves in X0 and X1

Next, we define incidence conditions for holomorphic curves. Assume that X0 is a
toric variety defined by a complete fan in NQ . We use the same notation as above.

Definition 3.5 In the case of toric variety X0, we take incidence conditions to be the
subvarieties of X0 given as the closures of the orbits of general points {q1, . . . , ql} in
X0, by the subtori of the big torus acting on X0 corresponding to the linear subspace
{Li}. We denote these subvarieties by Z = {Zi}.

For X1, recall that there is a gradient Hamiltonian flow φgrH : X1 → X0. Since
φgrH : X1 → X0 is diffeomorphic only away from the singular locus of X0, if Zi inter-
sects the singular locus of X0, the inverse image φ−1

grH(Zi) may not be of pure dimen-
sional cycle, or may have boundary. So we assume the following.

Assumption 3.6 Let us write dim Zi = mi . Let int X0 be the complement of the
union of toric divisors. Then the inverse image

φ−1
grH(Zi ∩ int X0)

can be completed to an mi-dimensional cycle in X1 in the following sense. Let W =
X0 \ int X0 be the union of toric divisors. Then there is a chain Ci of dimension at most
mi in φ−1

grH(W ) such that φ−1
grH(Zi ∩ int X0) ∪Ci is an mi-dimensional cycle in X1.

Definition 3.7 In the case of X1, we assume that each Zi satisfies Assumption 3.6,
and take the cycle

Z̃i = φ−1
grH(Zi ∩ int X0) ∪Ci

as an incidence condition. There are choices of the chain Ci , and the homology class
of Z̃i may not be unique. We choose one from these choices and denote the cycle by
Z̃i .

We note that the main results in this paper do not depend on the choice of Z̃i (see
Lemma 3.38).
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When Assumption 3.6 holds for Zi , we can assume that there is a continuous
family of cycles Zi ⊂ X over B such that:

• Zi |X1 = Z̃i and Zi |X0 = Zi ;
• yhe complement in Zi of the union⋃

t∈[0,1]
φ−1

grH,t (Zi ∩ int X0)

of the inverse images of Zi ∩ int X0 by the maps φgrH,t , t ∈ [0, 1], is contained in
the union of the inverse images of the toric divisors

⋃
t∈[0,1] φ

−1
grH,t (W ).

3.3 Preliminary Arguments About Homology Classes

Let (X, ω̃) be a toric Fano degeneration of an n-dimensional Fano projective manifold
(X, ω). Let X0 be the toric Fano variety.

Assumption 3.8 We assume that X0 allows a small resolution. Also, we assume that
the (pointed) base space (B; p0, p1) of the degeneration X is an open subset of Cm for
some m ∈ N that is diffeomorphic to the pointed open ball, and the marked points are
the origin (= p0) and the point (1, 0, . . . , 0) = p1. Let Xt be the fiber over (t, 0, . . . , 0).
We assume that Xt , t ∈ (0, 1] is nonsingular.

The main point of Assumption 3.8 is the existence of a small resolution of X0,
which is the assumption of Theorem 3.28, the main ingredient of our study of holo-
morphic curves in this paper. It will also be used in Proposition 3.9(ii). Namely, we
proved the following results in [13].

Proposition 3.9 ([13, Lemma 9.2])

(i) When (X,B) is a toric degeneration of X1, there is a map φ : X1 → X0 which is
natural up to homotopy (in particular, it is homotopic to φgrH). The map φ is
diffeomorphic away from the small neighbourhood of the singular locus of X0.

(ii) When X0 allows a small resolution, it induces an isomorphism

φ∗ : π2(X1)→ π2(X0).

Since X0 is a compact toric variety, it is simply connected. So the natural iso-
morphism π2(X0) ' H2(X0,Z) holds. By Proposition 3.9(ii), the map φ induces an
epimorphism of homology groups

φ∗ : H2(X1,Z)→ H2(X0,Z).

We note the following about this epimorphism.

Lemma 3.10 The map φ∗ has a natural splitting.

Proof Let S be the set of singular points of X0. Let π : X̃0 → X0 be a small resolution.
Since X0 allows a small resolution, any class in π2(X0) ' H2(X0,Z) can be represented
by a cycle in X0 \ S. Namely, the representative f : S2 → X0 can be taken so that

π−1( f (S2)) is still the image of a map f̃ : S2 → X̃0. Then since π−1(S) has (real)
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codimension at least four, f̃ can be deformed so that the the image of the composition
with π is disjoint from S.

Moreover, if f1 : S2 → X0 and f2 : S2 → X0 are two maps representing the same
class in π2(X0) ' H2(X0,Z) whose images are disjoint from S, the homotopy between
them can also be taken so that the image is disjoint from S, by the same dimensional
reasoning as above.

The pullback of a map f : S2 → X0 whose image is disjoint from S by φgrH,1 gives
a well-defined natural splitting of φ∗.

Thus, the group H2(X1,Z) can be written as

H2(X1,Z) ' H′2 ⊕H′′2 ,

where φ∗|H′2 is an isomorphism and φ∗|H′′2 is zero. In particular, the summand H′2 is
torsion free.

Since X1 is smooth, Poincaré duality holds, so there is a natural isomorphism(
H2n−2(X1,Z)

)∗ ' H′2 ⊕ f H′′2 ,

where f H′′2 is the torsion free part of H′′2 . Let(
H2n−2(X1,Z)

)∗ ' (H′2n−2)∗ ⊕ (H′′2n−2)∗

be the corresponding splitting of (H2n−2(X1,Z))∗.
Let π : X̃0 → X0 be a small resolution.

Definition 3.11 Let P be the free abelian group generated by the toric prime divi-
sors of X0.

Since π is small, toric prime divisors of X0 and X̃0 are in natural one-to-one cor-
respondence. So we also denote by P the free abelian group generated by the toric
prime divisors of X̃0.

Thus, there is a commutative diagram

(3.1) H2n−2(X̃0,Z)

π∗

��
P

p1

::

p2 // H2n−2(X0,Z).

Here p1, p2 are surjections, and π∗ is an isomorphism, since π is small.
Since X̃0 is a toric variety, its second homotopy group is generated by holomorphic

spheres, and a natural isomorphism

π2(X̃0) ' H2(X̃0,Z)

holds. In particular, H2(X̃0,Z) is free. Also, since X̃0 is smooth, we have a natural
Poincaré duality isomorphism

(H2n−2(X̃0,Z))∗ ' H2(X̃0,Z).

On the other hand, there is a natural surjection

H2(X̃0,Z)→ H2(X0,Z).
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Combining with H′2 ' H2(X0,Z), we see that there is a natural surjection

H2(X̃0,Z)→ H′2.

Taking the Poincaré dual of the both sides, we have a surjection

P :
(

H2n−2(X̃0,Z)
)∗ → (H′2n−2)∗.

On the other hand, the dual of the map p1 gives an inclusion

p∗1 :
(

H2n−2(X̃0,Z)
)∗ → P∗.

3.4 Degrees and Homology Classes

First we recall the following definition from [14].

Definition 3.12 Let X0 be an n-dimensional toric variety. A holomorphic curve
C ⊂ X0 is torically transverse if it is disjoint from all toric strata of codimension
greater than one. A stable map ϕ : C → X0 is torically transverse if ϕ−1(int X0) ⊂ C
is dense and ϕ(C) ⊂ X0 is a torically transverse curve. Here int X0 is the complement
of the union of toric divisors.

Let Σ ⊂ NR be the fan defining X0. For each ray of Σ, we have the generator
v ∈ N and its associated toric prime divisor Dv.

Definition 3.13 For a torically transverse curve ϕ : C → X0, the degree is given by
the map

∆(ϕ) : N \ {0} → N

defined as follows. For a primitive v ∈ N and λ ∈ N, λv is mapped to 0 if R≥0v is
not a ray of Σ, and to the number of points of multiplicity λ in ϕ∗Dv otherwise.

Recall that the degree ∆ : N \ {0} → N of a tropical curve in Rn was given by the
data of the direction vectors and multiplicity of the unbounded edges. We have to
define the notion of degree for curves in a general fiber Xt .

Definition 3.14 We define the degree of a curve in general smooth fiber Xt , t 6= 0
to be its integral homology class.

Let ϕ : C → X0 be a torically transverse stable map of degree ∆. We define a
map ∆D from the set of primitive vectors in N \ {0} to N as follows. Namely, with a
primitive vector v ∈ N, we associate

∆D(v) =
∑
a>0

a∆(av) ∈ N.

This can be regarded as an element of the dual space P∗ of the space P introduced in
Definition 3.11.
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Definition 3.15 A coarse-degree is a map ∆̃ from the set of nonzero primitive
vectors in N to the set of nonnegative integers satisfying the condition∑

v:primitive
∆̃(v)v = 0.

This can be extended to an element of P∗, and we denote it by the same letter ∆̃.

A degree ∆ of a tropical curve or a torically transverse stable map in a toric variety
naturally gives a coarse-degree.

Lemma 3.16 For a degree ∆, the map ∆D is a coarse-degree.

Proof This follows from the balancing condition for the tropical curve.

Definition 3.17 A coarse-degree ∆̃ is called rational if it is induced from a degree
of a rational tropical curve (or of a torically transverse rational stable map in a given
toric variety). Let D ⊂ P∗ be the set of rational coarse-degrees of X0.

Recall that there is an inclusion

p∗1 : (H2n−2(X̃0,Z))∗ → P∗.

Lemma 3.18 The set D ⊂ P∗ is a subset of (the image of) the space (H2n−2(X̃0,Z))∗.

Proof Let p1 : P → H2n−2(X0; Z) be the quotient map defined in (3.1). Given an
element ∆̃ of D, considered as a linear function on P, define ∆̃′(p1(D)) = ∆̃(D).
This gives a well-defined element of H2n−2(X0; Z)∗. Namely, we have to show that if
p1(D) is zero, then ∆̃(D) is also zero. Recall that ∆̃(D) is the sum of the transversal
intersection numbers between a rational curve and a linear sum D of toric divisors.
So it must be zero when D is homologous to zero. The latter condition is the same as
requiring p1(D) = 0.

Lemma 3.19 D is a submonoid of (H2n−2(X̃0; Z))∗.

Proof It suffices that the set of degrees of rational tropical curves forms a monoid.
This follows because given two rational tropical curves, we can parallel transport one
of them so that two tropical curves intersect. By taking a suitable union of graphs as
a domain, we have a new rational tropical curve whose degree is the sum of the given
two.

3.5 Degeneration of Rational Curves in X1

Let X be an n-dimensional Fano manifold and X → C be a toric degeneration with
X1 = X. Take incidence conditions Z̃1, . . . , Z̃l satisfying Assumption 3.6, and let
mi = dim Z̃i . Let β ∈ H2(X,Z). Then the moduli space of stable maps of class
β from pre-stable rational curves without marked point has expected dimension
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n + c1(X)(β)− 3. We assume the equality

l∑
i=1

(n−mi − 1) = n + c1(X)(β)− 3

holds. The expected dimension of the rational curve of class β satisfying the inci-
dence conditions is 0.

Our goal is to understand the rational curves in X by the study of rational curves
in the toric variety X0. Moreover, it is desirable that we also understand the rational
curves in X from the view point of tropical geometry. Since tropical curves capture
only those curves in X0 that intersects the dense torus orbit, it is favorable that we
can understand the rational curves in X by studying only torically transverse curves
in X0. The purpose of this section is to prove that this is indeed the case.

To do it, we need to slightly perturb the complex structure on X to a nonintegrable
one (that is, an almost complex structure) so that the moduli spaces of curves in X
become smooth (in particular, of expected dimension).

Let J be the set of almost complex structures that tame the Kähler form of X.

Definition 3.20 ([7, Definition 3.1.5]) Let β ∈ H2(X,Z) be a homology class. An
almost complex structure J on X is called regular for β if every J-holomorphic curve
ϕ : S2 → X of class β is Fredholm regular.

Theorem 3.21 ([7, Theorem 3.1.6]) For a fixed class β ∈ H2(X,Z), the space of
almost complex structures regular for β contains an intersection of countably many open
and dense subsets in the space of all almost complex structures.

Let J be a regular almost complex structure on X. Let ϕ : C → X be a stable
map from a prestable rational curve with [ϕ(C)] = β that satisfies generic incidence
conditions {Z̃i}.

Lemma 3.22 The domain curve C is a nonsingular rational curve.

Proof Assume that C has two components, C = C1 ∪ C2, where C1 and C2 are
nonsingular rational curves. Then ϕ can be thought of as the pair of maps from
pointed nonsingular rational curves

ϕ1 : (C1, x1)→ X, ϕ1 : (C2, x2)→ X,

with the condition ϕ(x1) = ϕ2(x2). Let [ϕ1(C1)] = β1 and [ϕ2(C2)] = β2 with
β = β1 +β2. Then the moduli spaces of the deformations of the mapsϕ1 and ϕ2 have
dimension n+c1(X)(β1)−2 and n+c1(X)(β2)−2, respectively (note that there is a one
dimensional degree of freedom in varying the point x1 or x2). When J is generic, the
condition ϕ(x1) = ϕ2(x2) gives an n-dimensional constraint ([7, Proposition 6.2.8]).
Thus, the moduli space of pair of maps (ϕ1, ϕ2) satisfying the above conditions has
dimension(

n + c1(X)(β1)− 2
)

+
(

n + c1(X)(β2)− 2
)
− n = n + c1(X)(β)− 4.

Since n + c1(X)(β)−3 = 0 by assumption, n + c1(X)(β)−4 = −1. Thus, this moduli
space is empty.
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Inductively, one sees that the moduli space of maps ϕ : C → X satisfying the
incidence conditions {Z̃i} is empty when C has more than one component.

Similarly, the moduli space is empty when C is irreducible but has nodes.

Let Jt , t ∈ (0, 1] be regular family of almost complex structures on Xt (see [7,
Definition 3.1.7]) that converges to the original toric complex structure of X0 on the
smooth part of X0. Precisely, take Jt so that the family of almost complex structures

(φgrH,t )∗ Jt , t ∈ (0, 1]

on the smooth part of X0 converges to the toric complex structure when t → 0. Let

ϕt : Ct → Xt , t ∈ (0, 1]

be a family of rational curves of class β that satisfies the incidence conditions {Zi}
(see the last paragraph of Subsection 3.2). By Lemma 3.22, each Ct is the nonsingular
rational curve.

By Gromov’s compactness theorem [4], there is a sequence {ti} ⊂ (0, 1], converg-
ing to zero, such that the sequence of maps ϕti : Cti → Xti converges to a limit stable
map ϕ0 : C0 → X0 from a prestable rational curve. The following proposition is the
main result of this subsection.

Proposition 3.23 Assume that each Zi = Zi ∩X0 is transversal to each toric stratum.
Then the prestable curve C0 is the nonsingular rational curve. Moreover, ϕ0 is torically
transverse.

Proof Since Jti is regular, each ϕti is a point on the moduli space of rational pseudo
holomorphic curve of class β that is smooth and has dimension n + c1(X)(β) − 3.
Then by Gromov’s compactness theorem, there is a family of holomorphic curves in
X0 that deforms ϕ0 and has dimension at least n + c1(X)(β)− 3.

On the other hand, by Theorem 3.28 below, any member of this family can be
deformed into a torically transverse curve. Since torically transverse curves are Fred-
holm regular by Lemma 3.25 below, such curves can be deformed into Xt for t with
the norm |t| sufficiently small. Thus, if the above family in X0 has dimension greater
than n + c1(X)(β)− 3, then we can construct the same dimensional family of curves
in Xt , t 6= 0 that deforms ϕt , contracting the regularity of Jt . So this family in X0 has
dimension n + c1(X)(β)− 3.

Those curves in this family whose domain is not nonsingular are contained in
a strictly lower dimensional subfamily. However, since the incidence conditions
{Zi} on X0 are transverse to each toric stratum, these incidence conditions imply
n + c1(X)(β)− 3 dimensional conditions even for curves some of whose components
are contained in toric divisors. Thus, the curves in the above subfamily cannot satisfy
general incidence conditions. This proves the proposition.

Corollary 3.24 When each variety Zi is a point, then any rational stable mapϕ : C →
X0 satisfies the properties that ϕ is torically transverse and the domain curve C is the
nonsingular rational curve.
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Proof When each Zi is a point, the transversality assumption is equivalent to the
statement that Zi is not contained in the union of toric divisors. However, this is
automatically satisfied when {Zi} is generic.

We used the following simple result in the above proof.

Lemma 3.25 Let C be a nonsingular rational curve, let X be a smooth toric variety,
and let ϕ : C → X be a holomorphic map whose image intersects the dense torus orbit
of X. Then ϕ is Fredholm regular.

Proof It suffices to prove that the cohomology group H1(C, ϕ∗TX) vanishes. Since
X is smooth, ϕ∗TX is a sum of line bundles

ϕ∗TX ∼= L1 ⊕ · · · ⊕ Ln.

Let x ∈ C be a point that is mapped into the dense torus orbit of X by ϕ. Let
v ∈ (ϕ∗TX)x be any vector in the stalk of ϕ∗TX at x. Recall that an infinitesimal
deformation of ϕ gives a section of ϕ∗TX. By the torus action on X, there is an
infinitesimal deformation of ϕ such that the value of the corresponding section of
ϕ∗TX at x is v. This implies that each line bundle Li , i = 1, . . . , n, above has a
nontrivial section. This in turn implies that H1(C, Li) = 0, i = 1, . . . , n. Thus,
H1(C, ϕ∗TX) vanishes.

Remark 3.26 The moduli space of maps to X0 of class [ϕ0(c0)] from prestable
rational curves can have larger dimensional components composed of curves with
several components some of which are contained in toric divisors. However, they are
not relevant to the counting of curves in X under the assumption of Proposition 3.23.

3.6 Rational Curves in a Toric Variety Admitting Small Resolutions

In this subsection, we prove the result (Theorem 3.28) that we used in the proof
of Proposition 3.23. First we recall the result of Cho and Oh [1] regarding the ex-
plicit presentation of holomorphic discs in smooth projective toric varieties with La-
grangian torus boundary condition.

Theorem 3.27 (Cho and Oh [1, Theorem 5.3]) Let L be a Lagrangian torus fiber of
the moment map in a smooth projective toric variety

XΣ = (Cr \ Z(Σ))/K.

Here r is the number of one dimensional cones of a fan Σ, the subset Z(Σ) ⊂ Cr is
defined by the Stanley–Reisner ideal, and K is the kernel of the map (C×)r → (C×)N

defined by one dimensional cones in Σ. Then any holomorphic map

ϕ : (D2, ∂D2)→ (XΣ, L)

can be lifted to a holomorphic map

ϕ̃ : D2 → Cr \ Z(Σ)
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so that the homogeneous coordinate functions (z1(ϕ̃), . . . , zr(ϕ̃)) are given by the
Blaschke products with constant factors

z j(ϕ̃) = c j ·
µ j∏

k=1

z − α j,k

1− α j,kz
,

where c j ∈ C×, α j,k ∈ Int D2 and µ j is a non-negative integer for j = 1, . . . , r.
Moreover, the Maslov index of ϕ is given by

ν(ϕ) = 2
r∑

j=1
µ j .

We prove the following result about curves in a toric variety whose singularities
admit small resolutions, which is the main result in this subsection.

Theorem 3.28 Let C be a nonsingular rational curve and X be a toric variety whose
singularities admit small resolutions. Letϕ : C → X be a holomorphic map whose image
intersects the dense torus orbit. Then ϕ can be deformed (through holomorphic maps)
into a torically transverse map.

We prove this theorem in several steps. First we note that this result was proved for
discs with Lagrangian torus boundary condition in [13, Proposition 9.5]. We recall
the proof for the reader’s convenience.

Lemma 3.29 Let X be a toric variety whose singularities admit small resolutions. Let
φ : D → X be a holomorphic disc with a boundary condition on a Lagrangian torus
fiber of the moment map. Then φ can be deformed into a torically transverse disk with
the same boundary condition.

Proof Let X̃ → X be a small resolution of X. Letψ : D→ X̃ be the proper transform
of φ. Since X̃ is smooth, the map ψ has an explicit description

z j(ψ̃) = c j ·
µ j∏

k=1

z − α j,k

1− α j,kz

by Theorem 3.27. The map ψ intersects a toric stratum of codimension larger than
one exactly when there are j1 6= j2 such that α j1,k1 = α j2,k2 for some k1 and k2.
From this remark, and since X̃ is a small resolution of X so that the exceptional locus
has codimension larger than one, we can make ψ torically transverse by perturbing
α j,k, Since the resolution is small, torically transverse disks in X̃ project to torically
transverse disks in X.

On the other hand, the proof of [14, Theorem 8.3] shows that there is a degenera-
tion of X together with a degeneration of the map ϕ that decomposes ϕ into a union
of simple pieces. To state the precise statement, we recall some results from [14].

Let E be any toric stratum of X. By the construction of [14, Section 3], there is a
variety X over C with the following properties:

• X is a toric variety and the map π : X→ C is toric.
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• Each fiber Xt = π−1(t), t 6= 0 is isomorphic to the toric variety X. The central
fiber X0 = π−1(0) is a union of toric varieties intersecting along torus orbits (see
[14, Proposition 3.5] for precise description).

• There is a natural embedding i : E × C→ X over C.

We called such a family a toric degeneration of X in [14]. Such a family X can be taken
so that it satisfies the following properties. Let E be the union of all the toric strata of
X that have codimension at least two.

Lemma 3.30 There is a degeneration π : X → C of X into a union of toric varieties
X0 = π−1(0) as above and a family of stable maps ϕt : C → X over C (t ∈ C) that
satisfies the following properties:

(i) ϕ1 = ϕ.
(ii) Let ϕ0 : C0 → X0 be the stable map over 0 ∈ C. Let C0,i be a component of

C0. Then the restriction of ϕ0 to C0,i is torically transverse except at ϕ−1
0 (E), and

ϕ−1
0 (E) is a finite subset. In particular, the image ϕ0(C0,i) is not contained in a

torus orbit of positive codimension.
(iii) Moreover, if C0,i is a component that contains a point mapped to E, then the image

of C0,i by ψ0 is the closure of an orbit of a one parameter subgroup of the torus
acting on the corresponding component of X0.

Here C is a suitable family of prestable rational curves over C. Also, we regard E as a
subset of X0 using the natural embedding i above.

Proof In fact, ϕ0 is a generalization of what in [14] we called a maximally degen-
erate curve where restriction of ϕ0 to each component of C0 (and also all ϕt , t 6= 0)
was required to be torically transverse. The extension to the case where we allow in-
tersection with the locus E is straightforward. Namely, blow up X so that the proper
transform of ϕ becomes torically transverse (in particular, this will be different from
small resolutions of X in general). Then apply the argument of the proof of [14, The-
orem 8.3] so that we obtain a maximally degenerate curve. Now blow down the
divisors over E × C to obtain a degeneration of X (not of its blow up). The resulting
curve satisfies our requirements.

Let C0,i be a component of C0 that contains a point mapped to the locus E. Let
X0,i be the component of X0 to which C0,i is mapped. Then by Lemma 3.30(iii), the
intersection of the image of C0,i by ϕ0 with a Lagrangian torus fiber of the moment
map is, if nonempty, a circle (possibly multiply covered). In particular, such a circle
divides the restriction ϕ0,i of ϕ0 to C0,i into two holomorphic disks with Lagrangian
torus boundary condition. Let

ϕ0,i |Di : D→ X0,i , i = 1, 2

be these holomorphic disks and let ϕ0,i |D1 : D → X0,i be the one whose image con-
tains the point mapped to the locus E (we can assume such a point is unique on C0,i

by suitably modifying the degeneration X if necessary).
By Lemma 3.29, ϕ0,i |D1 can be deformed into a torically transverse disk

ϕ′0,i |D1 : D → X0,i . However, although ϕ′0,i |D1 satisfies the same Lagrangian torus
boundary condition as ϕ0,i |D1 , ϕ0,i |∂D1 and ϕ′0,i |∂D1 are different maps. So we cannot
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glue ϕ′0,i |D1 and ϕ0,i |D2 to obtain a map from a rational curve into X0,i . But this point
can be fixed by the argument in [11, Section 9.2.3]. Let us recall it briefly.

Namely, in [11, Section 8], we constructed a degeneration of holomorphic disks
in a toric variety with Lagrangian torus boundary condition.

Lemma 3.31 There is a degeneration πi : Xi → C of X0,i into a union of toric varieties
and a family of stable maps ϕ̃t,i : D→ Xi over C that satisfies the following properties:

(i) ϕ̃1,i = ϕ′0,i |D1 .
(ii) For all t ∈ C, ϕ̃t,i is a torically transverse map.
(iii) The pre-stable disk D0 has only one component D0,b that has boundary. The re-

striction of ϕ̃0,i to ∂D0,b is the same as ϕ0,i |∂D1 under the natural identification of
the Lagrangian tori to which ϕ̃0,i |∂D0,b and ϕ0,i |∂D1 are mapped.

Here D is a suitable family of prestable disks (see [11, Definition 4.5] for definition of
prestable disks) and Dt , t ∈ C, is the fiber of D over t.

The degeneration can be torically embedded in Pd × C → C for some integer d
(see [11, Section 8.1]). Here Pd is a projective toric manifold. So a metric is induced
on the total space Xi of the degeneration. The following is a consequence of results
of [11, Section 8.2].

Lemma 3.32 Let ε be an arbitrary small positive constant. After a suitable base
change of the family πi , the degeneration of Lemma 3.31 can be taken so that the
Gromov–Hausdorff distance between the images of ϕ̃1,i and ϕ̃0,i is smaller than ε, con-
sidered as maps to the same target space Pd.

The degenerations π : X → C and πi : Xi → C can be combined to a single de-
generation π′ : X′ → C of the original toric variety X. On the central fiber of this
degeneration π′, there are two stable disks ϕ0|C0\int D1

and ϕ̃0,i . Here int D1 is the set
D1 \ ∂D1. The Lagrangian tori to which the boundary of these maps are mapped
are in general different. But the image of ϕ′0,i |D1 can be taken as close to the image
of ϕ0,i |D1 as we like (with respect to the Gromov–Hausdorff distance), so by Lem-
mas 3.31 and 3.32, slightly deforming ϕ̃0,i by the torus action, these two maps glue
to give a stable map ϕ̃′0,i from a nodal rational curve to X′0, the central fiber of the
degeneration π′ : X′ → C.

Performing this construction at all the points of ϕ where it intersects the singular
locus E of X, we obtain a torically transverse rational map ϕ̃′0 to X′0.

Then by [14, Theorem 8.3], such a map can be (not uniquely) smoothed to a map
in X. Moreover, as in Lemma 3.32, the Gromov–Hausdorff distance between the
images of the original map ϕ in Theorem 3.28 and such a smoothed map ϕ̃′ can be
taken as small as we like (after a suitable base change if necessary).

Proof of Theorem 3.28 Let ϕ′′ and ϕ̃′′ be the proper transform of these maps to a
small resolution X̃ of X. By the above argument, the distance of the images of ϕ′′

and ϕ̃′′ can be taken as small as we like. Since X̃ is a smooth toric manifold, by the
regularity (Lemma 3.25) there is a family of stable maps that contains both ϕ′′ and
ϕ̃′′. Projecting this family to X, we obtain a desired deformation of ϕ.
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3.7 Coarse Degree for X0 Associated with a Class in H′2

By Lemma 3.22 and Proposition 3.23, when the incidence conditions Zi in X0 are
transversal to each toric stratum, then we only need to consider stable maps with the
properties to study the relationship between the counting problems in X1 and X0:
• The domain is the nonsingular rational curve.
• For the case of curves in X0, the map is torically transverse.

So in the following the domain of stable maps will always be the nonsingular ra-
tional curve, and stable maps in X0 are torically transverse unless otherwise specified.

A torically transverse rational stable map ϕ : P1 → X0 lifts to a torically transverse
rational stable map ϕ̃ : P1 → X̃0, where X̃0 is a small resolution of X0. Since X̃0 is
smooth, the image of ϕ̃ gives an element of (H2n−2(X̃0,Z))∗. On the other hand,
Since ϕ is Fredholm regular by Lemma 3.25, ϕ lifts to a torically transverse stable
map ϕ1 : C → X1. Since X1 is smooth, too, ϕ1 gives an element of (H2n−2(X1,Z))∗,
in fact, an element of (H′2n−2)∗ using the notation of the previous subsection.

Recall that there is a natural surjection

P :
(

H2n−2(X̃0,Z)
)∗ → (H′2n−2)∗

and a submonoid D ⊂ (H2n−2(X̃0,Z))∗. Using the construction so far, we have the
following proposition.

Proposition 3.33 Let [ϕ′] ∈ H′2 be an element represented by a rational stable map
in X1 that is a lift of some torically transverse rational stable map ϕ in X0. Then the
intersection of P−1([ϕ′]) and D in (H2n−2(X̃0,Z))∗, or its image in P∗, is given as
follows:

(i) Consider all the deformation classes of torically transverse rational stable maps

ϕi : P1 → X0, i = 1, . . . ,m

whose lifts to X1 give the class [ϕ′].
(ii) Lift ϕi to X̃0. This gives an element ai of P∗.
(iii) Then we have P−1([ϕ′]) ∩D = {a1, . . . , am}.

Definition 3.34 For [ϕ′] ∈ H′2 as in the proposition above, we call the subset

P−1([ϕ′]) ∩D

the set of coarse-degrees corresponding to [ϕ′]. We may also consider it as a subset of
P∗ by the natural inclusion p∗1 .

3.8 Stable Maps in X0 and their Deformations to X1

In Subsection 3.5, we studied the degeneration of holomorphic curves in a Fano man-
ifold X = X1 to curves in X0. In this subsection, we study the converse and establish
that there is a one-to-one correspondence between curves in X1 and in X0 in a suit-
able sense.

Let us assume that we have fixed a degree ∆ of a torically transverse rational
stable map in X0. Let e = |∆| be the number of the unbounded edges of the
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associated tropical curve as before. Take generic incidence conditions (Z1, . . . ,Zl)
in X0 corresponding to a sequence of linear subspaces (L1, . . . , Ll) of NR. Write

codim Li = codim Zi = di + 1 and assume that
∑l

i=1 di = e + n − 3. We also
assume that the domain of a stable map is the nonsingular rational curve and such a
map is torically transverse when it is a map to X0, as noted in the previous subsection.

Recall that we are considering regular family of almost complex structures on
Xt , (t ≥ 0), converging to the toric complex structure on the smooth part of X0.
We assume that X1 is sufficiently close to X0, by suitable base change as in Lemma
3.32. Since a torically transverse rational stable map ϕ in X0 is Fredholm regular by
Lemma 3.25, ϕ lifts to a stable map ϕ1 in X1.

Lemma 3.35 The virtual dimension of the moduli spaces at ϕ is the same as that
of ϕ1.

Proof By assumption the map ϕ is torically transverse. In particular, there is a
neighborhood U of the image of ϕ in X0 on which the restriction

φgrH |φ−1
grH (U ) : φ−1

grH(U )→ U

is a diffeomorphism. Since the virtual dimension of a stable map is calculated by a
characteristic number, which is a topological invariant, the virtual dimensions of the
moduli spaces at ϕ and ϕ1 are the same.

Thus, if (Z1, . . . ,Zl) are incidence conditions on X0 for curves of class β = [ϕ]
satisfying Assumption 3.6, then (Z̃1, . . . , Z̃l) can be used as incidence conditions on
X1 for curves of class [ϕ1]. By the Fredholm regularity, the maps around ϕ in the
moduli space of stable maps deforming ϕ locally (and noncanonically) correspond
to the maps around ϕ1 in a one-to-one manner. In particular, we have the following
proposition.

Proposition 3.36 Let ϕ : P1 → X0 be a torically transverse stable map of given de-
gree ∆ as above, satisfying the incidence conditions (Z1, . . . ,Zl), and assume that each
Zi is transversal to each toric stratum, as in Proposition 3.23. Assume also that each Zi

satisfies Assumption 3.6 and choose Z̃i ⊂ X1 for each i. Then ϕ can be uniquely de-
formed into a stable map ϕ1 : P1 → X1 satisfying the incidence conditions (Z̃1, . . . , Z̃l).
Its degree β satisfies the property that the coarse-degree ∆D ∈ P∗ associated with ∆ is
contained in the set of coarse-degrees corresponding to β (Definition 3.34).

Proof This follows from the transversality of ϕ with respect to the incidence condi-
tions. See the proof of [14, Proposition 7.3].

For each i, we take a family of cycles Zi over the base B as in Subsection 3.2.2. Then
the above proposition can be formulated for this family, giving lifts ϕt : C → Xt for
every t ∈ [0, 1]. There may be several choices for Zi as in Definition 3.7. However,
this does not matter (see Lemma 3.38).

We can prove the converse of Proposition 3.36.
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Proposition 3.37 Consider the same situation as Proposition 3.36. Then there is a
positive number T with the following property: For any t with 0 < t < T, assume
that there is a rational stable map ϕt : P1 → Xt of degree β satisfying the incidence
conditions given by the restrictions Zi |Xt . Then ϕt is contained in the ones constructed
in Proposition 3.36 (with X1 replaced by Xt ).

Proof Suppose the statement is false. Then there is a sequence of rational stable
maps ψti : P1 → Xti of degree β, with ti → 0 as i →∞ satisfying the incidence con-
ditions, but not contained in the ones constructed in Proposition 3.36. By Gromov’s
compactness theorem, we may assume that ψti converges to a limit rational stable
map ψ : C ′ → X0 satisfying the incidence conditions (Z1, . . . ,Zl), whose homology
class is φ∗(β).

However, by Proposition 3.23 the domain of the map ψ must be the nonsin-
gular rational curve and ψ is torically transverse. Then, by Fredholm regularity
(Lemma 3.25), the sequence ψti must be contained in one of the families in Proposi-
tion 3.36, a contradiction.

Lemma 3.38 The family ϕt does not depend on the choice of Zi

Proof A torically transverse map ϕ : P1 → X0 of the given degree satisfying con-
straints {Zi} does not intersect any Zi on the toric boundary if the constraints {Zi}
are generic, by dimensional reasoning (the transversality with respect to the incidence
conditions, see the proof of [14, Proposition 7.3]). Since the choice of Zi only deter-
mines how to lift Zi around its intersection with the singular locus of X0, the choice
does not affect the configuration of rational curves satisfying the constraints.

3.9 Counting Invariants via Toric Fano Degeneration

We define two counting invariants. One is directly related to the genuine Gromov–
Witten invariants, and the other is the transversal Gromov–Witten type invariants
considered in [14].

3.9.1 Gromov–Witten Invariants

As before, reparameterizing the base B, we assume X1 satisfies the condition of Propo-
sition 3.37.

We briefly recall the definition of Gromov–Witten invariants. See [2] for more
information. Let X be a projective algebraic manifold and let β ∈ H2(X,Z). Let
Mg,n+1(X, β) be the moduli stack of stable maps of genus g with target X, where the
homology class of the image is β, and let [Mg,n(X, β)]virt be its virtual fundamental
class. [Mg,n(X, β)]virt has dimension

(1− g)(dim X − 3)−
∫
β

ωX + n.

Let π1 : Mg,n(β,X) → Xn be the natural map given by evaluations. Let α1, . . . , αn

be elements of H∗(X,Q). Then the Gromov–Witten invariant Ig,n,β(α1, . . . , αn) is

https://doi.org/10.4153/CJM-2014-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-006-3


686 T. Nishinou

defined by

Ig,n,β(α1, . . . , αn) =

∫
[Mg,n(X,β)]virt

π∗1 (α1 ⊗ · · · ⊗ αn).

We are concerned with the case when g = 0.
To state the main theorem, we recall what we count and at the same time we in-

troduce some notations. Let us fix a class β ∈ H′2 (see Subsection 3.3) represented
by a rational stable map. Let ∆β = {a1, . . . , am} be the set of coarse-degrees corre-
sponding to β in the sense of Definition 3.34.

On X0, we count (a priori not necessarily torically transverse) stable mapsϕ : C →
X0 satisfying the following:

(a) The domain C is a connected, l-pointed rational prestable curve.
(b) ϕ satisfies general incidence conditions Z = (Z1, . . . ,Zl) of codimension d =

(d1, . . . , dl), satisfying Assumption 3.6 and the transversality assumption of
Proposition 3.23.

(c) Then by Proposition 3.23, ϕ has to be torically transverse. In particular, the
degree ∆ of ϕ in the sense of Definition 3.13 is defined. The degree ∆ should
satisfy the property that the associated coarse-degree ∆D is contained in the set
∆β .

By Proposition 3.23, C has to be the nonsingular rational curve.
For the case of X1, we count stable maps ψ : C → X1 such that the following hold:

(a) C is a connected, l-pointed rational prestable curve.
(b) ψ satisfies the incidence conditions determined by Definition 3.7 (which we de-

note by Z̃).
(c) ψ has degree β ∈ H′2 ⊂ H2(X1,Z).

In this case too, C has to be the nonsingular rational curve (Lemma 3.22).
For the case of tropical curves, we count tropical curves h : Γ→ NR such that the

following hold:

(a) The graph Γ is connected, rational, and l-marked: E = (E1, . . . , El).
(b) h : Γ → Rn satisfies generic incidence conditions A = (A1, . . . ,Al) of codimen-

sion d such that Zi is the closure of an orbit of the subtorus corresponding to Li ,
the linear subspace of NR parallel to Ai .

(c) (Γ, h) has degree ∆ and this ∆ satisfies the same property as in the case of X0.

Tropical curves have to be counted with multiplicity

(W) w(Γ,E) ·D(Γ,E, h,A) ·
l∏

i=1
δi(Γ,E, h,A)

(see Subsection 3.2.1).
We denote these counting numbers by NX0 (∆β ,Z), NX1 (β, Z̃), and Ntrop(∆β , L)

respectively. If the virtual dimension of the moduli spaces of the curves is not equal
to the codimension of the incidence conditions, we define these numbers to be 0.
Our main theorem follows.
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Theorem 3.39 The following equalities hold:

NX1 (β,Z) = NX0 (∆β , Z̃) = Ntrop(∆β ,A).

These numbers do not depend on the choice of Z, Z̃ or A, if they are general.

Proof In [14, Theorem 8.3 and Corollary 8.4], the equality between NX0 (∆β ,Z)
and Ntrop(∆β ,A), as well as the independence to the choice of incidence conditions
are shown. So it suffices to show the equality between NX1 (β, Z̃) and NX0 (∆β ,Z).

By Proposition 3.36, we see that any rational stable map of degree ∆ such that ∆D

is contained in ∆β and satisfying the incidence conditions Z in X0 uniquely lifts to

a rational stable map in X1 satisfying the incidence conditions Z̃. By Lemma 3.35,
the virtual dimensions of the rational stable map in X0 and its lift in X1 are the same.
This shows that the inequality NX1 (β, Z̃) ≥ NX0 (∆β ,Z) holds. So the problem is to
show that this lift is surjective, which is done in Proposition 3.37.

Corollary 3.40 NX1 (β, Z̃) is the Gromov–Witten invariant I0,l,β(α1, . . . , αl), where

αi is the Poincaré dual of the homology class of Z̃i .

Proof By the theorem, the stable maps contributing to NX0 (∆β ,Z) and NX1 (β, Z̃)
are in one-to-one correspondence. Recall that the stable maps contributing to
NX0 (∆β ,Z) are Fredholm regular. So the stable maps contributing to NX1 (β, Z̃),
which are small perturbations of those contributing to NX0 (∆β ,Z), are Fredholm
regular, too (recall that we assume X1 is sufficiently close to X0). So the moduli space
of rational stable maps of degree β intersecting with general incidence conditions Z̃
in X1 is NX1 (β, Z̃) points, and its virtual fundamental cycle is equal to itself.

Theorem 3.41 Using the same notation as in Corollary 3.40, The Gromov–Witten
invariant I0,l,β(α1, . . . , αl) for X = X1 is equal to Ntrop(∆β ,A).

Proof This follows from Theorem 3.39 and Corollary 3.40.

3.9.2 Transversal Gromov–Witten Type Invariants

The transversality assumption of Proposition 3.23 for an incidence condition Zi in
X0 does not hold in general. Nevertheless, even without this assumption we can de-
fine counting invariants of curves by restricting attention only to torically transversal
curves, as we did in [14]. When the transversality assumption holds, all the curves
satisfying the incidence conditions have to be torically transverse, so under this as-
sumption, these two invariants are equal.

Thus, here we only assume Assumption 3.6 for the incidence conditions Zi . In
this case, we count the following. As before, we fix a class β ∈ H′2 represented by a
rational stable map.

On X0, we count stable maps ϕ : C → X0 such that the following hold:

(a) The domain C is a connected, l-pointed rational prestable curve.
(b) ϕ is torically transverse, satisfying general incidence conditions Z = (Z1, . . . ,Zl)

of codimension d = (d1, . . . , dl) that satisfy Assumption 3.6.
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(c) ϕ has a fixed degree ∆ such that the associated coarse-degree ∆D is contained in
the set ∆β .

By Proposition 3.23, C has to be the nonsingular rational curve.
For the case of X1, we count stable maps ψ : C → X1 such that the following hold:

(a) C is a connected, l-pointed rational prestable curve.
(b) ψ satisfies the incidence conditions determined by Definition 3.7 (which we de-

note by Z̃) and ψ is a lift of a torically transverse stable map ϕ in X0 as in Propo-
sition 3.36. Note that in Proposition 3.36, the transversality assumption for Zi

is assumed, but for torically transverse ϕ, the conclusion holds without this as-
sumption.

(c) ψ has degree β ∈ H′2 ⊂ H2(X1,Z).

For the case of tropical curves, we count the same objects as before, namely, tropical
curves h : Γ→ NR such that the following hold:

(a) The graph Γ is connected, rational, and l-marked: E = (E1, . . . , El).
(b) h : Γ → Rn satisfies generic incidence conditions A = (A1, . . . ,Al) of codimen-

sion d, such that Zi is the closure of an orbit of the subtorus corresponding to Li ,
the linear subspace of NR parallel to Ai .

(c) (Γ, h) has degree ∆ and this ∆ satisfies the same property as in the case of X0.

As we mentioned before, tropical curves have to be counted with multiplicity (W).
We denote these three counting numbers by N trans

X0
(∆,Z), N trans

X1
(β, Z̃), and

Ntrop(∆, L) respectively. Then the conclusion as Theorem 3.39 is proved by the same
proof.

Theorem 3.42 The following equalities hold:

N trans
X1

(β,Z) = N trans
X0

(∆β , Z̃) = Ntrop(∆β ,A).

These numbers do not depend on the choice of Z, Z̃ or A, if they are general.

Remark 3.43 Note that N trans
X1

(β,Z) may not be a homological invariant, that is,
if we change the cycle Z̃i within the same homology class, but not necessarily re-
lated to Zi as in Assumption 3.6, the number of rational stable maps incident to
them may change. However, by the Fredholm regularity of the maps contributing to
N trans

X1
(β,Z), it gives a lower bound for the Gromov–Witten invariants

N trans
X1

(β,Z) ≤ I0,l,β(α1, . . . , αl),

where αi is the Poincaré dual of the homology class of Z̃i .

4 Examples

4.1 Flag Manifold F3

In this section, we give an example of calculation of Gromov–Witten invariants by
tropical method in the case of flag manifold F3, which parameterizes the full flags in
C3. It is embedded in P2 × P2 by Plücker embedding, and its toric degeneration is
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given explicitly by

X =
{(

[Z1 :Z2 :Z3], [Z12 :Z13 :Z23], t
) ∣∣ Z1Z23 − Z2Z13 + tZ3Z12 = 0

}
.

with the central fiber

X0 =
{(

[Z1 :Z2 :Z3], [Z12 :Z13 :Z23]
)
∈ P2 × P2

∣∣ Z1Z23 − Z2Z13 = 0
}
.

The Gelfand–Cetlin polytope (see [13] for details) of F3 is defined by the inequalities

λ1 > λ2 > λ3
≥ ≥ ≥ ≥

λ(2)
1 λ(2)

2≥ ≥
λ(1)

1

and graphically given by Figure 1. This is the same as the polytope associated with

�(2)2�(2)1�(1)1
Figure 1: The Gelfand-Cetlin polytope for n = 3

the toric Fano variety X0.
We use the coordinate (x, y, z) = (λ(2)

2 , λ(2)
1 , λ(1)

1 ) for MR ' R3. Let π1, π2 be the
natural projections of F3 to the factors of P2 × P2. The generic fiber of πi , i = 1, 2,
is isomorphic to P1, and the corresponding homology classes generate the second
homology group H2(F3,Z), which is isomorphic to Z2. We denote these generators
by (1, 0) and (0, 1). Then clearly

I0,1,(1,0)(pt) = I0,1,(0,1)(pt) = 1.

The two point function I0,1,(1,1)(pt, pt) is calculated by counting tropical curves with
degree

(−1, 0, 0), (0, 1, 0), (0,−1, 1), (1, 0,−1).

These are the same as the tropical curves corresponding to the lines in P3, and so
there is one such tropical curve through generic two points. Thus,

I0,1,(1,1)(pt, pt) = 1.
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We calculate the three point functions I0,3,β(pt, pt, pt) for β = (1, 2), (2, 1). It is
easy to see that the tropical curves corresponding to (1, 2) have degree

(−1, 0, 0), (0,−1, 1), (0,−1, 0), (0, 1, 0), (0, 1, 0), (1, 0,−1).

Projecting such a tropical curve Γ̄ to the xz-plane, we still have a tropical curve Γ. It
is a plane tropical curve with degree

(−1, 0), (0, 1), (1,−1).

That is, it is a tropical line with unbounded edges of these directions. Three un-
bounded edges (directions (0,−1, 0), (0, 1, 0), (0, 1, 0)) are projected to points on
the xz-plane.

Projecting three generic points ā, b̄, c̄ in R3 to this plane, we have three generic
points a, b, c on R2. If the original tropical curve intersects generic three points, the
projected curve also intersects three points. However, there is no tropical line on R2

that is incident to generic three points, so it follows that there is no rational tropical
curve in R3of the degree given above which is incident to ā, b̄, c̄. This means

I0,3,(1,2)(pt, pt, pt) = 0.

The identity I0,3,(2,1)(pt, pt, pt) = 0 can be shown in the same way. By the same
proof, it follows that

I0,k,(1,k−1)(pt, . . . , pt) = I0,k,(k−1,1)(pt, . . . , pt) = 0

for all k > 2.
In fact, we can calculate all genus zero Gromov–Witten invariants by tropical

method. As noted above, the second homology group of the flag manifold F3 is
rank two, and it is generated by rational curves whose classes we denoted by (1, 0)
and (0, 1). We rewrite these as l1, l2.

In X0, these classes are tropically represented by lines with direction vectors
(1, 0, 0) and (0, 1, 0). These curves lift to X1, so, considered as incidence conditions,
they satisfy Assumption 3.6 and the transversality condition of Proposition 3.23. Real
four dimensional classes are evaluated using the divisor axiom. Generators of these
classes s1, s2 are uniquely determined by the relations si ∩ l j = δi j .

For a class β = (s, t) ∈ H2(F3,Z), the set of coarse-degrees ∆β corresponding to β
(Definition 3.34) is given by the following set of degrees for rational tropical curves.

Lemma 4.1 A coarse-degree ∆̃ belongs to ∆β = ∆(s,t) if and only if the following
conditions are satisfied.

Representing a coarse-degree as an integer valued function on the set of primitive
vectors in N = Z3,

∆̃(−1, 0, 0) = s, ∆̃(0, 1, 0) = t,

∆̃(1, 0, 0) = s1, ∆̃(1, 0,−1) = s2,

∆̃(0,−1, 0) = t1, ∆̃(0,−1, 1) = t2,

where s1 + s2 = s, t1 + t2 = t and t2 = s2. The others are zero.

Then we have the following proposition.
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Proposition 4.2 Let

pt ∈ H0(F3,Z), l1, l2 ∈ H2(F3,Z), s1, s2 ∈ H4(F3,Z)

be the generators as above and let pt∨, l∨1 , l
∨
2 , s
∨
1 , s
∨
2 be their dual cohomology classes.

Let β = (s, t) be the degree of the curve as above. Then, when

2(s + t) = 2a + b + c,

we have,

I0,k,β((pt∨)a, (l∨1 )b, (l∨2 )c, (s∨1 )d, (s∨2 )e) = sdteI0,k′,β((pt∨)a, (l∨1 )b, (l∨2 )c),

where
k = a + b + c + d + e, k′ = a + b + c.

The number
I0,k′,β

(
(pt∨)a, (l∨1 )b, (l∨2 )c

)
is the same as the number of k′-marked rational tropical curves of degree ∆ incident to
generic a points, generic b lines with direction (1, 0, 0) and generic c lines with direction
(0, 1, 0). The degree ∆ should satisfy the condition that the associated coarse-degree ∆D

belongs to ∆(s,t). When 2(s + t) 6= 2a + b + c, the invariant is zero.

4.2 Moduli Space of Rank 2 Bundles on a Curve of Genus Two

In this subsection, we give another example of calculation of Gromov–Witten invari-
ants of a Fano manifold of particular interest via tropical method. Newstead [10]
and Narasimhan and Ramanan [9] showed that the moduli space of stable rank two
vector bundles with a fixed determinant of odd degree on a genus two curve defined
as the double cover of P1 branched over {ω0, . . . , ω5} ⊂ C, is a Fano complete inter-
section

X = Q1 ∩ Q2

of two quadrics

Q1 :
5∑

i=0
x2

i = 0, Q2 :
5∑

i=0
ωix

2
i = 0

in P5. The Betti numbers of X are easy to calculate:

b0 = b2 = b4 = b6 = 1, b3 = 4,

and the others are 0. Then X has several different structures of integrable systems,
known as Goldman systems [3], and X can be degenerated (without considering in-
tegrable system) to Fano toric varieties in several ways. Nevertheless, there seems to
be no known toric degeneration of X as a Fano integrable system in the sense of [13].
In fact, we see that, from the view point of toric degenerations of integrable systems
and enumerations of holomorphic curves associated with them, Goldman systems
are not good ones (see below).

By deforming the defining equations Q1 and Q2 (and changes of variables), we
have, for example, three toric degenerations, whose toric varieties are given by

(a) xy = zw, zw = uv,
(b) x2 = zw, zw = uv,
(c) x2 = yz,w2 = uv,
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where u, v,w, x, y, z are homogeneous coordinates of P5. The moment polytopes of
them are octahedron, quadrangular pyramid and tetrahedron respectively. Jeffrey
and Weitsman [5] explicitly described the Goldman system in this case and showed
that the moment polytope will be either a quadrangular pyramid or a tetrahedron,
depending on the pants decomposition of the genus two curve. However, the toric
varieties associated with these polytopes do not satisfy Assumption 3.8 (namely, they
do not admit small resolutions), so they are not very good from the enumerative
point of view.

Here we investigate the case of the octahedron. The torus action is given by

[x : y :z :w :u :v] 7→ [αx :βy :γz :αβγ−1w :αβu : v], α, β, γ ∈ C∗.

The moment polytope is the convex hull of

{(λ, 0, 0), (0, λ, 0), (0, 0, λ), (λ, λ,−λ), (λ, λ, 0), (0, 0, 0)}, λ ≥ 0,

and the defining inequalities are given by

`1(u) = 〈(0, 1, 1), u〉 ≥ 0, `2(u) = 〈(−1, 0, 0), u〉 + λ ≥ 0,
`3(u) = 〈(0,−1, 0), u〉 + λ ≥ 0, `4(u) = 〈(1, 0, 1), u〉 ≥ 0,
`5(u) = 〈(0, 1, 0), u〉 ≥ 0, `6(u) = 〈(−1, 0,−1), u〉 + λ ≥ 0,
`7(u) = 〈(0,−1,−1), u〉 + λ ≥ 0, `8(u) = 〈(1, 0, 0), u〉 ≥ 0.

It is easy to see that X0 has a small resolution. In fact, all the singularities of X0 are
locally isomorphic to the singularity of the degeneration of F3. As before, by the
Fredholm regularity of torically transversal rational curve in toric varieties ([1]), we
have the following.

Proposition 4.3 Any torically transverse rational stable map in X0 can be deformed
to a rational stable map in X.

By Proposition 3.9, it is easy to see that in this case there is a natural isomorphism

H2(X,Z) ∼= H2(X0,Z).

One sees that there are four families of P1s on X0 corresponding to the pairs of par-
allel facets of the octahedron. These curves have two dimensional freedom (given
by the parallel transport) to move in X0. These are all homologous, and generate
H2(X0,Z). By the isomorphism above, any of their lifts generate H2(X,Z), due to
Proposition 4.3.

Now since the singular points of X0 are locally isomorphic to that of the degen-
eration of F3, the inverse images of them under the gradient flow φgrH,t are three di-
mensional spheres. On the other hand, X is ruled by any one of the two dimensional
families of P1 that are the lifts of the rulings on X0. General members of these rulings
on X0 do not intersect with the singular points, so general members of the corre-
sponding rulings on X do not intersect with the three dimensional spheres above.

Let pi , i = 1, . . . , a be general points on X0 and l j , j = 1, . . . , b be general lines in
one of the rulings of X0, a, b ∈ Z≥0. Extend them to a holomorphic family pi,t , l j,t on
X → C around the origin of C. The following is a consequence of Propositions 3.36
and 3.37. Note that when ψ : C → X0 is a torically transverse holomorphic map, it
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gives a natural map ψ̃ : X → X̃0, where X̃0 is a small resolution of X0. The proof of
Lemma 3.10 shows that this gives a map

π∗ : H2(X0,Z)→ H2(X̃0,Z),

that splits the pushforward map

π∗ : H2(X̃0,Z)→ H2(X0,Z).

Proposition 4.4 There is a natural one-to-one correspondence between the families
of rational stable maps ϕ : Ct → Xt with c1(Xt )(ϕ(Ct )) = 2a + b intersecting pi,t , l j,t

for t 6= 0, and the rational stable maps ψ : C ′ → X0 with

c1(X̃0)(π∗(ψ(C ′))) = 2a + b

intersecting pi , l j . The domains Ct ,C ′ are in fact P1, and ψ is torically transverse.

Remark 4.5 In the case of degeneration to the quadrangular pyramid or to the
tetrahedron, the rulings of Xt are broken and it seems difficult to calculate the in-
variants of Xt directly from the tropical calculation on X0. Also, as we mentioned
above, X0 does not satisfy Assumption 3.8, and the behavior of holomorphic curves
may change when we move from Xt to X0. This is the reason that Goldman systems
may not be good from the view point of toric degenerations of integrable systems (or
from the view point of enumerative geometry).

Concerning this point, it is an interesting problem to find a natural construction
of a structure of an integrable system on X that torically degenerate to X0 (note that
we can pull-back the toric integrable system structure on X0 to X by φ−1

grH . However,
its geometric meaning is not clear, compared to Goldman systems).

By Propositions 4.3 and 4.4, we can compute the Gromov–Witten invariants of X
by counting curves in X0, which in turn can be calculated by tropical method. In this
case, H2(X,Z) is free of rank one and so we can parameterize it by the set of integers.
Let l be the generator of H2(X,Z) represented by a rational stable map. Let h be the
generator of H4(X,Z) such that the intersection pairing satisfies l · h = 1.

In this case, the set ∆a·l of coarse-degrees, a ∈ N is described as follows.

Lemma 4.6 A coarse-degree ∆̃ belongs to ∆a·l if and only if the following conditions
are satisfied.

Representing a coarse-degree as an integer valued function on the set of primitive
vectors in N = Z3,

∆̃(0, 1, 1) = ∆̃(0,−1,−1) = a1,

∆̃(1, 0, 0) = ∆̃(−1, 0, 0) = a2,

∆̃(0, 1, 0) = ∆̃(0,−1, 0) = a3,

∆̃(1, 0, 1) = ∆̃(−1, 0,−1) = a4,

where a1 + a2 + a3 + a4 = a. The others are zero.

Then we have the following proposition.
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Proposition 4.7 When 2m = 2a + b, we have

I0,k,m·l
(

(pt∨)a, (l∨)b, (h∨)c
)

= mcI0,k′,m·l
(

(pt∨)a, (l∨)b
)
,

where k = a + b + c, k′ = a + b. The number I0,k′,m·l((pt∨)a, (l∨)b) is the same as the
number of k′-marked rational tropical curves of degree ∆ incident to generic a points
and generic b lines parallel to either (1, 0, 0), (0, 1, 0), (0, 1, 1) or (1, 0, 1). The degree
∆ must satisfy the condition that the associated coarse-degree ∆ is contained in ∆m·l.
When 2m 6= 2a + b,

I0,k,m·l((pt∨)a, (l∨)b, (h∨)c) = 0.

Remark 4.8 It might be interesting that the counting number of the tropical curves
in the proposition is the same however we choose the number of lines parallel to
(1, 0, 0), (0, 1, 0), (0, 1, 1), or (1, 0, 1), provided the total number is b. This is not
a purely tropical consequence, but follows from the homological invariance of the
Gromov–Witten invariants.

Using our method, we can also calculate the Gromov–Witten invariants with odd
degree arguments. First, as we remarked above, the generators σi , i = 1, 2, 3, 4 of
H3(X) are collapsed to singular points of X0 by the map φgrH . If some I0,l,β 6= 0
with σi in the argument, then there is a family of rational stable maps ψt : Ct → Xt ,
t ∈ (0, 1] satisfying the incidence conditions. Assume that there are other arguments
other than σis. By Gromov’s compactness theorem, we can assume that ψt converges
to a rational stable map in X0.

By the above remark about the classes σi , the limit curve must intersect the sin-
gular points of X0. On the other hand, it satisfies the incidence conditions induced
from the classes other than σi . However, as in the proof of Proposition 3.23, such a
curve belongs to a lower dimensional subvariety of the moduli space, and so it can-
not satisfy these incidence conditions. The case where all the arguments are from σis
can be dealt with by similar dimension counting argument. So we have the following
proposition.

Proposition 4.9 The number I0,l,β(α1, . . . , αk) = 0 if one of αi is a cohomology class
of odd degree.
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